2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/kernel/trace/trace_events_trigger.c

1639 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
/*
* trace_events_trigger - trace event triggers
*
* Copyright (C) 2013 Tom Zanussi <tom.zanussi@linux.intel.com>
*/
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/rculist.h>
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
#include "trace.h"
static LIST_HEAD(trigger_commands);
static DEFINE_MUTEX(trigger_cmd_mutex);
void trigger_data_free(struct event_trigger_data *data)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
if (data->cmd_ops->set_filter)
data->cmd_ops->set_filter(NULL, data, NULL);
/* make sure current triggers exit before free */
tracepoint_synchronize_unregister();
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
kfree(data);
}
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
/**
* event_triggers_call - Call triggers associated with a trace event
* @file: The trace_event_file associated with the event
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
* @rec: The trace entry for the event, NULL for unconditional invocation
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
*
* For each trigger associated with an event, invoke the trigger
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
* function registered with the associated trigger command. If rec is
* non-NULL, it means that the trigger requires further processing and
* shouldn't be unconditionally invoked. If rec is non-NULL and the
* trigger has a filter associated with it, rec will checked against
* the filter and if the record matches the trigger will be invoked.
* If the trigger is a 'post_trigger', meaning it shouldn't be invoked
* in any case until the current event is written, the trigger
* function isn't invoked but the bit associated with the deferred
* trigger is set in the return value.
*
* Returns an enum event_trigger_type value containing a set bit for
* any trigger that should be deferred, ETT_NONE if nothing to defer.
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
*
* Called from tracepoint handlers (with rcu_read_lock_sched() held).
*
* Return: an enum event_trigger_type value containing a set bit for
* any trigger that should be deferred, ETT_NONE if nothing to defer.
*/
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
enum event_trigger_type
event_triggers_call(struct trace_event_file *file, void *rec,
struct ring_buffer_event *event)
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
{
struct event_trigger_data *data;
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
enum event_trigger_type tt = ETT_NONE;
struct event_filter *filter;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
if (list_empty(&file->triggers))
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
return tt;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
list_for_each_entry_rcu(data, &file->triggers, list) {
if (data->paused)
continue;
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
if (!rec) {
data->ops->func(data, rec, event);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
continue;
}
tracing: Use rcu_dereference_sched() for trace event triggers As trace event triggers are now part of the mainline kernel, I added my trace event trigger tests to my test suite I run on all my kernels. Now these tests get run under different config options, and one of those options is CONFIG_PROVE_RCU, which checks under lockdep that the rcu locking primitives are being used correctly. This triggered the following splat: =============================== [ INFO: suspicious RCU usage. ] 3.15.0-rc2-test+ #11 Not tainted ------------------------------- kernel/trace/trace_events_trigger.c:80 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 1, debug_locks = 0 4 locks held by swapper/1/0: #0: ((&(&j_cdbs->work)->timer)){..-...}, at: [<ffffffff8104d2cc>] call_timer_fn+0x5/0x1be #1: (&(&pool->lock)->rlock){-.-...}, at: [<ffffffff81059856>] __queue_work+0x140/0x283 #2: (&p->pi_lock){-.-.-.}, at: [<ffffffff8106e961>] try_to_wake_up+0x2e/0x1e8 #3: (&rq->lock){-.-.-.}, at: [<ffffffff8106ead3>] try_to_wake_up+0x1a0/0x1e8 stack backtrace: CPU: 1 PID: 0 Comm: swapper/1 Not tainted 3.15.0-rc2-test+ #11 Hardware name: /DG965MQ, BIOS MQ96510J.86A.0372.2006.0605.1717 06/05/2006 0000000000000001 ffff88007e083b98 ffffffff819f53a5 0000000000000006 ffff88007b0942c0 ffff88007e083bc8 ffffffff81081307 ffff88007ad96d20 0000000000000000 ffff88007af2d840 ffff88007b2e701c ffff88007e083c18 Call Trace: <IRQ> [<ffffffff819f53a5>] dump_stack+0x4f/0x7c [<ffffffff81081307>] lockdep_rcu_suspicious+0x107/0x110 [<ffffffff810ee51c>] event_triggers_call+0x99/0x108 [<ffffffff810e8174>] ftrace_event_buffer_commit+0x42/0xa4 [<ffffffff8106aadc>] ftrace_raw_event_sched_wakeup_template+0x71/0x7c [<ffffffff8106bcbf>] ttwu_do_wakeup+0x7f/0xff [<ffffffff8106bd9b>] ttwu_do_activate.constprop.126+0x5c/0x61 [<ffffffff8106eadf>] try_to_wake_up+0x1ac/0x1e8 [<ffffffff8106eb77>] wake_up_process+0x36/0x3b [<ffffffff810575cc>] wake_up_worker+0x24/0x26 [<ffffffff810578bc>] insert_work+0x5c/0x65 [<ffffffff81059982>] __queue_work+0x26c/0x283 [<ffffffff81059999>] ? __queue_work+0x283/0x283 [<ffffffff810599b7>] delayed_work_timer_fn+0x1e/0x20 [<ffffffff8104d3a6>] call_timer_fn+0xdf/0x1be^M [<ffffffff8104d2cc>] ? call_timer_fn+0x5/0x1be [<ffffffff81059999>] ? __queue_work+0x283/0x283 [<ffffffff8104d823>] run_timer_softirq+0x1a4/0x22f^M [<ffffffff8104696d>] __do_softirq+0x17b/0x31b^M [<ffffffff81046d03>] irq_exit+0x42/0x97 [<ffffffff81a08db6>] smp_apic_timer_interrupt+0x37/0x44 [<ffffffff81a07a2f>] apic_timer_interrupt+0x6f/0x80 <EOI> [<ffffffff8100a5d8>] ? default_idle+0x21/0x32 [<ffffffff8100a5d6>] ? default_idle+0x1f/0x32 [<ffffffff8100ac10>] arch_cpu_idle+0xf/0x11 [<ffffffff8107b3a4>] cpu_startup_entry+0x1a3/0x213 [<ffffffff8102a23c>] start_secondary+0x212/0x219 The cause is that the triggers are protected by rcu_read_lock_sched() but the data is dereferenced with rcu_dereference() which expects it to be protected with rcu_read_lock(). The proper reference should be rcu_dereference_sched(). Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: stable@vger.kernel.org # 3.14+ Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-03 01:30:04 +08:00
filter = rcu_dereference_sched(data->filter);
if (filter && !filter_match_preds(filter, rec))
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
continue;
if (event_command_post_trigger(data->cmd_ops)) {
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
tt |= data->cmd_ops->trigger_type;
continue;
}
data->ops->func(data, rec, event);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
}
return tt;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
}
EXPORT_SYMBOL_GPL(event_triggers_call);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
/**
* event_triggers_post_call - Call 'post_triggers' for a trace event
* @file: The trace_event_file associated with the event
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
* @tt: enum event_trigger_type containing a set bit for each trigger to invoke
*
* For each trigger associated with an event, invoke the trigger
* function registered with the associated trigger command, if the
* corresponding bit is set in the tt enum passed into this function.
* See @event_triggers_call for details on how those bits are set.
*
* Called from tracepoint handlers (with rcu_read_lock_sched() held).
*/
void
event_triggers_post_call(struct trace_event_file *file,
enum event_trigger_type tt)
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
{
struct event_trigger_data *data;
list_for_each_entry_rcu(data, &file->triggers, list) {
if (data->paused)
continue;
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
if (data->cmd_ops->trigger_type & tt)
data->ops->func(data, NULL, NULL);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
}
}
EXPORT_SYMBOL_GPL(event_triggers_post_call);
#define SHOW_AVAILABLE_TRIGGERS (void *)(1UL)
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
static void *trigger_next(struct seq_file *m, void *t, loff_t *pos)
{
struct trace_event_file *event_file = event_file_data(m->private);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
if (t == SHOW_AVAILABLE_TRIGGERS)
return NULL;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
return seq_list_next(t, &event_file->triggers, pos);
}
static void *trigger_start(struct seq_file *m, loff_t *pos)
{
struct trace_event_file *event_file;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
/* ->stop() is called even if ->start() fails */
mutex_lock(&event_mutex);
event_file = event_file_data(m->private);
if (unlikely(!event_file))
return ERR_PTR(-ENODEV);
if (list_empty(&event_file->triggers))
return *pos == 0 ? SHOW_AVAILABLE_TRIGGERS : NULL;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
return seq_list_start(&event_file->triggers, *pos);
}
static void trigger_stop(struct seq_file *m, void *t)
{
mutex_unlock(&event_mutex);
}
static int trigger_show(struct seq_file *m, void *v)
{
struct event_trigger_data *data;
struct event_command *p;
if (v == SHOW_AVAILABLE_TRIGGERS) {
seq_puts(m, "# Available triggers:\n");
seq_putc(m, '#');
mutex_lock(&trigger_cmd_mutex);
list_for_each_entry_reverse(p, &trigger_commands, list)
seq_printf(m, " %s", p->name);
seq_putc(m, '\n');
mutex_unlock(&trigger_cmd_mutex);
return 0;
}
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
data = list_entry(v, struct event_trigger_data, list);
data->ops->print(m, data->ops, data);
return 0;
}
static const struct seq_operations event_triggers_seq_ops = {
.start = trigger_start,
.next = trigger_next,
.stop = trigger_stop,
.show = trigger_show,
};
static int event_trigger_regex_open(struct inode *inode, struct file *file)
{
int ret = 0;
mutex_lock(&event_mutex);
if (unlikely(!event_file_data(file))) {
mutex_unlock(&event_mutex);
return -ENODEV;
}
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC)) {
struct trace_event_file *event_file;
struct event_command *p;
event_file = event_file_data(file);
list_for_each_entry(p, &trigger_commands, list) {
if (p->unreg_all)
p->unreg_all(event_file);
}
}
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
if (file->f_mode & FMODE_READ) {
ret = seq_open(file, &event_triggers_seq_ops);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = file;
}
}
mutex_unlock(&event_mutex);
return ret;
}
static int trigger_process_regex(struct trace_event_file *file, char *buff)
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
{
char *command, *next = buff;
struct event_command *p;
int ret = -EINVAL;
command = strsep(&next, ": \t");
command = (command[0] != '!') ? command : command + 1;
mutex_lock(&trigger_cmd_mutex);
list_for_each_entry(p, &trigger_commands, list) {
if (strcmp(p->name, command) == 0) {
ret = p->func(p, file, buff, command, next);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&trigger_cmd_mutex);
return ret;
}
static ssize_t event_trigger_regex_write(struct file *file,
const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct trace_event_file *event_file;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
ssize_t ret;
char *buf;
if (!cnt)
return 0;
if (cnt >= PAGE_SIZE)
return -EINVAL;
buf = memdup_user_nul(ubuf, cnt);
if (IS_ERR(buf))
return PTR_ERR(buf);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
strim(buf);
mutex_lock(&event_mutex);
event_file = event_file_data(file);
if (unlikely(!event_file)) {
mutex_unlock(&event_mutex);
kfree(buf);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
return -ENODEV;
}
ret = trigger_process_regex(event_file, buf);
mutex_unlock(&event_mutex);
kfree(buf);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
if (ret < 0)
goto out;
*ppos += cnt;
ret = cnt;
out:
return ret;
}
static int event_trigger_regex_release(struct inode *inode, struct file *file)
{
mutex_lock(&event_mutex);
if (file->f_mode & FMODE_READ)
seq_release(inode, file);
mutex_unlock(&event_mutex);
return 0;
}
static ssize_t
event_trigger_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return event_trigger_regex_write(filp, ubuf, cnt, ppos);
}
static int
event_trigger_open(struct inode *inode, struct file *filp)
{
return event_trigger_regex_open(inode, filp);
}
static int
event_trigger_release(struct inode *inode, struct file *file)
{
return event_trigger_regex_release(inode, file);
}
const struct file_operations event_trigger_fops = {
.open = event_trigger_open,
.read = seq_read,
.write = event_trigger_write,
.llseek = tracing_lseek,
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
.release = event_trigger_release,
};
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
/*
* Currently we only register event commands from __init, so mark this
* __init too.
*/
__init int register_event_command(struct event_command *cmd)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
struct event_command *p;
int ret = 0;
mutex_lock(&trigger_cmd_mutex);
list_for_each_entry(p, &trigger_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = -EBUSY;
goto out_unlock;
}
}
list_add(&cmd->list, &trigger_commands);
out_unlock:
mutex_unlock(&trigger_cmd_mutex);
return ret;
}
/*
* Currently we only unregister event commands from __init, so mark
* this __init too.
*/
__init int unregister_event_command(struct event_command *cmd)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
struct event_command *p, *n;
int ret = -ENODEV;
mutex_lock(&trigger_cmd_mutex);
list_for_each_entry_safe(p, n, &trigger_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = 0;
list_del_init(&p->list);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&trigger_cmd_mutex);
return ret;
}
/**
* event_trigger_print - Generic event_trigger_ops @print implementation
* @name: The name of the event trigger
* @m: The seq_file being printed to
* @data: Trigger-specific data
* @filter_str: filter_str to print, if present
*
* Common implementation for event triggers to print themselves.
*
* Usually wrapped by a function that simply sets the @name of the
* trigger command and then invokes this.
*
* Return: 0 on success, errno otherwise
*/
static int
event_trigger_print(const char *name, struct seq_file *m,
void *data, char *filter_str)
{
long count = (long)data;
seq_puts(m, name);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
if (count == -1)
seq_puts(m, ":unlimited");
else
seq_printf(m, ":count=%ld", count);
if (filter_str)
seq_printf(m, " if %s\n", filter_str);
else
seq_putc(m, '\n');
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
return 0;
}
/**
* event_trigger_init - Generic event_trigger_ops @init implementation
* @ops: The trigger ops associated with the trigger
* @data: Trigger-specific data
*
* Common implementation of event trigger initialization.
*
* Usually used directly as the @init method in event trigger
* implementations.
*
* Return: 0 on success, errno otherwise
*/
int event_trigger_init(struct event_trigger_ops *ops,
struct event_trigger_data *data)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
data->ref++;
return 0;
}
/**
* event_trigger_free - Generic event_trigger_ops @free implementation
* @ops: The trigger ops associated with the trigger
* @data: Trigger-specific data
*
* Common implementation of event trigger de-initialization.
*
* Usually used directly as the @free method in event trigger
* implementations.
*/
static void
event_trigger_free(struct event_trigger_ops *ops,
struct event_trigger_data *data)
{
if (WARN_ON_ONCE(data->ref <= 0))
return;
data->ref--;
if (!data->ref)
trigger_data_free(data);
}
int trace_event_trigger_enable_disable(struct trace_event_file *file,
int trigger_enable)
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
{
int ret = 0;
if (trigger_enable) {
if (atomic_inc_return(&file->tm_ref) > 1)
return ret;
set_bit(EVENT_FILE_FL_TRIGGER_MODE_BIT, &file->flags);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
ret = trace_event_enable_disable(file, 1, 1);
} else {
if (atomic_dec_return(&file->tm_ref) > 0)
return ret;
clear_bit(EVENT_FILE_FL_TRIGGER_MODE_BIT, &file->flags);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
ret = trace_event_enable_disable(file, 0, 1);
}
return ret;
}
/**
* clear_event_triggers - Clear all triggers associated with a trace array
* @tr: The trace array to clear
*
* For each trigger, the triggering event has its tm_ref decremented
* via trace_event_trigger_enable_disable(), and any associated event
* (in the case of enable/disable_event triggers) will have its sm_ref
* decremented via free()->trace_event_enable_disable(). That
* combination effectively reverses the soft-mode/trigger state added
* by trigger registration.
*
* Must be called with event_mutex held.
*/
void
clear_event_triggers(struct trace_array *tr)
{
struct trace_event_file *file;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
list_for_each_entry(file, &tr->events, list) {
tracing: Fix crash when freeing instances with event triggers If a instance has an event trigger enabled when it is freed, it could cause an access of free memory. Here's the case that crashes: # cd /sys/kernel/tracing # mkdir instances/foo # echo snapshot > instances/foo/events/initcall/initcall_start/trigger # rmdir instances/foo Would produce: general protection fault: 0000 [#1] PREEMPT SMP PTI Modules linked in: tun bridge ... CPU: 5 PID: 6203 Comm: rmdir Tainted: G W 4.17.0-rc4-test+ #933 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:clear_event_triggers+0x3b/0x70 RSP: 0018:ffffc90003783de0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 6b6b6b6b6b6b6b2b RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800c7130ba0 RBP: ffffc90003783e00 R08: ffff8801131993f8 R09: 0000000100230016 R10: ffffc90003783d80 R11: 0000000000000000 R12: ffff8800c7130ba0 R13: ffff8800c7130bd8 R14: ffff8800cc093768 R15: 00000000ffffff9c FS: 00007f6f4aa86700(0000) GS:ffff88011eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6f4a5aed60 CR3: 00000000cd552001 CR4: 00000000001606e0 Call Trace: event_trace_del_tracer+0x2a/0xc5 instance_rmdir+0x15c/0x200 tracefs_syscall_rmdir+0x52/0x90 vfs_rmdir+0xdb/0x160 do_rmdir+0x16d/0x1c0 __x64_sys_rmdir+0x17/0x20 do_syscall_64+0x55/0x1a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe This was due to the call the clears out the triggers when an instance is being deleted not removing the trigger from the link list. Cc: stable@vger.kernel.org Fixes: 85f2b08268c01 ("tracing: Add basic event trigger framework") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-05-28 08:54:44 +08:00
struct event_trigger_data *data, *n;
list_for_each_entry_safe(data, n, &file->triggers, list) {
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
trace_event_trigger_enable_disable(file, 0);
tracing: Fix crash when freeing instances with event triggers If a instance has an event trigger enabled when it is freed, it could cause an access of free memory. Here's the case that crashes: # cd /sys/kernel/tracing # mkdir instances/foo # echo snapshot > instances/foo/events/initcall/initcall_start/trigger # rmdir instances/foo Would produce: general protection fault: 0000 [#1] PREEMPT SMP PTI Modules linked in: tun bridge ... CPU: 5 PID: 6203 Comm: rmdir Tainted: G W 4.17.0-rc4-test+ #933 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:clear_event_triggers+0x3b/0x70 RSP: 0018:ffffc90003783de0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 6b6b6b6b6b6b6b2b RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800c7130ba0 RBP: ffffc90003783e00 R08: ffff8801131993f8 R09: 0000000100230016 R10: ffffc90003783d80 R11: 0000000000000000 R12: ffff8800c7130ba0 R13: ffff8800c7130bd8 R14: ffff8800cc093768 R15: 00000000ffffff9c FS: 00007f6f4aa86700(0000) GS:ffff88011eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6f4a5aed60 CR3: 00000000cd552001 CR4: 00000000001606e0 Call Trace: event_trace_del_tracer+0x2a/0xc5 instance_rmdir+0x15c/0x200 tracefs_syscall_rmdir+0x52/0x90 vfs_rmdir+0xdb/0x160 do_rmdir+0x16d/0x1c0 __x64_sys_rmdir+0x17/0x20 do_syscall_64+0x55/0x1a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe This was due to the call the clears out the triggers when an instance is being deleted not removing the trigger from the link list. Cc: stable@vger.kernel.org Fixes: 85f2b08268c01 ("tracing: Add basic event trigger framework") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-05-28 08:54:44 +08:00
list_del_rcu(&data->list);
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
if (data->ops->free)
data->ops->free(data->ops, data);
}
}
}
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
/**
* update_cond_flag - Set or reset the TRIGGER_COND bit
* @file: The trace_event_file associated with the event
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
*
* If an event has triggers and any of those triggers has a filter or
* a post_trigger, trigger invocation needs to be deferred until after
* the current event has logged its data, and the event should have
* its TRIGGER_COND bit set, otherwise the TRIGGER_COND bit should be
* cleared.
*/
void update_cond_flag(struct trace_event_file *file)
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
{
struct event_trigger_data *data;
bool set_cond = false;
list_for_each_entry_rcu(data, &file->triggers, list) {
if (data->filter || event_command_post_trigger(data->cmd_ops) ||
event_command_needs_rec(data->cmd_ops)) {
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
set_cond = true;
break;
}
}
if (set_cond)
set_bit(EVENT_FILE_FL_TRIGGER_COND_BIT, &file->flags);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
else
clear_bit(EVENT_FILE_FL_TRIGGER_COND_BIT, &file->flags);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
}
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
/**
* register_trigger - Generic event_command @reg implementation
* @glob: The raw string used to register the trigger
* @ops: The trigger ops associated with the trigger
* @data: Trigger-specific data to associate with the trigger
* @file: The trace_event_file associated with the event
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
*
* Common implementation for event trigger registration.
*
* Usually used directly as the @reg method in event command
* implementations.
*
* Return: 0 on success, errno otherwise
*/
static int register_trigger(char *glob, struct event_trigger_ops *ops,
struct event_trigger_data *data,
struct trace_event_file *file)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
struct event_trigger_data *test;
int ret = 0;
list_for_each_entry_rcu(test, &file->triggers, list) {
if (test->cmd_ops->trigger_type == data->cmd_ops->trigger_type) {
ret = -EEXIST;
goto out;
}
}
if (data->ops->init) {
ret = data->ops->init(data->ops, data);
if (ret < 0)
goto out;
}
list_add_rcu(&data->list, &file->triggers);
ret++;
update_cond_flag(file);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
if (trace_event_trigger_enable_disable(file, 1) < 0) {
list_del_rcu(&data->list);
update_cond_flag(file);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
ret--;
}
out:
return ret;
}
/**
* unregister_trigger - Generic event_command @unreg implementation
* @glob: The raw string used to register the trigger
* @ops: The trigger ops associated with the trigger
* @test: Trigger-specific data used to find the trigger to remove
* @file: The trace_event_file associated with the event
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
*
* Common implementation for event trigger unregistration.
*
* Usually used directly as the @unreg method in event command
* implementations.
*/
static void unregister_trigger(char *glob, struct event_trigger_ops *ops,
struct event_trigger_data *test,
struct trace_event_file *file)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
struct event_trigger_data *data;
bool unregistered = false;
list_for_each_entry_rcu(data, &file->triggers, list) {
if (data->cmd_ops->trigger_type == test->cmd_ops->trigger_type) {
unregistered = true;
list_del_rcu(&data->list);
trace_event_trigger_enable_disable(file, 0);
update_cond_flag(file);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
break;
}
}
if (unregistered && data->ops->free)
data->ops->free(data->ops, data);
}
/**
* event_trigger_callback - Generic event_command @func implementation
* @cmd_ops: The command ops, used for trigger registration
* @file: The trace_event_file associated with the event
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
* @glob: The raw string used to register the trigger
* @cmd: The cmd portion of the string used to register the trigger
* @param: The params portion of the string used to register the trigger
*
* Common implementation for event command parsing and trigger
* instantiation.
*
* Usually used directly as the @func method in event command
* implementations.
*
* Return: 0 on success, errno otherwise
*/
static int
event_trigger_callback(struct event_command *cmd_ops,
struct trace_event_file *file,
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
char *glob, char *cmd, char *param)
{
struct event_trigger_data *trigger_data;
struct event_trigger_ops *trigger_ops;
char *trigger = NULL;
char *number;
int ret;
/* separate the trigger from the filter (t:n [if filter]) */
if (param && isdigit(param[0]))
trigger = strsep(&param, " \t");
trigger_ops = cmd_ops->get_trigger_ops(cmd, trigger);
ret = -ENOMEM;
trigger_data = kzalloc(sizeof(*trigger_data), GFP_KERNEL);
if (!trigger_data)
goto out;
trigger_data->count = -1;
trigger_data->ops = trigger_ops;
trigger_data->cmd_ops = cmd_ops;
2018-05-28 22:56:36 +08:00
trigger_data->private_data = file;
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
INIT_LIST_HEAD(&trigger_data->list);
INIT_LIST_HEAD(&trigger_data->named_list);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
if (glob[0] == '!') {
cmd_ops->unreg(glob+1, trigger_ops, trigger_data, file);
kfree(trigger_data);
ret = 0;
goto out;
}
if (trigger) {
number = strsep(&trigger, ":");
ret = -EINVAL;
if (!strlen(number))
goto out_free;
/*
* We use the callback data field (which is a pointer)
* as our counter.
*/
ret = kstrtoul(number, 0, &trigger_data->count);
if (ret)
goto out_free;
}
if (!param) /* if param is non-empty, it's supposed to be a filter */
goto out_reg;
if (!cmd_ops->set_filter)
goto out_reg;
ret = cmd_ops->set_filter(param, trigger_data, file);
if (ret < 0)
goto out_free;
out_reg:
tracing: Fix double free of event_trigger_data Running the following: # cd /sys/kernel/debug/tracing # echo 500000 > buffer_size_kb [ Or some other number that takes up most of memory ] # echo snapshot > events/sched/sched_switch/trigger Triggers the following bug: ------------[ cut here ]------------ kernel BUG at mm/slub.c:296! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI CPU: 6 PID: 6878 Comm: bash Not tainted 4.18.0-rc6-test+ #1066 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:kfree+0x16c/0x180 Code: 05 41 0f b6 72 51 5b 5d 41 5c 4c 89 d7 e9 ac b3 f8 ff 48 89 d9 48 89 da 41 b8 01 00 00 00 5b 5d 41 5c 4c 89 d6 e9 f4 f3 ff ff <0f> 0b 0f 0b 48 8b 3d d9 d8 f9 00 e9 c1 fe ff ff 0f 1f 40 00 0f 1f RSP: 0018:ffffb654436d3d88 EFLAGS: 00010246 RAX: ffff91a9d50f3d80 RBX: ffff91a9d50f3d80 RCX: ffff91a9d50f3d80 RDX: 00000000000006a4 RSI: ffff91a9de5a60e0 RDI: ffff91a9d9803500 RBP: ffffffff8d267c80 R08: 00000000000260e0 R09: ffffffff8c1a56be R10: fffff0d404543cc0 R11: 0000000000000389 R12: ffffffff8c1a56be R13: ffff91a9d9930e18 R14: ffff91a98c0c2890 R15: ffffffff8d267d00 FS: 00007f363ea64700(0000) GS:ffff91a9de580000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055c1cacc8e10 CR3: 00000000d9b46003 CR4: 00000000001606e0 Call Trace: event_trigger_callback+0xee/0x1d0 event_trigger_write+0xfc/0x1a0 __vfs_write+0x33/0x190 ? handle_mm_fault+0x115/0x230 ? _cond_resched+0x16/0x40 vfs_write+0xb0/0x190 ksys_write+0x52/0xc0 do_syscall_64+0x5a/0x160 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f363e16ab50 Code: 73 01 c3 48 8b 0d 38 83 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 79 db 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 1e e3 01 00 48 89 04 24 RSP: 002b:00007fff9a4c6378 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f363e16ab50 RDX: 0000000000000009 RSI: 000055c1cacc8e10 RDI: 0000000000000001 RBP: 000055c1cacc8e10 R08: 00007f363e435740 R09: 00007f363ea64700 R10: 0000000000000073 R11: 0000000000000246 R12: 0000000000000009 R13: 0000000000000001 R14: 00007f363e4345e0 R15: 00007f363e4303c0 Modules linked in: ip6table_filter ip6_tables snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_seq snd_seq_device i915 snd_pcm snd_timer i2c_i801 snd soundcore i2c_algo_bit drm_kms_helper 86_pkg_temp_thermal video kvm_intel kvm irqbypass wmi e1000e ---[ end trace d301afa879ddfa25 ]--- The cause is because the register_snapshot_trigger() call failed to allocate the snapshot buffer, and then called unregister_trigger() which freed the data that was passed to it. Then on return to the function that called register_snapshot_trigger(), as it sees it failed to register, it frees the trigger_data again and causes a double free. By calling event_trigger_init() on the trigger_data (which only ups the reference counter for it), and then event_trigger_free() afterward, the trigger_data would not get freed by the registering trigger function as it would only up and lower the ref count for it. If the register trigger function fails, then the event_trigger_free() called after it will free the trigger data normally. Link: http://lkml.kernel.org/r/20180724191331.738eb819@gandalf.local.home Cc: stable@vger.kerne.org Fixes: 93e31ffbf417 ("tracing: Add 'snapshot' event trigger command") Reported-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-07-25 07:13:31 +08:00
/* Up the trigger_data count to make sure reg doesn't free it on failure */
event_trigger_init(trigger_ops, trigger_data);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file);
/*
* The above returns on success the # of functions enabled,
* but if it didn't find any functions it returns zero.
* Consider no functions a failure too.
*/
if (!ret) {
tracing: Fix double free of event_trigger_data Running the following: # cd /sys/kernel/debug/tracing # echo 500000 > buffer_size_kb [ Or some other number that takes up most of memory ] # echo snapshot > events/sched/sched_switch/trigger Triggers the following bug: ------------[ cut here ]------------ kernel BUG at mm/slub.c:296! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI CPU: 6 PID: 6878 Comm: bash Not tainted 4.18.0-rc6-test+ #1066 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:kfree+0x16c/0x180 Code: 05 41 0f b6 72 51 5b 5d 41 5c 4c 89 d7 e9 ac b3 f8 ff 48 89 d9 48 89 da 41 b8 01 00 00 00 5b 5d 41 5c 4c 89 d6 e9 f4 f3 ff ff <0f> 0b 0f 0b 48 8b 3d d9 d8 f9 00 e9 c1 fe ff ff 0f 1f 40 00 0f 1f RSP: 0018:ffffb654436d3d88 EFLAGS: 00010246 RAX: ffff91a9d50f3d80 RBX: ffff91a9d50f3d80 RCX: ffff91a9d50f3d80 RDX: 00000000000006a4 RSI: ffff91a9de5a60e0 RDI: ffff91a9d9803500 RBP: ffffffff8d267c80 R08: 00000000000260e0 R09: ffffffff8c1a56be R10: fffff0d404543cc0 R11: 0000000000000389 R12: ffffffff8c1a56be R13: ffff91a9d9930e18 R14: ffff91a98c0c2890 R15: ffffffff8d267d00 FS: 00007f363ea64700(0000) GS:ffff91a9de580000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055c1cacc8e10 CR3: 00000000d9b46003 CR4: 00000000001606e0 Call Trace: event_trigger_callback+0xee/0x1d0 event_trigger_write+0xfc/0x1a0 __vfs_write+0x33/0x190 ? handle_mm_fault+0x115/0x230 ? _cond_resched+0x16/0x40 vfs_write+0xb0/0x190 ksys_write+0x52/0xc0 do_syscall_64+0x5a/0x160 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f363e16ab50 Code: 73 01 c3 48 8b 0d 38 83 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 79 db 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 1e e3 01 00 48 89 04 24 RSP: 002b:00007fff9a4c6378 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f363e16ab50 RDX: 0000000000000009 RSI: 000055c1cacc8e10 RDI: 0000000000000001 RBP: 000055c1cacc8e10 R08: 00007f363e435740 R09: 00007f363ea64700 R10: 0000000000000073 R11: 0000000000000246 R12: 0000000000000009 R13: 0000000000000001 R14: 00007f363e4345e0 R15: 00007f363e4303c0 Modules linked in: ip6table_filter ip6_tables snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_seq snd_seq_device i915 snd_pcm snd_timer i2c_i801 snd soundcore i2c_algo_bit drm_kms_helper 86_pkg_temp_thermal video kvm_intel kvm irqbypass wmi e1000e ---[ end trace d301afa879ddfa25 ]--- The cause is because the register_snapshot_trigger() call failed to allocate the snapshot buffer, and then called unregister_trigger() which freed the data that was passed to it. Then on return to the function that called register_snapshot_trigger(), as it sees it failed to register, it frees the trigger_data again and causes a double free. By calling event_trigger_init() on the trigger_data (which only ups the reference counter for it), and then event_trigger_free() afterward, the trigger_data would not get freed by the registering trigger function as it would only up and lower the ref count for it. If the register trigger function fails, then the event_trigger_free() called after it will free the trigger data normally. Link: http://lkml.kernel.org/r/20180724191331.738eb819@gandalf.local.home Cc: stable@vger.kerne.org Fixes: 93e31ffbf417 ("tracing: Add 'snapshot' event trigger command") Reported-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-07-25 07:13:31 +08:00
cmd_ops->unreg(glob, trigger_ops, trigger_data, file);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
ret = -ENOENT;
tracing: Fix double free of event_trigger_data Running the following: # cd /sys/kernel/debug/tracing # echo 500000 > buffer_size_kb [ Or some other number that takes up most of memory ] # echo snapshot > events/sched/sched_switch/trigger Triggers the following bug: ------------[ cut here ]------------ kernel BUG at mm/slub.c:296! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI CPU: 6 PID: 6878 Comm: bash Not tainted 4.18.0-rc6-test+ #1066 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:kfree+0x16c/0x180 Code: 05 41 0f b6 72 51 5b 5d 41 5c 4c 89 d7 e9 ac b3 f8 ff 48 89 d9 48 89 da 41 b8 01 00 00 00 5b 5d 41 5c 4c 89 d6 e9 f4 f3 ff ff <0f> 0b 0f 0b 48 8b 3d d9 d8 f9 00 e9 c1 fe ff ff 0f 1f 40 00 0f 1f RSP: 0018:ffffb654436d3d88 EFLAGS: 00010246 RAX: ffff91a9d50f3d80 RBX: ffff91a9d50f3d80 RCX: ffff91a9d50f3d80 RDX: 00000000000006a4 RSI: ffff91a9de5a60e0 RDI: ffff91a9d9803500 RBP: ffffffff8d267c80 R08: 00000000000260e0 R09: ffffffff8c1a56be R10: fffff0d404543cc0 R11: 0000000000000389 R12: ffffffff8c1a56be R13: ffff91a9d9930e18 R14: ffff91a98c0c2890 R15: ffffffff8d267d00 FS: 00007f363ea64700(0000) GS:ffff91a9de580000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055c1cacc8e10 CR3: 00000000d9b46003 CR4: 00000000001606e0 Call Trace: event_trigger_callback+0xee/0x1d0 event_trigger_write+0xfc/0x1a0 __vfs_write+0x33/0x190 ? handle_mm_fault+0x115/0x230 ? _cond_resched+0x16/0x40 vfs_write+0xb0/0x190 ksys_write+0x52/0xc0 do_syscall_64+0x5a/0x160 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f363e16ab50 Code: 73 01 c3 48 8b 0d 38 83 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 79 db 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 1e e3 01 00 48 89 04 24 RSP: 002b:00007fff9a4c6378 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f363e16ab50 RDX: 0000000000000009 RSI: 000055c1cacc8e10 RDI: 0000000000000001 RBP: 000055c1cacc8e10 R08: 00007f363e435740 R09: 00007f363ea64700 R10: 0000000000000073 R11: 0000000000000246 R12: 0000000000000009 R13: 0000000000000001 R14: 00007f363e4345e0 R15: 00007f363e4303c0 Modules linked in: ip6table_filter ip6_tables snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_seq snd_seq_device i915 snd_pcm snd_timer i2c_i801 snd soundcore i2c_algo_bit drm_kms_helper 86_pkg_temp_thermal video kvm_intel kvm irqbypass wmi e1000e ---[ end trace d301afa879ddfa25 ]--- The cause is because the register_snapshot_trigger() call failed to allocate the snapshot buffer, and then called unregister_trigger() which freed the data that was passed to it. Then on return to the function that called register_snapshot_trigger(), as it sees it failed to register, it frees the trigger_data again and causes a double free. By calling event_trigger_init() on the trigger_data (which only ups the reference counter for it), and then event_trigger_free() afterward, the trigger_data would not get freed by the registering trigger function as it would only up and lower the ref count for it. If the register trigger function fails, then the event_trigger_free() called after it will free the trigger data normally. Link: http://lkml.kernel.org/r/20180724191331.738eb819@gandalf.local.home Cc: stable@vger.kerne.org Fixes: 93e31ffbf417 ("tracing: Add 'snapshot' event trigger command") Reported-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-07-25 07:13:31 +08:00
} else if (ret > 0)
ret = 0;
/* Down the counter of trigger_data or free it if not used anymore */
event_trigger_free(trigger_ops, trigger_data);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
out:
return ret;
out_free:
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
if (cmd_ops->set_filter)
cmd_ops->set_filter(NULL, trigger_data, NULL);
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
kfree(trigger_data);
goto out;
}
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
/**
* set_trigger_filter - Generic event_command @set_filter implementation
* @filter_str: The filter string for the trigger, NULL to remove filter
* @trigger_data: Trigger-specific data
* @file: The trace_event_file associated with the event
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
*
* Common implementation for event command filter parsing and filter
* instantiation.
*
* Usually used directly as the @set_filter method in event command
* implementations.
*
* Also used to remove a filter (if filter_str = NULL).
*
* Return: 0 on success, errno otherwise
*/
int set_trigger_filter(char *filter_str,
struct event_trigger_data *trigger_data,
struct trace_event_file *file)
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
{
struct event_trigger_data *data = trigger_data;
struct event_filter *filter = NULL, *tmp;
int ret = -EINVAL;
char *s;
if (!filter_str) /* clear the current filter */
goto assign;
s = strsep(&filter_str, " \t");
if (!strlen(s) || strcmp(s, "if") != 0)
goto out;
if (!filter_str)
goto out;
/* The filter is for the 'trigger' event, not the triggered event */
ret = create_event_filter(file->tr, file->event_call,
filter_str, false, &filter);
/*
* If create_event_filter() fails, filter still needs to be freed.
* Which the calling code will do with data->filter.
*/
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
assign:
tmp = rcu_access_pointer(data->filter);
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
rcu_assign_pointer(data->filter, filter);
if (tmp) {
/* Make sure the call is done with the filter */
tracepoint_synchronize_unregister();
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
free_event_filter(tmp);
}
kfree(data->filter_str);
data->filter_str = NULL;
if (filter_str) {
data->filter_str = kstrdup(filter_str, GFP_KERNEL);
if (!data->filter_str) {
free_event_filter(rcu_access_pointer(data->filter));
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
data->filter = NULL;
ret = -ENOMEM;
}
}
out:
return ret;
}
static LIST_HEAD(named_triggers);
/**
* find_named_trigger - Find the common named trigger associated with @name
* @name: The name of the set of named triggers to find the common data for
*
* Named triggers are sets of triggers that share a common set of
* trigger data. The first named trigger registered with a given name
* owns the common trigger data that the others subsequently
* registered with the same name will reference. This function
* returns the common trigger data associated with that first
* registered instance.
*
* Return: the common trigger data for the given named trigger on
* success, NULL otherwise.
*/
struct event_trigger_data *find_named_trigger(const char *name)
{
struct event_trigger_data *data;
if (!name)
return NULL;
list_for_each_entry(data, &named_triggers, named_list) {
if (data->named_data)
continue;
if (strcmp(data->name, name) == 0)
return data;
}
return NULL;
}
/**
* is_named_trigger - determine if a given trigger is a named trigger
* @test: The trigger data to test
*
* Return: true if 'test' is a named trigger, false otherwise.
*/
bool is_named_trigger(struct event_trigger_data *test)
{
struct event_trigger_data *data;
list_for_each_entry(data, &named_triggers, named_list) {
if (test == data)
return true;
}
return false;
}
/**
* save_named_trigger - save the trigger in the named trigger list
* @name: The name of the named trigger set
* @data: The trigger data to save
*
* Return: 0 if successful, negative error otherwise.
*/
int save_named_trigger(const char *name, struct event_trigger_data *data)
{
data->name = kstrdup(name, GFP_KERNEL);
if (!data->name)
return -ENOMEM;
list_add(&data->named_list, &named_triggers);
return 0;
}
/**
* del_named_trigger - delete a trigger from the named trigger list
* @data: The trigger data to delete
*/
void del_named_trigger(struct event_trigger_data *data)
{
kfree(data->name);
data->name = NULL;
list_del(&data->named_list);
}
static void __pause_named_trigger(struct event_trigger_data *data, bool pause)
{
struct event_trigger_data *test;
list_for_each_entry(test, &named_triggers, named_list) {
if (strcmp(test->name, data->name) == 0) {
if (pause) {
test->paused_tmp = test->paused;
test->paused = true;
} else {
test->paused = test->paused_tmp;
}
}
}
}
/**
* pause_named_trigger - Pause all named triggers with the same name
* @data: The trigger data of a named trigger to pause
*
* Pauses a named trigger along with all other triggers having the
* same name. Because named triggers share a common set of data,
* pausing only one is meaningless, so pausing one named trigger needs
* to pause all triggers with the same name.
*/
void pause_named_trigger(struct event_trigger_data *data)
{
__pause_named_trigger(data, true);
}
/**
* unpause_named_trigger - Un-pause all named triggers with the same name
* @data: The trigger data of a named trigger to unpause
*
* Un-pauses a named trigger along with all other triggers having the
* same name. Because named triggers share a common set of data,
* unpausing only one is meaningless, so unpausing one named trigger
* needs to unpause all triggers with the same name.
*/
void unpause_named_trigger(struct event_trigger_data *data)
{
__pause_named_trigger(data, false);
}
/**
* set_named_trigger_data - Associate common named trigger data
* @data: The trigger data of a named trigger to unpause
*
* Named triggers are sets of triggers that share a common set of
* trigger data. The first named trigger registered with a given name
* owns the common trigger data that the others subsequently
* registered with the same name will reference. This function
* associates the common trigger data from the first trigger with the
* given trigger.
*/
void set_named_trigger_data(struct event_trigger_data *data,
struct event_trigger_data *named_data)
{
data->named_data = named_data;
}
struct event_trigger_data *
get_named_trigger_data(struct event_trigger_data *data)
{
return data->named_data;
}
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
static void
traceon_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
if (tracing_is_on())
return;
tracing_on();
}
static void
traceon_count_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
if (tracing_is_on())
return;
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
if (!data->count)
return;
if (data->count != -1)
(data->count)--;
tracing_on();
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
}
static void
traceoff_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
if (!tracing_is_on())
return;
tracing_off();
}
static void
traceoff_count_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
{
if (!tracing_is_on())
return;
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
if (!data->count)
return;
if (data->count != -1)
(data->count)--;
tracing_off();
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
}
static int
traceon_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
struct event_trigger_data *data)
{
return event_trigger_print("traceon", m, (void *)data->count,
data->filter_str);
}
static int
traceoff_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
struct event_trigger_data *data)
{
return event_trigger_print("traceoff", m, (void *)data->count,
data->filter_str);
}
static struct event_trigger_ops traceon_trigger_ops = {
.func = traceon_trigger,
.print = traceon_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops traceon_count_trigger_ops = {
.func = traceon_count_trigger,
.print = traceon_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops traceoff_trigger_ops = {
.func = traceoff_trigger,
.print = traceoff_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops traceoff_count_trigger_ops = {
.func = traceoff_count_trigger,
.print = traceoff_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops *
onoff_get_trigger_ops(char *cmd, char *param)
{
struct event_trigger_ops *ops;
/* we register both traceon and traceoff to this callback */
if (strcmp(cmd, "traceon") == 0)
ops = param ? &traceon_count_trigger_ops :
&traceon_trigger_ops;
else
ops = param ? &traceoff_count_trigger_ops :
&traceoff_trigger_ops;
return ops;
}
static struct event_command trigger_traceon_cmd = {
.name = "traceon",
.trigger_type = ETT_TRACE_ONOFF,
.func = event_trigger_callback,
.reg = register_trigger,
.unreg = unregister_trigger,
.get_trigger_ops = onoff_get_trigger_ops,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
.set_filter = set_trigger_filter,
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
};
static struct event_command trigger_traceoff_cmd = {
.name = "traceoff",
.trigger_type = ETT_TRACE_ONOFF,
.flags = EVENT_CMD_FL_POST_TRIGGER,
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
.func = event_trigger_callback,
.reg = register_trigger,
.unreg = unregister_trigger,
.get_trigger_ops = onoff_get_trigger_ops,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
.set_filter = set_trigger_filter,
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
};
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
#ifdef CONFIG_TRACER_SNAPSHOT
static void
snapshot_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
{
2018-05-28 22:56:36 +08:00
struct trace_event_file *file = data->private_data;
if (file)
tracing_snapshot_instance(file->tr);
else
tracing_snapshot();
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
}
static void
snapshot_count_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
{
if (!data->count)
return;
if (data->count != -1)
(data->count)--;
snapshot_trigger(data, rec, event);
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
}
static int
register_snapshot_trigger(char *glob, struct event_trigger_ops *ops,
struct event_trigger_data *data,
struct trace_event_file *file)
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
{
int ret = register_trigger(glob, ops, data, file);
2018-05-28 22:56:36 +08:00
if (ret > 0 && tracing_alloc_snapshot_instance(file->tr) != 0) {
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
unregister_trigger(glob, ops, data, file);
ret = 0;
}
return ret;
}
static int
snapshot_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
struct event_trigger_data *data)
{
return event_trigger_print("snapshot", m, (void *)data->count,
data->filter_str);
}
static struct event_trigger_ops snapshot_trigger_ops = {
.func = snapshot_trigger,
.print = snapshot_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops snapshot_count_trigger_ops = {
.func = snapshot_count_trigger,
.print = snapshot_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops *
snapshot_get_trigger_ops(char *cmd, char *param)
{
return param ? &snapshot_count_trigger_ops : &snapshot_trigger_ops;
}
static struct event_command trigger_snapshot_cmd = {
.name = "snapshot",
.trigger_type = ETT_SNAPSHOT,
.func = event_trigger_callback,
.reg = register_snapshot_trigger,
.unreg = unregister_trigger,
.get_trigger_ops = snapshot_get_trigger_ops,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
.set_filter = set_trigger_filter,
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
};
static __init int register_trigger_snapshot_cmd(void)
{
int ret;
ret = register_event_command(&trigger_snapshot_cmd);
WARN_ON(ret < 0);
return ret;
}
#else
static __init int register_trigger_snapshot_cmd(void) { return 0; }
#endif /* CONFIG_TRACER_SNAPSHOT */
#ifdef CONFIG_STACKTRACE
#ifdef CONFIG_UNWINDER_ORC
/* Skip 2:
* event_triggers_post_call()
* trace_event_raw_event_xxx()
*/
# define STACK_SKIP 2
#else
/*
* Skip 4:
* stacktrace_trigger()
* event_triggers_post_call()
* trace_event_buffer_commit()
* trace_event_raw_event_xxx()
*/
#define STACK_SKIP 4
#endif
static void
stacktrace_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
{
trace_dump_stack(STACK_SKIP);
}
static void
stacktrace_count_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
{
if (!data->count)
return;
if (data->count != -1)
(data->count)--;
stacktrace_trigger(data, rec, event);
}
static int
stacktrace_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
struct event_trigger_data *data)
{
return event_trigger_print("stacktrace", m, (void *)data->count,
data->filter_str);
}
static struct event_trigger_ops stacktrace_trigger_ops = {
.func = stacktrace_trigger,
.print = stacktrace_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops stacktrace_count_trigger_ops = {
.func = stacktrace_count_trigger,
.print = stacktrace_trigger_print,
.init = event_trigger_init,
.free = event_trigger_free,
};
static struct event_trigger_ops *
stacktrace_get_trigger_ops(char *cmd, char *param)
{
return param ? &stacktrace_count_trigger_ops : &stacktrace_trigger_ops;
}
static struct event_command trigger_stacktrace_cmd = {
.name = "stacktrace",
.trigger_type = ETT_STACKTRACE,
.flags = EVENT_CMD_FL_POST_TRIGGER,
.func = event_trigger_callback,
.reg = register_trigger,
.unreg = unregister_trigger,
.get_trigger_ops = stacktrace_get_trigger_ops,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
.set_filter = set_trigger_filter,
};
static __init int register_trigger_stacktrace_cmd(void)
{
int ret;
ret = register_event_command(&trigger_stacktrace_cmd);
WARN_ON(ret < 0);
return ret;
}
#else
static __init int register_trigger_stacktrace_cmd(void) { return 0; }
#endif /* CONFIG_STACKTRACE */
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
static __init void unregister_trigger_traceon_traceoff_cmds(void)
{
unregister_event_command(&trigger_traceon_cmd);
unregister_event_command(&trigger_traceoff_cmd);
}
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
static void
event_enable_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct enable_trigger_data *enable_data = data->private_data;
if (enable_data->enable)
clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &enable_data->file->flags);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
else
set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &enable_data->file->flags);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
}
static void
event_enable_count_trigger(struct event_trigger_data *data, void *rec,
struct ring_buffer_event *event)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct enable_trigger_data *enable_data = data->private_data;
if (!data->count)
return;
/* Skip if the event is in a state we want to switch to */
if (enable_data->enable == !(enable_data->file->flags & EVENT_FILE_FL_SOFT_DISABLED))
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
return;
if (data->count != -1)
(data->count)--;
event_enable_trigger(data, rec, event);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
}
int event_enable_trigger_print(struct seq_file *m,
struct event_trigger_ops *ops,
struct event_trigger_data *data)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct enable_trigger_data *enable_data = data->private_data;
seq_printf(m, "%s:%s:%s",
enable_data->hist ?
(enable_data->enable ? ENABLE_HIST_STR : DISABLE_HIST_STR) :
(enable_data->enable ? ENABLE_EVENT_STR : DISABLE_EVENT_STR),
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
enable_data->file->event_call->class->system,
trace_event_name(enable_data->file->event_call));
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
if (data->count == -1)
seq_puts(m, ":unlimited");
else
seq_printf(m, ":count=%ld", data->count);
if (data->filter_str)
seq_printf(m, " if %s\n", data->filter_str);
else
seq_putc(m, '\n');
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
return 0;
}
void event_enable_trigger_free(struct event_trigger_ops *ops,
struct event_trigger_data *data)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct enable_trigger_data *enable_data = data->private_data;
if (WARN_ON_ONCE(data->ref <= 0))
return;
data->ref--;
if (!data->ref) {
/* Remove the SOFT_MODE flag */
trace_event_enable_disable(enable_data->file, 0, 1);
module_put(enable_data->file->event_call->mod);
trigger_data_free(data);
kfree(enable_data);
}
}
static struct event_trigger_ops event_enable_trigger_ops = {
.func = event_enable_trigger,
.print = event_enable_trigger_print,
.init = event_trigger_init,
.free = event_enable_trigger_free,
};
static struct event_trigger_ops event_enable_count_trigger_ops = {
.func = event_enable_count_trigger,
.print = event_enable_trigger_print,
.init = event_trigger_init,
.free = event_enable_trigger_free,
};
static struct event_trigger_ops event_disable_trigger_ops = {
.func = event_enable_trigger,
.print = event_enable_trigger_print,
.init = event_trigger_init,
.free = event_enable_trigger_free,
};
static struct event_trigger_ops event_disable_count_trigger_ops = {
.func = event_enable_count_trigger,
.print = event_enable_trigger_print,
.init = event_trigger_init,
.free = event_enable_trigger_free,
};
int event_enable_trigger_func(struct event_command *cmd_ops,
struct trace_event_file *file,
char *glob, char *cmd, char *param)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct trace_event_file *event_enable_file;
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
struct enable_trigger_data *enable_data;
struct event_trigger_data *trigger_data;
struct event_trigger_ops *trigger_ops;
struct trace_array *tr = file->tr;
const char *system;
const char *event;
bool hist = false;
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
char *trigger;
char *number;
bool enable;
int ret;
if (!param)
return -EINVAL;
/* separate the trigger from the filter (s:e:n [if filter]) */
trigger = strsep(&param, " \t");
if (!trigger)
return -EINVAL;
system = strsep(&trigger, ":");
if (!trigger)
return -EINVAL;
event = strsep(&trigger, ":");
ret = -EINVAL;
event_enable_file = find_event_file(tr, system, event);
if (!event_enable_file)
goto out;
#ifdef CONFIG_HIST_TRIGGERS
hist = ((strcmp(cmd, ENABLE_HIST_STR) == 0) ||
(strcmp(cmd, DISABLE_HIST_STR) == 0));
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
enable = ((strcmp(cmd, ENABLE_EVENT_STR) == 0) ||
(strcmp(cmd, ENABLE_HIST_STR) == 0));
#else
enable = strcmp(cmd, ENABLE_EVENT_STR) == 0;
#endif
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
trigger_ops = cmd_ops->get_trigger_ops(cmd, trigger);
ret = -ENOMEM;
trigger_data = kzalloc(sizeof(*trigger_data), GFP_KERNEL);
if (!trigger_data)
goto out;
enable_data = kzalloc(sizeof(*enable_data), GFP_KERNEL);
if (!enable_data) {
kfree(trigger_data);
goto out;
}
trigger_data->count = -1;
trigger_data->ops = trigger_ops;
trigger_data->cmd_ops = cmd_ops;
INIT_LIST_HEAD(&trigger_data->list);
RCU_INIT_POINTER(trigger_data->filter, NULL);
enable_data->hist = hist;
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
enable_data->enable = enable;
enable_data->file = event_enable_file;
trigger_data->private_data = enable_data;
if (glob[0] == '!') {
cmd_ops->unreg(glob+1, trigger_ops, trigger_data, file);
kfree(trigger_data);
kfree(enable_data);
ret = 0;
goto out;
}
/* Up the trigger_data count to make sure nothing frees it on failure */
event_trigger_init(trigger_ops, trigger_data);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
if (trigger) {
number = strsep(&trigger, ":");
ret = -EINVAL;
if (!strlen(number))
goto out_free;
/*
* We use the callback data field (which is a pointer)
* as our counter.
*/
ret = kstrtoul(number, 0, &trigger_data->count);
if (ret)
goto out_free;
}
if (!param) /* if param is non-empty, it's supposed to be a filter */
goto out_reg;
if (!cmd_ops->set_filter)
goto out_reg;
ret = cmd_ops->set_filter(param, trigger_data, file);
if (ret < 0)
goto out_free;
out_reg:
/* Don't let event modules unload while probe registered */
ret = try_module_get(event_enable_file->event_call->mod);
if (!ret) {
ret = -EBUSY;
goto out_free;
}
ret = trace_event_enable_disable(event_enable_file, 1, 1);
if (ret < 0)
goto out_put;
ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file);
/*
* The above returns on success the # of functions enabled,
* but if it didn't find any functions it returns zero.
* Consider no functions a failure too.
*/
if (!ret) {
ret = -ENOENT;
goto out_disable;
} else if (ret < 0)
goto out_disable;
/* Just return zero, not the number of enabled functions */
ret = 0;
event_trigger_free(trigger_ops, trigger_data);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
out:
return ret;
out_disable:
trace_event_enable_disable(event_enable_file, 0, 1);
out_put:
module_put(event_enable_file->event_call->mod);
out_free:
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
if (cmd_ops->set_filter)
cmd_ops->set_filter(NULL, trigger_data, NULL);
event_trigger_free(trigger_ops, trigger_data);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
kfree(enable_data);
goto out;
}
int event_enable_register_trigger(char *glob,
struct event_trigger_ops *ops,
struct event_trigger_data *data,
struct trace_event_file *file)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct enable_trigger_data *enable_data = data->private_data;
struct enable_trigger_data *test_enable_data;
struct event_trigger_data *test;
int ret = 0;
list_for_each_entry_rcu(test, &file->triggers, list) {
test_enable_data = test->private_data;
if (test_enable_data &&
(test->cmd_ops->trigger_type ==
data->cmd_ops->trigger_type) &&
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
(test_enable_data->file == enable_data->file)) {
ret = -EEXIST;
goto out;
}
}
if (data->ops->init) {
ret = data->ops->init(data->ops, data);
if (ret < 0)
goto out;
}
list_add_rcu(&data->list, &file->triggers);
ret++;
update_cond_flag(file);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
if (trace_event_trigger_enable_disable(file, 1) < 0) {
list_del_rcu(&data->list);
update_cond_flag(file);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
ret--;
}
out:
return ret;
}
void event_enable_unregister_trigger(char *glob,
struct event_trigger_ops *ops,
struct event_trigger_data *test,
struct trace_event_file *file)
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
{
struct enable_trigger_data *test_enable_data = test->private_data;
struct enable_trigger_data *enable_data;
struct event_trigger_data *data;
bool unregistered = false;
list_for_each_entry_rcu(data, &file->triggers, list) {
enable_data = data->private_data;
if (enable_data &&
(data->cmd_ops->trigger_type ==
test->cmd_ops->trigger_type) &&
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
(enable_data->file == test_enable_data->file)) {
unregistered = true;
list_del_rcu(&data->list);
trace_event_trigger_enable_disable(file, 0);
update_cond_flag(file);
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
break;
}
}
if (unregistered && data->ops->free)
data->ops->free(data->ops, data);
}
static struct event_trigger_ops *
event_enable_get_trigger_ops(char *cmd, char *param)
{
struct event_trigger_ops *ops;
bool enable;
#ifdef CONFIG_HIST_TRIGGERS
enable = ((strcmp(cmd, ENABLE_EVENT_STR) == 0) ||
(strcmp(cmd, ENABLE_HIST_STR) == 0));
#else
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
enable = strcmp(cmd, ENABLE_EVENT_STR) == 0;
#endif
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
if (enable)
ops = param ? &event_enable_count_trigger_ops :
&event_enable_trigger_ops;
else
ops = param ? &event_disable_count_trigger_ops :
&event_disable_trigger_ops;
return ops;
}
static struct event_command trigger_enable_cmd = {
.name = ENABLE_EVENT_STR,
.trigger_type = ETT_EVENT_ENABLE,
.func = event_enable_trigger_func,
.reg = event_enable_register_trigger,
.unreg = event_enable_unregister_trigger,
.get_trigger_ops = event_enable_get_trigger_ops,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
.set_filter = set_trigger_filter,
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
};
static struct event_command trigger_disable_cmd = {
.name = DISABLE_EVENT_STR,
.trigger_type = ETT_EVENT_ENABLE,
.func = event_enable_trigger_func,
.reg = event_enable_register_trigger,
.unreg = event_enable_unregister_trigger,
.get_trigger_ops = event_enable_get_trigger_ops,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:29 +08:00
.set_filter = set_trigger_filter,
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
};
static __init void unregister_trigger_enable_disable_cmds(void)
{
unregister_event_command(&trigger_enable_cmd);
unregister_event_command(&trigger_disable_cmd);
}
static __init int register_trigger_enable_disable_cmds(void)
{
int ret;
ret = register_event_command(&trigger_enable_cmd);
if (WARN_ON(ret < 0))
return ret;
ret = register_event_command(&trigger_disable_cmd);
if (WARN_ON(ret < 0))
unregister_trigger_enable_disable_cmds();
return ret;
}
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
static __init int register_trigger_traceon_traceoff_cmds(void)
{
int ret;
ret = register_event_command(&trigger_traceon_cmd);
if (WARN_ON(ret < 0))
return ret;
ret = register_event_command(&trigger_traceoff_cmd);
if (WARN_ON(ret < 0))
unregister_trigger_traceon_traceoff_cmds();
return ret;
}
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
__init int register_trigger_cmds(void)
{
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
register_trigger_traceon_traceoff_cmds();
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:26 +08:00
register_trigger_snapshot_cmd();
register_trigger_stacktrace_cmd();
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:28 +08:00
register_trigger_enable_disable_cmds();
register_trigger_hist_enable_disable_cmds();
tracing: Add 'hist' event trigger command 'hist' triggers allow users to continually aggregate trace events, which can then be viewed afterwards by simply reading a 'hist' file containing the aggregation in a human-readable format. The basic idea is very simple and boils down to a mechanism whereby trace events, rather than being exhaustively dumped in raw form and viewed directly, are automatically 'compressed' into meaningful tables completely defined by the user. This is done strictly via single-line command-line commands and without the aid of any kind of programming language or interpreter. A surprising number of typical use cases can be accomplished by users via this simple mechanism. In fact, a large number of the tasks that users typically do using the more complicated script-based tracing tools, at least during the initial stages of an investigation, can be accomplished by simply specifying a set of keys and values to be used in the creation of a hash table. The Linux kernel trace event subsystem happens to provide an extensive list of keys and values ready-made for such a purpose in the form of the event format files associated with each trace event. By simply consulting the format file for field names of interest and by plugging them into the hist trigger command, users can create an endless number of useful aggregations to help with investigating various properties of the system. See Documentation/trace/events.txt for examples. hist triggers are implemented on top of the existing event trigger infrastructure, and as such are consistent with the existing triggers from a user's perspective as well. The basic syntax follows the existing trigger syntax. Users start an aggregation by writing a 'hist' trigger to the event of interest's trigger file: # echo hist:keys=xxx [ if filter] > event/trigger Once a hist trigger has been set up, by default it continually aggregates every matching event into a hash table using the event key and a value field named 'hitcount'. To view the aggregation at any point in time, simply read the 'hist' file in the same directory as the 'trigger' file: # cat event/hist The detailed syntax provides additional options for user control, and is described exhaustively in Documentation/trace/events.txt and in the virtual tracing/README file in the tracing subsystem. Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Reviewed-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-04 02:54:42 +08:00
register_trigger_hist_cmd();
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:25 +08:00
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 21:59:24 +08:00
return 0;
}