2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-16 17:23:55 +08:00
linux-next/arch/sh/mm/init.c

384 lines
9.1 KiB
C
Raw Normal View History

/*
* linux/arch/sh/mm/init.c
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002 - 2007 Paul Mundt
*
* Based on linux/arch/i386/mm/init.c:
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pagemap.h>
#include <linux/percpu.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <asm/cache.h>
#include <asm/sizes.h>
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
pgd_t swapper_pg_dir[PTRS_PER_PGD];
#ifdef CONFIG_UNCACHED_MAPPING
/*
* This is the offset of the uncached section from its cached alias.
*
* Legacy platforms handle trivial transitions between cached and
* uncached segments by making use of the 1:1 mapping relationship in
* 512MB lowmem, others via a special uncached mapping.
*
* Default value only valid in 29 bit mode, in 32bit mode this will be
* updated by the early PMB initialization code.
*/
unsigned long cached_to_uncached = 0x20000000;
unsigned long uncached_size = SZ_512M;
#endif
#ifdef CONFIG_MMU
static pte_t *__get_pte_phys(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) {
pgd_ERROR(*pgd);
return NULL;
}
pud = pud_alloc(NULL, pgd, addr);
if (unlikely(!pud)) {
pud_ERROR(*pud);
return NULL;
}
pmd = pmd_alloc(NULL, pud, addr);
if (unlikely(!pmd)) {
pmd_ERROR(*pmd);
return NULL;
}
pte = pte_offset_kernel(pmd, addr);
return pte;
}
static void set_pte_phys(unsigned long addr, unsigned long phys, pgprot_t prot)
{
pte_t *pte;
pte = __get_pte_phys(addr);
if (!pte_none(*pte)) {
pte_ERROR(*pte);
return;
}
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, prot));
local_flush_tlb_one(get_asid(), addr);
if (pgprot_val(prot) & _PAGE_WIRED)
tlb_wire_entry(NULL, addr, *pte);
}
static void clear_pte_phys(unsigned long addr, pgprot_t prot)
{
pte_t *pte;
pte = __get_pte_phys(addr);
if (pgprot_val(prot) & _PAGE_WIRED)
tlb_unwire_entry();
set_pte(pte, pfn_pte(0, __pgprot(0)));
local_flush_tlb_one(get_asid(), addr);
}
void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
BUG();
return;
}
set_pte_phys(address, phys, prot);
}
void __clear_fixmap(enum fixed_addresses idx, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
BUG();
return;
}
clear_pte_phys(address, prot);
}
void __init page_table_range_init(unsigned long start, unsigned long end,
pgd_t *pgd_base)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int i, j, k;
unsigned long vaddr;
vaddr = start;
i = __pgd_offset(vaddr);
j = __pud_offset(vaddr);
k = __pmd_offset(vaddr);
pgd = pgd_base + i;
for ( ; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) {
pud = (pud_t *)pgd;
for ( ; (j < PTRS_PER_PUD) && (vaddr != end); pud++, j++) {
#ifdef __PAGETABLE_PMD_FOLDED
pmd = (pmd_t *)pud;
#else
pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
pud_populate(&init_mm, pud, pmd);
pmd += k;
#endif
for (; (k < PTRS_PER_PMD) && (vaddr != end); pmd++, k++) {
if (pmd_none(*pmd)) {
pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
pmd_populate_kernel(&init_mm, pmd, pte);
BUG_ON(pte != pte_offset_kernel(pmd, 0));
}
vaddr += PMD_SIZE;
}
k = 0;
}
j = 0;
}
}
#endif /* CONFIG_MMU */
/*
* paging_init() sets up the page tables
*/
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
unsigned long vaddr, end;
int nid;
/* We don't need to map the kernel through the TLB, as
* it is permanatly mapped using P1. So clear the
* entire pgd. */
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
/* Set an initial value for the MMU.TTB so we don't have to
* check for a null value. */
set_TTB(swapper_pg_dir);
/*
* Populate the relevant portions of swapper_pg_dir so that
* we can use the fixmap entries without calling kmalloc.
* pte's will be filled in by __set_fixmap().
*/
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
page_table_range_init(vaddr, end, swapper_pg_dir);
kmap_coherent_init();
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long low, start_pfn;
start_pfn = pgdat->bdata->node_min_pfn;
low = pgdat->bdata->node_low_pfn;
if (max_zone_pfns[ZONE_NORMAL] < low)
max_zone_pfns[ZONE_NORMAL] = low;
printk("Node %u: start_pfn = 0x%lx, low = 0x%lx\n",
nid, start_pfn, low);
}
free_area_init_nodes(max_zone_pfns);
}
/*
* Early initialization for any I/O MMUs we might have.
*/
static void __init iommu_init(void)
{
no_iommu_init();
}
unsigned int mem_init_done = 0;
void __init mem_init(void)
{
int codesize, datasize, initsize;
int nid;
iommu_init();
num_physpages = 0;
high_memory = NULL;
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long node_pages = 0;
void *node_high_memory;
num_physpages += pgdat->node_present_pages;
if (pgdat->node_spanned_pages)
node_pages = free_all_bootmem_node(pgdat);
totalram_pages += node_pages;
node_high_memory = (void *)__va((pgdat->node_start_pfn +
pgdat->node_spanned_pages) <<
PAGE_SHIFT);
if (node_high_memory > high_memory)
high_memory = node_high_memory;
}
/* Set this up early, so we can take care of the zero page */
cpu_cache_init();
/* clear the zero-page */
memset(empty_zero_page, 0, PAGE_SIZE);
__flush_wback_region(empty_zero_page, PAGE_SIZE);
/* Initialize the vDSO */
vsyscall_init();
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, "
"%dk data, %dk init)\n",
nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
datasize >> 10,
initsize >> 10);
printk(KERN_INFO "virtual kernel memory layout:\n"
" fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n"
#ifdef CONFIG_HIGHMEM
" pkmap : 0x%08lx - 0x%08lx (%4ld kB)\n"
#endif
" vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
" lowmem : 0x%08lx - 0x%08lx (%4ld MB) (cached)\n"
#ifdef CONFIG_UNCACHED_MAPPING
" : 0x%08lx - 0x%08lx (%4ld MB) (uncached)\n"
#endif
" .init : 0x%08lx - 0x%08lx (%4ld kB)\n"
" .data : 0x%08lx - 0x%08lx (%4ld kB)\n"
" .text : 0x%08lx - 0x%08lx (%4ld kB)\n",
FIXADDR_START, FIXADDR_TOP,
(FIXADDR_TOP - FIXADDR_START) >> 10,
#ifdef CONFIG_HIGHMEM
PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
(LAST_PKMAP*PAGE_SIZE) >> 10,
#endif
(unsigned long)VMALLOC_START, VMALLOC_END,
(VMALLOC_END - VMALLOC_START) >> 20,
(unsigned long)memory_start, (unsigned long)high_memory,
((unsigned long)high_memory - (unsigned long)memory_start) >> 20,
#ifdef CONFIG_UNCACHED_MAPPING
(unsigned long)memory_start + cached_to_uncached,
(unsigned long)memory_start + cached_to_uncached + uncached_size,
uncached_size >> 20,
#endif
(unsigned long)&__init_begin, (unsigned long)&__init_end,
((unsigned long)&__init_end -
(unsigned long)&__init_begin) >> 10,
(unsigned long)&_etext, (unsigned long)&_edata,
((unsigned long)&_edata - (unsigned long)&_etext) >> 10,
(unsigned long)&_text, (unsigned long)&_etext,
((unsigned long)&_etext - (unsigned long)&_text) >> 10);
mem_init_done = 1;
}
void free_initmem(void)
{
unsigned long addr;
addr = (unsigned long)(&__init_begin);
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
free_page(addr);
totalram_pages++;
}
printk("Freeing unused kernel memory: %ldk freed\n",
((unsigned long)&__init_end -
(unsigned long)&__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
unsigned long p;
for (p = start; p < end; p += PAGE_SIZE) {
ClearPageReserved(virt_to_page(p));
init_page_count(virt_to_page(p));
free_page(p);
totalram_pages++;
}
printk("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
}
#endif
#ifdef CONFIG_MEMORY_HOTPLUG
int arch_add_memory(int nid, u64 start, u64 size)
{
pg_data_t *pgdat;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
pgdat = NODE_DATA(nid);
/* We only have ZONE_NORMAL, so this is easy.. */
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07 06:39:14 +08:00
ret = __add_pages(nid, pgdat->node_zones + ZONE_NORMAL,
start_pfn, nr_pages);
if (unlikely(ret))
printk("%s: Failed, __add_pages() == %d\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#ifdef CONFIG_NUMA
int memory_add_physaddr_to_nid(u64 addr)
{
/* Node 0 for now.. */
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */