2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/arch/x86/pci/ce4100.c

319 lines
9.5 KiB
C
Raw Normal View History

/*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2010 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Corporation
* 2200 Mission College Blvd.
* Santa Clara, CA 97052
*
* This provides access methods for PCI registers that mis-behave on
* the CE4100. Each register can be assigned a private init, read and
* write routine. The exception to this is the bridge device. The
* bridge device is the only device on bus zero (0) that requires any
* fixup so it is a special case ATM
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <asm/ce4100.h>
#include <asm/pci_x86.h>
struct sim_reg {
u32 value;
u32 mask;
};
struct sim_dev_reg {
int dev_func;
int reg;
void (*init)(struct sim_dev_reg *reg);
void (*read)(struct sim_dev_reg *reg, u32 *value);
void (*write)(struct sim_dev_reg *reg, u32 value);
struct sim_reg sim_reg;
};
struct sim_reg_op {
void (*init)(struct sim_dev_reg *reg);
void (*read)(struct sim_dev_reg *reg, u32 value);
void (*write)(struct sim_dev_reg *reg, u32 value);
};
#define MB (1024 * 1024)
#define KB (1024)
#define SIZE_TO_MASK(size) (~(size - 1))
#define DEFINE_REG(device, func, offset, size, init_op, read_op, write_op)\
{ PCI_DEVFN(device, func), offset, init_op, read_op, write_op,\
{0, SIZE_TO_MASK(size)} },
static void reg_init(struct sim_dev_reg *reg)
{
pci_direct_conf1.read(0, 1, reg->dev_func, reg->reg, 4,
&reg->sim_reg.value);
}
static void reg_read(struct sim_dev_reg *reg, u32 *value)
{
unsigned long flags;
raw_spin_lock_irqsave(&pci_config_lock, flags);
*value = reg->sim_reg.value;
raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}
static void reg_write(struct sim_dev_reg *reg, u32 value)
{
unsigned long flags;
raw_spin_lock_irqsave(&pci_config_lock, flags);
reg->sim_reg.value = (value & reg->sim_reg.mask) |
(reg->sim_reg.value & ~reg->sim_reg.mask);
raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}
static void sata_reg_init(struct sim_dev_reg *reg)
{
pci_direct_conf1.read(0, 1, PCI_DEVFN(14, 0), 0x10, 4,
&reg->sim_reg.value);
reg->sim_reg.value += 0x400;
}
static void ehci_reg_read(struct sim_dev_reg *reg, u32 *value)
{
reg_read(reg, value);
if (*value != reg->sim_reg.mask)
*value |= 0x100;
}
void sata_revid_init(struct sim_dev_reg *reg)
{
reg->sim_reg.value = 0x01060100;
reg->sim_reg.mask = 0;
}
static void sata_revid_read(struct sim_dev_reg *reg, u32 *value)
{
reg_read(reg, value);
}
static struct sim_dev_reg bus1_fixups[] = {
DEFINE_REG(2, 0, 0x10, (16*MB), reg_init, reg_read, reg_write)
DEFINE_REG(2, 0, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(2, 1, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(3, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(4, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(4, 1, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(6, 0, 0x10, (512*KB), reg_init, reg_read, reg_write)
DEFINE_REG(6, 1, 0x10, (512*KB), reg_init, reg_read, reg_write)
DEFINE_REG(6, 2, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(8, 0, 0x10, (1*MB), reg_init, reg_read, reg_write)
DEFINE_REG(8, 1, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(8, 2, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(9, 0, 0x10 , (1*MB), reg_init, reg_read, reg_write)
DEFINE_REG(9, 0, 0x14, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(10, 0, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(10, 0, 0x14, (256*MB), reg_init, reg_read, reg_write)
DEFINE_REG(11, 0, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 0, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 1, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 2, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 2, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 2, 0x18, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 3, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 3, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 4, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 5, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(11, 6, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 7, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(12, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(12, 0, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(12, 1, 0x10, (1024), reg_init, reg_read, reg_write)
DEFINE_REG(13, 0, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write)
DEFINE_REG(13, 1, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write)
DEFINE_REG(14, 0, 0x8, 0, sata_revid_init, sata_revid_read, 0)
DEFINE_REG(14, 0, 0x10, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x14, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x18, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x1C, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x20, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x24, (0x200), sata_reg_init, reg_read, reg_write)
DEFINE_REG(15, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(15, 0, 0x14, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(16, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(16, 0, 0x14, (64*MB), reg_init, reg_read, reg_write)
DEFINE_REG(16, 0, 0x18, (64*MB), reg_init, reg_read, reg_write)
DEFINE_REG(17, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(18, 0, 0x10, (1*KB), reg_init, reg_read, reg_write)
};
static void __init init_sim_regs(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
if (bus1_fixups[i].init)
bus1_fixups[i].init(&bus1_fixups[i]);
}
}
static inline void extract_bytes(u32 *value, int reg, int len)
{
uint32_t mask;
*value >>= ((reg & 3) * 8);
mask = 0xFFFFFFFF >> ((4 - len) * 8);
*value &= mask;
}
int bridge_read(unsigned int devfn, int reg, int len, u32 *value)
{
u32 av_bridge_base, av_bridge_limit;
int retval = 0;
switch (reg) {
/* Make BARs appear to not request any memory. */
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_0 + 1:
case PCI_BASE_ADDRESS_0 + 2:
case PCI_BASE_ADDRESS_0 + 3:
*value = 0;
break;
/* Since subordinate bus number register is hardwired
* to zero and read only, so do the simulation.
*/
case PCI_PRIMARY_BUS:
if (len == 4)
*value = 0x00010100;
break;
case PCI_SUBORDINATE_BUS:
*value = 1;
break;
case PCI_MEMORY_BASE:
case PCI_MEMORY_LIMIT:
/* Get the A/V bridge base address. */
pci_direct_conf1.read(0, 0, devfn,
PCI_BASE_ADDRESS_0, 4, &av_bridge_base);
av_bridge_limit = av_bridge_base + (512*MB - 1);
av_bridge_limit >>= 16;
av_bridge_limit &= 0xFFF0;
av_bridge_base >>= 16;
av_bridge_base &= 0xFFF0;
if (reg == PCI_MEMORY_LIMIT)
*value = av_bridge_limit;
else if (len == 2)
*value = av_bridge_base;
else
*value = (av_bridge_limit << 16) | av_bridge_base;
break;
/* Make prefetchable memory limit smaller than prefetchable
* memory base, so not claim prefetchable memory space.
*/
case PCI_PREF_MEMORY_BASE:
*value = 0xFFF0;
break;
case PCI_PREF_MEMORY_LIMIT:
*value = 0x0;
break;
/* Make IO limit smaller than IO base, so not claim IO space. */
case PCI_IO_BASE:
*value = 0xF0;
break;
case PCI_IO_LIMIT:
*value = 0;
break;
default:
retval = 1;
}
return retval;
}
static int ce4100_conf_read(unsigned int seg, unsigned int bus,
unsigned int devfn, int reg, int len, u32 *value)
{
int i;
WARN_ON(seg);
if (bus == 1) {
for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
if (bus1_fixups[i].dev_func == devfn &&
bus1_fixups[i].reg == (reg & ~3) &&
bus1_fixups[i].read) {
bus1_fixups[i].read(&(bus1_fixups[i]),
value);
extract_bytes(value, reg, len);
return 0;
}
}
}
if (bus == 0 && (PCI_DEVFN(1, 0) == devfn) &&
!bridge_read(devfn, reg, len, value))
return 0;
return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
}
static int ce4100_conf_write(unsigned int seg, unsigned int bus,
unsigned int devfn, int reg, int len, u32 value)
{
int i;
WARN_ON(seg);
if (bus == 1) {
for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
if (bus1_fixups[i].dev_func == devfn &&
bus1_fixups[i].reg == (reg & ~3) &&
bus1_fixups[i].write) {
bus1_fixups[i].write(&(bus1_fixups[i]),
value);
return 0;
}
}
}
/* Discard writes to A/V bridge BAR. */
if (bus == 0 && PCI_DEVFN(1, 0) == devfn &&
((reg & ~3) == PCI_BASE_ADDRESS_0))
return 0;
return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
}
static const struct pci_raw_ops ce4100_pci_conf = {
.read = ce4100_conf_read,
.write = ce4100_conf_write,
};
int __init ce4100_pci_init(void)
{
init_sim_regs();
raw_pci_ops = &ce4100_pci_conf;
/* Indicate caller that it should invoke pci_legacy_init() */
return 1;
}