2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/drivers/net/sgiseeq.c

769 lines
20 KiB
C
Raw Normal View History

/*
* sgiseeq.c: Seeq8003 ethernet driver for SGI machines.
*
* Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
#include <asm/sgi/seeq.h>
#include "sgiseeq.h"
static char *sgiseeqstr = "SGI Seeq8003";
/*
* If you want speed, you do something silly, it always has worked for me. So,
* with that in mind, I've decided to make this driver look completely like a
* stupid Lance from a driver architecture perspective. Only difference is that
* here our "ring buffer" looks and acts like a real Lance one does but is
* layed out like how the HPC DMA and the Seeq want it to. You'd be surprised
* how a stupid idea like this can pay off in performance, not to mention
* making this driver 2,000 times easier to write. ;-)
*/
/* Tune these if we tend to run out often etc. */
#define SEEQ_RX_BUFFERS 16
#define SEEQ_TX_BUFFERS 16
#define PKT_BUF_SZ 1584
#define NEXT_RX(i) (((i) + 1) & (SEEQ_RX_BUFFERS - 1))
#define NEXT_TX(i) (((i) + 1) & (SEEQ_TX_BUFFERS - 1))
#define PREV_RX(i) (((i) - 1) & (SEEQ_RX_BUFFERS - 1))
#define PREV_TX(i) (((i) - 1) & (SEEQ_TX_BUFFERS - 1))
#define TX_BUFFS_AVAIL(sp) ((sp->tx_old <= sp->tx_new) ? \
sp->tx_old + (SEEQ_TX_BUFFERS - 1) - sp->tx_new : \
sp->tx_old - sp->tx_new - 1)
struct sgiseeq_rx_desc {
volatile struct hpc_dma_desc rdma;
volatile signed int buf_vaddr;
};
struct sgiseeq_tx_desc {
volatile struct hpc_dma_desc tdma;
volatile signed int buf_vaddr;
};
/*
* Warning: This structure is layed out in a certain way because HPC dma
* descriptors must be 8-byte aligned. So don't touch this without
* some care.
*/
struct sgiseeq_init_block { /* Note the name ;-) */
struct sgiseeq_rx_desc rxvector[SEEQ_RX_BUFFERS];
struct sgiseeq_tx_desc txvector[SEEQ_TX_BUFFERS];
};
struct sgiseeq_private {
struct sgiseeq_init_block *srings;
/* Ptrs to the descriptors in uncached space. */
struct sgiseeq_rx_desc *rx_desc;
struct sgiseeq_tx_desc *tx_desc;
char *name;
struct hpc3_ethregs *hregs;
struct sgiseeq_regs *sregs;
/* Ring entry counters. */
unsigned int rx_new, tx_new;
unsigned int rx_old, tx_old;
int is_edlc;
unsigned char control;
unsigned char mode;
struct net_device_stats stats;
spinlock_t tx_lock;
};
static inline void hpc3_eth_reset(struct hpc3_ethregs *hregs)
{
hregs->reset = HPC3_ERST_CRESET | HPC3_ERST_CLRIRQ;
udelay(20);
hregs->reset = 0;
}
static inline void reset_hpc3_and_seeq(struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
hregs->rx_ctrl = hregs->tx_ctrl = 0;
hpc3_eth_reset(hregs);
}
#define RSTAT_GO_BITS (SEEQ_RCMD_IGOOD | SEEQ_RCMD_IEOF | SEEQ_RCMD_ISHORT | \
SEEQ_RCMD_IDRIB | SEEQ_RCMD_ICRC)
static inline void seeq_go(struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
sregs->rstat = sp->mode | RSTAT_GO_BITS;
hregs->rx_ctrl = HPC3_ERXCTRL_ACTIVE;
}
static inline void __sgiseeq_set_mac_address(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
int i;
sregs->tstat = SEEQ_TCMD_RB0;
for (i = 0; i < 6; i++)
sregs->rw.eth_addr[i] = dev->dev_addr[i];
}
static int sgiseeq_set_mac_address(struct net_device *dev, void *addr)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sockaddr *sa = addr;
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
spin_lock_irq(&sp->tx_lock);
__sgiseeq_set_mac_address(dev);
spin_unlock_irq(&sp->tx_lock);
return 0;
}
#define TCNTINFO_INIT (HPCDMA_EOX | HPCDMA_ETXD)
#define RCNTCFG_INIT (HPCDMA_OWN | HPCDMA_EORP | HPCDMA_XIE)
#define RCNTINFO_INIT (RCNTCFG_INIT | (PKT_BUF_SZ & HPCDMA_BCNT))
static int seeq_init_ring(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
int i;
netif_stop_queue(dev);
sp->rx_new = sp->tx_new = 0;
sp->rx_old = sp->tx_old = 0;
__sgiseeq_set_mac_address(dev);
/* Setup tx ring. */
for(i = 0; i < SEEQ_TX_BUFFERS; i++) {
if (!sp->tx_desc[i].tdma.pbuf) {
unsigned long buffer;
buffer = (unsigned long) kmalloc(PKT_BUF_SZ, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
sp->tx_desc[i].buf_vaddr = CKSEG1ADDR(buffer);
sp->tx_desc[i].tdma.pbuf = CPHYSADDR(buffer);
}
sp->tx_desc[i].tdma.cntinfo = TCNTINFO_INIT;
}
/* And now the rx ring. */
for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
if (!sp->rx_desc[i].rdma.pbuf) {
unsigned long buffer;
buffer = (unsigned long) kmalloc(PKT_BUF_SZ, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
sp->rx_desc[i].buf_vaddr = CKSEG1ADDR(buffer);
sp->rx_desc[i].rdma.pbuf = CPHYSADDR(buffer);
}
sp->rx_desc[i].rdma.cntinfo = RCNTINFO_INIT;
}
sp->rx_desc[i - 1].rdma.cntinfo |= HPCDMA_EOR;
return 0;
}
#ifdef DEBUG
static struct sgiseeq_private *gpriv;
static struct net_device *gdev;
static void sgiseeq_dump_rings(void)
{
static int once;
struct sgiseeq_rx_desc *r = gpriv->rx_desc;
struct sgiseeq_tx_desc *t = gpriv->tx_desc;
struct hpc3_ethregs *hregs = gpriv->hregs;
int i;
if (once)
return;
once++;
printk("RING DUMP:\n");
for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
printk("RX [%d]: @(%p) [%08x,%08x,%08x] ",
i, (&r[i]), r[i].rdma.pbuf, r[i].rdma.cntinfo,
r[i].rdma.pnext);
i += 1;
printk("-- [%d]: @(%p) [%08x,%08x,%08x]\n",
i, (&r[i]), r[i].rdma.pbuf, r[i].rdma.cntinfo,
r[i].rdma.pnext);
}
for (i = 0; i < SEEQ_TX_BUFFERS; i++) {
printk("TX [%d]: @(%p) [%08x,%08x,%08x] ",
i, (&t[i]), t[i].tdma.pbuf, t[i].tdma.cntinfo,
t[i].tdma.pnext);
i += 1;
printk("-- [%d]: @(%p) [%08x,%08x,%08x]\n",
i, (&t[i]), t[i].tdma.pbuf, t[i].tdma.cntinfo,
t[i].tdma.pnext);
}
printk("INFO: [rx_new = %d rx_old=%d] [tx_new = %d tx_old = %d]\n",
gpriv->rx_new, gpriv->rx_old, gpriv->tx_new, gpriv->tx_old);
printk("RREGS: rx_cbptr[%08x] rx_ndptr[%08x] rx_ctrl[%08x]\n",
hregs->rx_cbptr, hregs->rx_ndptr, hregs->rx_ctrl);
printk("TREGS: tx_cbptr[%08x] tx_ndptr[%08x] tx_ctrl[%08x]\n",
hregs->tx_cbptr, hregs->tx_ndptr, hregs->tx_ctrl);
}
#endif
#define TSTAT_INIT_SEEQ (SEEQ_TCMD_IPT|SEEQ_TCMD_I16|SEEQ_TCMD_IC|SEEQ_TCMD_IUF)
#define TSTAT_INIT_EDLC ((TSTAT_INIT_SEEQ) | SEEQ_TCMD_RB2)
static int init_seeq(struct net_device *dev, struct sgiseeq_private *sp,
struct sgiseeq_regs *sregs)
{
struct hpc3_ethregs *hregs = sp->hregs;
int err;
reset_hpc3_and_seeq(hregs, sregs);
err = seeq_init_ring(dev);
if (err)
return err;
/* Setup to field the proper interrupt types. */
if (sp->is_edlc) {
sregs->tstat = TSTAT_INIT_EDLC;
sregs->rw.wregs.control = sp->control;
sregs->rw.wregs.frame_gap = 0;
} else {
sregs->tstat = TSTAT_INIT_SEEQ;
}
hregs->rx_ndptr = CPHYSADDR(sp->rx_desc);
hregs->tx_ndptr = CPHYSADDR(sp->tx_desc);
seeq_go(sp, hregs, sregs);
return 0;
}
static inline void record_rx_errors(struct sgiseeq_private *sp,
unsigned char status)
{
if (status & SEEQ_RSTAT_OVERF ||
status & SEEQ_RSTAT_SFRAME)
sp->stats.rx_over_errors++;
if (status & SEEQ_RSTAT_CERROR)
sp->stats.rx_crc_errors++;
if (status & SEEQ_RSTAT_DERROR)
sp->stats.rx_frame_errors++;
if (status & SEEQ_RSTAT_REOF)
sp->stats.rx_errors++;
}
static inline void rx_maybe_restart(struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
if (!(hregs->rx_ctrl & HPC3_ERXCTRL_ACTIVE)) {
hregs->rx_ndptr = CPHYSADDR(sp->rx_desc + sp->rx_new);
seeq_go(sp, hregs, sregs);
}
}
#define for_each_rx(rd, sp) for((rd) = &(sp)->rx_desc[(sp)->rx_new]; \
!((rd)->rdma.cntinfo & HPCDMA_OWN); \
(rd) = &(sp)->rx_desc[(sp)->rx_new])
static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
struct sgiseeq_rx_desc *rd;
struct sk_buff *skb = NULL;
unsigned char pkt_status;
unsigned char *pkt_pointer = NULL;
int len = 0;
unsigned int orig_end = PREV_RX(sp->rx_new);
/* Service every received packet. */
for_each_rx(rd, sp) {
len = PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3;
pkt_pointer = (unsigned char *)(long)rd->buf_vaddr;
pkt_status = pkt_pointer[len + 2];
if (pkt_status & SEEQ_RSTAT_FIG) {
/* Packet is OK. */
skb = dev_alloc_skb(len + 2);
if (skb) {
skb_reserve(skb, 2);
skb_put(skb, len);
/* Copy out of kseg1 to avoid silly cache flush. */
eth_copy_and_sum(skb, pkt_pointer + 2, len, 0);
skb->protocol = eth_type_trans(skb, dev);
/* We don't want to receive our own packets */
if (memcmp(eth_hdr(skb)->h_source, dev->dev_addr, ETH_ALEN)) {
netif_rx(skb);
dev->last_rx = jiffies;
sp->stats.rx_packets++;
sp->stats.rx_bytes += len;
} else {
/* Silently drop my own packets */
dev_kfree_skb_irq(skb);
}
} else {
printk (KERN_NOTICE "%s: Memory squeeze, deferring packet.\n",
dev->name);
sp->stats.rx_dropped++;
}
} else {
record_rx_errors(sp, pkt_status);
}
/* Return the entry to the ring pool. */
rd->rdma.cntinfo = RCNTINFO_INIT;
sp->rx_new = NEXT_RX(sp->rx_new);
}
sp->rx_desc[orig_end].rdma.cntinfo &= ~(HPCDMA_EOR);
sp->rx_desc[PREV_RX(sp->rx_new)].rdma.cntinfo |= HPCDMA_EOR;
rx_maybe_restart(sp, hregs, sregs);
}
static inline void tx_maybe_reset_collisions(struct sgiseeq_private *sp,
struct sgiseeq_regs *sregs)
{
if (sp->is_edlc) {
sregs->rw.wregs.control = sp->control & ~(SEEQ_CTRL_XCNT);
sregs->rw.wregs.control = sp->control;
}
}
static inline void kick_tx(struct sgiseeq_tx_desc *td,
struct hpc3_ethregs *hregs)
{
/* If the HPC aint doin nothin, and there are more packets
* with ETXD cleared and XIU set we must make very certain
* that we restart the HPC else we risk locking up the
* adapter. The following code is only safe iff the HPCDMA
* is not active!
*/
while ((td->tdma.cntinfo & (HPCDMA_XIU | HPCDMA_ETXD)) ==
(HPCDMA_XIU | HPCDMA_ETXD))
td = (struct sgiseeq_tx_desc *)(long) CKSEG1ADDR(td->tdma.pnext);
if (td->tdma.cntinfo & HPCDMA_XIU) {
hregs->tx_ndptr = CPHYSADDR(td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
}
}
static inline void sgiseeq_tx(struct net_device *dev, struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs)
{
struct sgiseeq_tx_desc *td;
unsigned long status = hregs->tx_ctrl;
int j;
tx_maybe_reset_collisions(sp, sregs);
if (!(status & (HPC3_ETXCTRL_ACTIVE | SEEQ_TSTAT_PTRANS))) {
/* Oops, HPC detected some sort of error. */
if (status & SEEQ_TSTAT_R16)
sp->stats.tx_aborted_errors++;
if (status & SEEQ_TSTAT_UFLOW)
sp->stats.tx_fifo_errors++;
if (status & SEEQ_TSTAT_LCLS)
sp->stats.collisions++;
}
/* Ack 'em... */
for (j = sp->tx_old; j != sp->tx_new; j = NEXT_TX(j)) {
td = &sp->tx_desc[j];
if (!(td->tdma.cntinfo & (HPCDMA_XIU)))
break;
if (!(td->tdma.cntinfo & (HPCDMA_ETXD))) {
if (!(status & HPC3_ETXCTRL_ACTIVE)) {
hregs->tx_ndptr = CPHYSADDR(td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
}
break;
}
sp->stats.tx_packets++;
sp->tx_old = NEXT_TX(sp->tx_old);
td->tdma.cntinfo &= ~(HPCDMA_XIU | HPCDMA_XIE);
td->tdma.cntinfo |= HPCDMA_EOX;
}
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t sgiseeq_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct sgiseeq_private *sp = netdev_priv(dev);
struct hpc3_ethregs *hregs = sp->hregs;
struct sgiseeq_regs *sregs = sp->sregs;
spin_lock(&sp->tx_lock);
/* Ack the IRQ and set software state. */
hregs->reset = HPC3_ERST_CLRIRQ;
/* Always check for received packets. */
sgiseeq_rx(dev, sp, hregs, sregs);
/* Only check for tx acks if we have something queued. */
if (sp->tx_old != sp->tx_new)
sgiseeq_tx(dev, sp, hregs, sregs);
if ((TX_BUFFS_AVAIL(sp) > 0) && netif_queue_stopped(dev)) {
netif_wake_queue(dev);
}
spin_unlock(&sp->tx_lock);
return IRQ_HANDLED;
}
static int sgiseeq_open(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
unsigned int irq = dev->irq;
int err;
if (request_irq(irq, sgiseeq_interrupt, 0, sgiseeqstr, dev)) {
printk(KERN_ERR "Seeq8003: Can't get irq %d\n", dev->irq);
err = -EAGAIN;
}
err = init_seeq(dev, sp, sregs);
if (err)
goto out_free_irq;
netif_start_queue(dev);
return 0;
out_free_irq:
free_irq(irq, dev);
return err;
}
static int sgiseeq_close(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
unsigned int irq = dev->irq;
netif_stop_queue(dev);
/* Shutdown the Seeq. */
reset_hpc3_and_seeq(sp->hregs, sregs);
free_irq(irq, dev);
return 0;
}
static inline int sgiseeq_reset(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct sgiseeq_regs *sregs = sp->sregs;
int err;
err = init_seeq(dev, sp, sregs);
if (err)
return err;
dev->trans_start = jiffies;
netif_wake_queue(dev);
return 0;
}
static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
struct hpc3_ethregs *hregs = sp->hregs;
unsigned long flags;
struct sgiseeq_tx_desc *td;
int skblen, len, entry;
spin_lock_irqsave(&sp->tx_lock, flags);
/* Setup... */
skblen = skb->len;
len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen;
sp->stats.tx_bytes += len;
entry = sp->tx_new;
td = &sp->tx_desc[entry];
/* Create entry. There are so many races with adding a new
* descriptor to the chain:
* 1) Assume that the HPC is off processing a DMA chain while
* we are changing all of the following.
* 2) Do no allow the HPC to look at a new descriptor until
* we have completely set up it's state. This means, do
* not clear HPCDMA_EOX in the current last descritptor
* until the one we are adding looks consistent and could
* be processes right now.
* 3) The tx interrupt code must notice when we've added a new
* entry and the HPC got to the end of the chain before we
* added this new entry and restarted it.
*/
skb_copy_from_linear_data(skb, (char *)(long)td->buf_vaddr, skblen);
if (len != skblen)
memset((char *)(long)td->buf_vaddr + skb->len, 0, len-skblen);
td->tdma.cntinfo = (len & HPCDMA_BCNT) |
HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX;
if (sp->tx_old != sp->tx_new) {
struct sgiseeq_tx_desc *backend;
backend = &sp->tx_desc[PREV_TX(sp->tx_new)];
backend->tdma.cntinfo &= ~HPCDMA_EOX;
}
sp->tx_new = NEXT_TX(sp->tx_new); /* Advance. */
/* Maybe kick the HPC back into motion. */
if (!(hregs->tx_ctrl & HPC3_ETXCTRL_ACTIVE))
kick_tx(&sp->tx_desc[sp->tx_old], hregs);
dev->trans_start = jiffies;
dev_kfree_skb(skb);
if (!TX_BUFFS_AVAIL(sp))
netif_stop_queue(dev);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
static void timeout(struct net_device *dev)
{
printk(KERN_NOTICE "%s: transmit timed out, resetting\n", dev->name);
sgiseeq_reset(dev);
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static struct net_device_stats *sgiseeq_get_stats(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
return &sp->stats;
}
static void sgiseeq_set_multicast(struct net_device *dev)
{
struct sgiseeq_private *sp = (struct sgiseeq_private *) dev->priv;
unsigned char oldmode = sp->mode;
if(dev->flags & IFF_PROMISC)
sp->mode = SEEQ_RCMD_RANY;
else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count)
sp->mode = SEEQ_RCMD_RBMCAST;
else
sp->mode = SEEQ_RCMD_RBCAST;
/* XXX I know this sucks, but is there a better way to reprogram
* XXX the receiver? At least, this shouldn't happen too often.
*/
if (oldmode != sp->mode)
sgiseeq_reset(dev);
}
static inline void setup_tx_ring(struct sgiseeq_tx_desc *buf, int nbufs)
{
int i = 0;
while (i < (nbufs - 1)) {
buf[i].tdma.pnext = CPHYSADDR(buf + i + 1);
buf[i].tdma.pbuf = 0;
i++;
}
buf[i].tdma.pnext = CPHYSADDR(buf);
}
static inline void setup_rx_ring(struct sgiseeq_rx_desc *buf, int nbufs)
{
int i = 0;
while (i < (nbufs - 1)) {
buf[i].rdma.pnext = CPHYSADDR(buf + i + 1);
buf[i].rdma.pbuf = 0;
i++;
}
buf[i].rdma.pbuf = 0;
buf[i].rdma.pnext = CPHYSADDR(buf);
}
#define ALIGNED(x) ((((unsigned long)(x)) + 0xf) & ~(0xf))
static int __init sgiseeq_probe(struct platform_device *pdev)
{
struct sgiseeq_platform_data *pd = pdev->dev.platform_data;
struct hpc3_regs *hpcregs = pd->hpc;
struct sgiseeq_init_block *sr;
unsigned int irq = pd->irq;
struct sgiseeq_private *sp;
struct net_device *dev;
int err, i;
dev = alloc_etherdev(sizeof (struct sgiseeq_private));
if (!dev) {
printk(KERN_ERR "Sgiseeq: Etherdev alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out;
}
platform_set_drvdata(pdev, dev);
sp = netdev_priv(dev);
/* Make private data page aligned */
sr = (struct sgiseeq_init_block *) get_zeroed_page(GFP_KERNEL);
if (!sr) {
printk(KERN_ERR "Sgiseeq: Page alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out_free_dev;
}
sp->srings = sr;
memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
#ifdef DEBUG
gpriv = sp;
gdev = dev;
#endif
sp->sregs = (struct sgiseeq_regs *) &hpcregs->eth_ext[0];
sp->hregs = &hpcregs->ethregs;
sp->name = sgiseeqstr;
sp->mode = SEEQ_RCMD_RBCAST;
sp->rx_desc = (struct sgiseeq_rx_desc *)
CKSEG1ADDR(ALIGNED(&sp->srings->rxvector[0]));
dma_cache_wback_inv((unsigned long)&sp->srings->rxvector,
sizeof(sp->srings->rxvector));
sp->tx_desc = (struct sgiseeq_tx_desc *)
CKSEG1ADDR(ALIGNED(&sp->srings->txvector[0]));
dma_cache_wback_inv((unsigned long)&sp->srings->txvector,
sizeof(sp->srings->txvector));
/* A couple calculations now, saves many cycles later. */
setup_rx_ring(sp->rx_desc, SEEQ_RX_BUFFERS);
setup_tx_ring(sp->tx_desc, SEEQ_TX_BUFFERS);
/* Setup PIO and DMA transfer timing */
sp->hregs->pconfig = 0x161;
sp->hregs->dconfig = HPC3_EDCFG_FIRQ | HPC3_EDCFG_FEOP |
HPC3_EDCFG_FRXDC | HPC3_EDCFG_PTO | 0x026;
/* Setup PIO and DMA transfer timing */
sp->hregs->pconfig = 0x161;
sp->hregs->dconfig = HPC3_EDCFG_FIRQ | HPC3_EDCFG_FEOP |
HPC3_EDCFG_FRXDC | HPC3_EDCFG_PTO | 0x026;
/* Reset the chip. */
hpc3_eth_reset(sp->hregs);
sp->is_edlc = !(sp->sregs->rw.rregs.collision_tx[0] & 0xff);
if (sp->is_edlc)
sp->control = SEEQ_CTRL_XCNT | SEEQ_CTRL_ACCNT |
SEEQ_CTRL_SFLAG | SEEQ_CTRL_ESHORT |
SEEQ_CTRL_ENCARR;
dev->open = sgiseeq_open;
dev->stop = sgiseeq_close;
dev->hard_start_xmit = sgiseeq_start_xmit;
dev->tx_timeout = timeout;
dev->watchdog_timeo = (200 * HZ) / 1000;
dev->get_stats = sgiseeq_get_stats;
dev->set_multicast_list = sgiseeq_set_multicast;
dev->set_mac_address = sgiseeq_set_mac_address;
dev->irq = irq;
if (register_netdev(dev)) {
printk(KERN_ERR "Sgiseeq: Cannot register net device, "
"aborting.\n");
err = -ENODEV;
goto err_out_free_page;
}
printk(KERN_INFO "%s: %s ", dev->name, sgiseeqstr);
for (i = 0; i < 6; i++)
printk("%2.2x%c", dev->dev_addr[i], i == 5 ? '\n' : ':');
return 0;
err_out_free_page:
free_page((unsigned long) sp->srings);
err_out_free_dev:
kfree(dev);
err_out:
return err;
}
static void __exit sgiseeq_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct sgiseeq_private *sp = netdev_priv(dev);
unregister_netdev(dev);
free_page((unsigned long) sp->srings);
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
}
static struct platform_driver sgiseeq_driver = {
.probe = sgiseeq_probe,
.remove = __devexit_p(sgiseeq_remove),
.driver = {
.name = "sgiseeq"
}
};
static int __init sgiseeq_module_init(void)
{
if (platform_driver_register(&sgiseeq_driver)) {
printk(KERN_ERR "Driver registration failed\n");
return -ENODEV;
}
return 0;
}
static void __exit sgiseeq_module_exit(void)
{
platform_driver_unregister(&sgiseeq_driver);
}
module_init(sgiseeq_module_init);
module_exit(sgiseeq_module_exit);
MODULE_DESCRIPTION("SGI Seeq 8003 driver");
MODULE_AUTHOR("Linux/MIPS Mailing List <linux-mips@linux-mips.org>");
MODULE_LICENSE("GPL");