2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 07:04:04 +08:00
linux-next/lib/Makefile

96 lines
2.8 KiB
Makefile
Raw Normal View History

#
# Makefile for some libs needed in the kernel.
#
ifdef CONFIG_FUNCTION_TRACER
ORIG_CFLAGS := $(KBUILD_CFLAGS)
KBUILD_CFLAGS = $(subst -pg,,$(ORIG_CFLAGS))
endif
lib-y := ctype.o string.o vsprintf.o cmdline.o \
rbtree.o radix-tree.o dump_stack.o \
idr.o int_sqrt.o extable.o prio_tree.o \
sha1.o irq_regs.o reciprocal_div.o argv_split.o \
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 07:39:23 +08:00
proportions.o prio_heap.o ratelimit.o show_mem.o is_single_threaded.o
[PATCH] Add initial implementation of klist helpers. This klist interface provides a couple of structures that wrap around struct list_head to provide explicit list "head" (struct klist) and list "node" (struct klist_node) objects. For struct klist, a spinlock is included that protects access to the actual list itself. struct klist_node provides a pointer to the klist that owns it and a kref reference count that indicates the number of current users of that node in the list. The entire point is to provide an interface for iterating over a list that is safe and allows for modification of the list during the iteration (e.g. insertion and removal), including modification of the current node on the list. It works using a 3rd object type - struct klist_iter - that is declared and initialized before an iteration. klist_next() is used to acquire the next element in the list. It returns NULL if there are no more items. This klist interface provides a couple of structures that wrap around struct list_head to provide explicit list "head" (struct klist) and list "node" (struct klist_node) objects. For struct klist, a spinlock is included that protects access to the actual list itself. struct klist_node provides a pointer to the klist that owns it and a kref reference count that indicates the number of current users of that node in the list. The entire point is to provide an interface for iterating over a list that is safe and allows for modification of the list during the iteration (e.g. insertion and removal), including modification of the current node on the list. It works using a 3rd object type - struct klist_iter - that is declared and initialized before an iteration. klist_next() is used to acquire the next element in the list. It returns NULL if there are no more items. Internally, that routine takes the klist's lock, decrements the reference count of the previous klist_node and increments the count of the next klist_node. It then drops the lock and returns. There are primitives for adding and removing nodes to/from a klist. When deleting, klist_del() will simply decrement the reference count. Only when the count goes to 0 is the node removed from the list. klist_remove() will try to delete the node from the list and block until it is actually removed. This is useful for objects (like devices) that have been removed from the system and must be freed (but must wait until all accessors have finished). Internally, that routine takes the klist's lock, decrements the reference count of the previous klist_node and increments the count of the next klist_node. It then drops the lock and returns. There are primitives for adding and removing nodes to/from a klist. When deleting, klist_del() will simply decrement the reference count. Only when the count goes to 0 is the node removed from the list. klist_remove() will try to delete the node from the list and block until it is actually removed. This is useful for objects (like devices) that have been removed from the system and must be freed (but must wait until all accessors have finished). Signed-off-by: Patrick Mochel <mochel@digitalimplant.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de> diff -Nru a/include/linux/klist.h b/include/linux/klist.h
2005-03-22 03:45:16 +08:00
lib-$(CONFIG_MMU) += ioremap.o
lib-$(CONFIG_SMP) += cpumask.o
lib-y += kobject.o kref.o klist.o
obj-y += bcd.o div64.o sort.o parser.o halfmd4.o debug_locks.o random32.o \
bust_spinlocks.o hexdump.o kasprintf.o bitmap.o scatterlist.o \
string_helpers.o
ifeq ($(CONFIG_DEBUG_KOBJECT),y)
CFLAGS_kobject.o += -DDEBUG
CFLAGS_kobject_uevent.o += -DDEBUG
endif
lib-$(CONFIG_HOTPLUG) += kobject_uevent.o
obj-$(CONFIG_GENERIC_IOMAP) += iomap.o
obj-$(CONFIG_HAS_IOMEM) += iomap_copy.o devres.o
obj-$(CONFIG_CHECK_SIGNATURE) += check_signature.o
[PATCH] lockdep: locking API self tests Introduce DEBUG_LOCKING_API_SELFTESTS, which uses the generic lock debugging code's silent-failure feature to run a matrix of testcases. There are 210 testcases currently: +----------------------- | Locking API testsuite: +------------------------------+------+------+------+------+------+------+ | spin |wlock |rlock |mutex | wsem | rsem | -------------------------------+------+------+------+------+------+------+ A-A deadlock: ok | ok | ok | ok | ok | ok | A-B-B-A deadlock: ok | ok | ok | ok | ok | ok | A-B-B-C-C-A deadlock: ok | ok | ok | ok | ok | ok | A-B-C-A-B-C deadlock: ok | ok | ok | ok | ok | ok | A-B-B-C-C-D-D-A deadlock: ok | ok | ok | ok | ok | ok | A-B-C-D-B-D-D-A deadlock: ok | ok | ok | ok | ok | ok | A-B-C-D-B-C-D-A deadlock: ok | ok | ok | ok | ok | ok | double unlock: ok | ok | ok | ok | ok | ok | bad unlock order: ok | ok | ok | ok | ok | ok | --------------------------------------+------+------+------+------+------+ recursive read-lock: | ok | | ok | --------------------------------------+------+------+------+------+------+ non-nested unlock: ok | ok | ok | ok | --------------------------------------+------+------+------+ hard-irqs-on + irq-safe-A/12: ok | ok | ok | soft-irqs-on + irq-safe-A/12: ok | ok | ok | hard-irqs-on + irq-safe-A/21: ok | ok | ok | soft-irqs-on + irq-safe-A/21: ok | ok | ok | sirq-safe-A => hirqs-on/12: ok | ok | ok | sirq-safe-A => hirqs-on/21: ok | ok | ok | hard-safe-A + irqs-on/12: ok | ok | ok | soft-safe-A + irqs-on/12: ok | ok | ok | hard-safe-A + irqs-on/21: ok | ok | ok | soft-safe-A + irqs-on/21: ok | ok | ok | hard-safe-A + unsafe-B #1/123: ok | ok | ok | soft-safe-A + unsafe-B #1/123: ok | ok | ok | hard-safe-A + unsafe-B #1/132: ok | ok | ok | soft-safe-A + unsafe-B #1/132: ok | ok | ok | hard-safe-A + unsafe-B #1/213: ok | ok | ok | soft-safe-A + unsafe-B #1/213: ok | ok | ok | hard-safe-A + unsafe-B #1/231: ok | ok | ok | soft-safe-A + unsafe-B #1/231: ok | ok | ok | hard-safe-A + unsafe-B #1/312: ok | ok | ok | soft-safe-A + unsafe-B #1/312: ok | ok | ok | hard-safe-A + unsafe-B #1/321: ok | ok | ok | soft-safe-A + unsafe-B #1/321: ok | ok | ok | hard-safe-A + unsafe-B #2/123: ok | ok | ok | soft-safe-A + unsafe-B #2/123: ok | ok | ok | hard-safe-A + unsafe-B #2/132: ok | ok | ok | soft-safe-A + unsafe-B #2/132: ok | ok | ok | hard-safe-A + unsafe-B #2/213: ok | ok | ok | soft-safe-A + unsafe-B #2/213: ok | ok | ok | hard-safe-A + unsafe-B #2/231: ok | ok | ok | soft-safe-A + unsafe-B #2/231: ok | ok | ok | hard-safe-A + unsafe-B #2/312: ok | ok | ok | soft-safe-A + unsafe-B #2/312: ok | ok | ok | hard-safe-A + unsafe-B #2/321: ok | ok | ok | soft-safe-A + unsafe-B #2/321: ok | ok | ok | hard-irq lock-inversion/123: ok | ok | ok | soft-irq lock-inversion/123: ok | ok | ok | hard-irq lock-inversion/132: ok | ok | ok | soft-irq lock-inversion/132: ok | ok | ok | hard-irq lock-inversion/213: ok | ok | ok | soft-irq lock-inversion/213: ok | ok | ok | hard-irq lock-inversion/231: ok | ok | ok | soft-irq lock-inversion/231: ok | ok | ok | hard-irq lock-inversion/312: ok | ok | ok | soft-irq lock-inversion/312: ok | ok | ok | hard-irq lock-inversion/321: ok | ok | ok | soft-irq lock-inversion/321: ok | ok | ok | hard-irq read-recursion/123: ok | soft-irq read-recursion/123: ok | hard-irq read-recursion/132: ok | soft-irq read-recursion/132: ok | hard-irq read-recursion/213: ok | soft-irq read-recursion/213: ok | hard-irq read-recursion/231: ok | soft-irq read-recursion/231: ok | hard-irq read-recursion/312: ok | soft-irq read-recursion/312: ok | hard-irq read-recursion/321: ok | soft-irq read-recursion/321: ok | --------------------------------+-----+---------------- Good, all 210 testcases passed! | --------------------------------+ Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:48 +08:00
obj-$(CONFIG_DEBUG_LOCKING_API_SELFTESTS) += locking-selftest.o
[PATCH] spinlock consolidation This patch (written by me and also containing many suggestions of Arjan van de Ven) does a major cleanup of the spinlock code. It does the following things: - consolidates and enhances the spinlock/rwlock debugging code - simplifies the asm/spinlock.h files - encapsulates the raw spinlock type and moves generic spinlock features (such as ->break_lock) into the generic code. - cleans up the spinlock code hierarchy to get rid of the spaghetti. Most notably there's now only a single variant of the debugging code, located in lib/spinlock_debug.c. (previously we had one SMP debugging variant per architecture, plus a separate generic one for UP builds) Also, i've enhanced the rwlock debugging facility, it will now track write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too. All locks have lockup detection now, which will work for both soft and hard spin/rwlock lockups. The arch-level include files now only contain the minimally necessary subset of the spinlock code - all the rest that can be generalized now lives in the generic headers: include/asm-i386/spinlock_types.h | 16 include/asm-x86_64/spinlock_types.h | 16 I have also split up the various spinlock variants into separate files, making it easier to see which does what. The new layout is: SMP | UP ----------------------------|----------------------------------- asm/spinlock_types_smp.h | linux/spinlock_types_up.h linux/spinlock_types.h | linux/spinlock_types.h asm/spinlock_smp.h | linux/spinlock_up.h linux/spinlock_api_smp.h | linux/spinlock_api_up.h linux/spinlock.h | linux/spinlock.h /* * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the __raw_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ All SMP and UP architectures are converted by this patch. arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should be mostly fine. From: Grant Grundler <grundler@parisc-linux.org> Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU). Builds 32-bit SMP kernel (not booted or tested). I did not try to build non-SMP kernels. That should be trivial to fix up later if necessary. I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids some ugly nesting of linux/*.h and asm/*.h files. Those particular locks are well tested and contained entirely inside arch specific code. I do NOT expect any new issues to arise with them. If someone does ever need to use debug/metrics with them, then they will need to unravel this hairball between spinlocks, atomic ops, and bit ops that exist only because parisc has exactly one atomic instruction: LDCW (load and clear word). From: "Luck, Tony" <tony.luck@intel.com> ia64 fix Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjanv@infradead.org> Signed-off-by: Grant Grundler <grundler@parisc-linux.org> Cc: Matthew Wilcox <willy@debian.org> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se> Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 15:25:56 +08:00
obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o
lib-$(CONFIG_RWSEM_GENERIC_SPINLOCK) += rwsem-spinlock.o
lib-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem.o
lib-$(CONFIG_GENERIC_FIND_FIRST_BIT) += find_next_bit.o
lib-$(CONFIG_GENERIC_FIND_NEXT_BIT) += find_next_bit.o
obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o
obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o
obj-$(CONFIG_PLIST) += plist.o
obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o
obj-$(CONFIG_DEBUG_LIST) += list_debug.o
infrastructure to debug (dynamic) objects We can see an ever repeating problem pattern with objects of any kind in the kernel: 1) freeing of active objects 2) reinitialization of active objects Both problems can be hard to debug because the crash happens at a point where we have no chance to decode the root cause anymore. One problem spot are kernel timers, where the detection of the problem often happens in interrupt context and usually causes the machine to panic. While working on a timer related bug report I had to hack specialized code into the timer subsystem to get a reasonable hint for the root cause. This debug hack was fine for temporary use, but far from a mergeable solution due to the intrusiveness into the timer code. The code further lacked the ability to detect and report the root cause instantly and keep the system operational. Keeping the system operational is important to get hold of the debug information without special debugging aids like serial consoles and special knowledge of the bug reporter. The problems described above are not restricted to timers, but timers tend to expose it usually in a full system crash. Other objects are less explosive, but the symptoms caused by such mistakes can be even harder to debug. Instead of creating specialized debugging code for the timer subsystem a generic infrastructure is created which allows developers to verify their code and provides an easy to enable debug facility for users in case of trouble. The debugobjects core code keeps track of operations on static and dynamic objects by inserting them into a hashed list and sanity checking them on object operations and provides additional checks whenever kernel memory is freed. The tracked object operations are: - initializing an object - adding an object to a subsystem list - deleting an object from a subsystem list Each operation is sanity checked before the operation is executed and the subsystem specific code can provide a fixup function which allows to prevent the damage of the operation. When the sanity check triggers a warning message and a stack trace is printed. The list of operations can be extended if the need arises. For now it's limited to the requirements of the first user (timers). The core code enqueues the objects into hash buckets. The hash index is generated from the address of the object to simplify the lookup for the check on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a global lock. The debug code can be compiled in without being active. The runtime overhead is minimal and could be optimized by asm alternatives. A kernel command line option enables the debugging code. Thanks to Ingo Molnar for review, suggestions and cleanup patches. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Greg KH <greg@kroah.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 15:55:01 +08:00
obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o
ifneq ($(CONFIG_HAVE_DEC_LOCK),y)
lib-y += dec_and_lock.o
endif
obj-$(CONFIG_BITREVERSE) += bitrev.o
obj-$(CONFIG_CRC_CCITT) += crc-ccitt.o
obj-$(CONFIG_CRC16) += crc16.o
obj-$(CONFIG_CRC_T10DIF)+= crc-t10dif.o
obj-$(CONFIG_CRC_ITU_T) += crc-itu-t.o
obj-$(CONFIG_CRC32) += crc32.o
obj-$(CONFIG_CRC7) += crc7.o
obj-$(CONFIG_LIBCRC32C) += libcrc32c.o
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 08:15:02 +08:00
obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o
obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/
obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/
obj-$(CONFIG_REED_SOLOMON) += reed_solomon/
obj-$(CONFIG_LZO_COMPRESS) += lzo/
obj-$(CONFIG_LZO_DECOMPRESS) += lzo/
obj-$(CONFIG_TEXTSEARCH) += textsearch.o
obj-$(CONFIG_TEXTSEARCH_KMP) += ts_kmp.o
obj-$(CONFIG_TEXTSEARCH_BM) += ts_bm.o
obj-$(CONFIG_TEXTSEARCH_FSM) += ts_fsm.o
obj-$(CONFIG_SMP) += percpu_counter.o
obj-$(CONFIG_AUDIT_GENERIC) += audit.o
obj-$(CONFIG_SWIOTLB) += swiotlb.o
obj-$(CONFIG_IOMMU_HELPER) += iommu-helper.o
obj-$(CONFIG_FAULT_INJECTION) += fault-inject.o
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
lib-$(CONFIG_GENERIC_BUG) += bug.o
obj-$(CONFIG_HAVE_LMB) += lmb.o
obj-$(CONFIG_HAVE_ARCH_TRACEHOOK) += syscall.o
driver core: basic infrastructure for per-module dynamic debug messages Base infrastructure to enable per-module debug messages. I've introduced CONFIG_DYNAMIC_PRINTK_DEBUG, which when enabled centralizes control of debugging statements on a per-module basis in one /proc file, currently, <debugfs>/dynamic_printk/modules. When, CONFIG_DYNAMIC_PRINTK_DEBUG, is not set, debugging statements can still be enabled as before, often by defining 'DEBUG' for the proper compilation unit. Thus, this patch set has no affect when CONFIG_DYNAMIC_PRINTK_DEBUG is not set. The infrastructure currently ties into all pr_debug() and dev_dbg() calls. That is, if CONFIG_DYNAMIC_PRINTK_DEBUG is set, all pr_debug() and dev_dbg() calls can be dynamically enabled/disabled on a per-module basis. Future plans include extending this functionality to subsystems, that define their own debug levels and flags. Usage: Dynamic debugging is controlled by the debugfs file, <debugfs>/dynamic_printk/modules. This file contains a list of the modules that can be enabled. The format of the file is as follows: <module_name> <enabled=0/1> . . . <module_name> : Name of the module in which the debug call resides <enabled=0/1> : whether the messages are enabled or not For example: snd_hda_intel enabled=0 fixup enabled=1 driver enabled=0 Enable a module: $echo "set enabled=1 <module_name>" > dynamic_printk/modules Disable a module: $echo "set enabled=0 <module_name>" > dynamic_printk/modules Enable all modules: $echo "set enabled=1 all" > dynamic_printk/modules Disable all modules: $echo "set enabled=0 all" > dynamic_printk/modules Finally, passing "dynamic_printk" at the command line enables debugging for all modules. This mode can be turned off via the above disable command. [gkh: minor cleanups and tweaks to make the build work quietly] Signed-off-by: Jason Baron <jbaron@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-08-13 04:46:19 +08:00
obj-$(CONFIG_DYNAMIC_PRINTK_DEBUG) += dynamic_printk.o
hostprogs-y := gen_crc32table
clean-files := crc32table.h
$(obj)/crc32.o: $(obj)/crc32table.h
quiet_cmd_crc32 = GEN $@
cmd_crc32 = $< > $@
$(obj)/crc32table.h: $(obj)/gen_crc32table
$(call cmd,crc32)