2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/drivers/pwm/pwm-bcm-kona.c

346 lines
9.5 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/types.h>
/*
* The Kona PWM has some unusual characteristics. Here are the main points.
*
* 1) There is no disable bit and the hardware docs advise programming a zero
* duty to achieve output equivalent to that of a normal disable operation.
*
* 2) Changes to prescale, duty, period, and polarity do not take effect until
* a subsequent rising edge of the trigger bit.
*
* 3) If the smooth bit and trigger bit are both low, the output is a constant
* high signal. Otherwise, the earlier waveform continues to be output.
*
* 4) If the smooth bit is set on the rising edge of the trigger bit, output
* will transition to the new settings on a period boundary (which could be
* seconds away). If the smooth bit is clear, new settings will be applied
* as soon as possible (the hardware always has a 400ns delay).
*
* 5) When the external clock that feeds the PWM is disabled, output is pegged
* high or low depending on its state at that exact instant.
*/
#define PWM_CONTROL_OFFSET (0x00000000)
#define PWM_CONTROL_SMOOTH_SHIFT(chan) (24 + (chan))
#define PWM_CONTROL_TYPE_SHIFT(chan) (16 + (chan))
#define PWM_CONTROL_POLARITY_SHIFT(chan) (8 + (chan))
#define PWM_CONTROL_TRIGGER_SHIFT(chan) (chan)
#define PRESCALE_OFFSET (0x00000004)
#define PRESCALE_SHIFT(chan) ((chan) << 2)
#define PRESCALE_MASK(chan) (0x7 << PRESCALE_SHIFT(chan))
#define PRESCALE_MIN (0x00000000)
#define PRESCALE_MAX (0x00000007)
#define PERIOD_COUNT_OFFSET(chan) (0x00000008 + ((chan) << 3))
#define PERIOD_COUNT_MIN (0x00000002)
#define PERIOD_COUNT_MAX (0x00ffffff)
#define DUTY_CYCLE_HIGH_OFFSET(chan) (0x0000000c + ((chan) << 3))
#define DUTY_CYCLE_HIGH_MIN (0x00000000)
#define DUTY_CYCLE_HIGH_MAX (0x00ffffff)
struct kona_pwmc {
struct pwm_chip chip;
void __iomem *base;
struct clk *clk;
};
static inline struct kona_pwmc *to_kona_pwmc(struct pwm_chip *_chip)
{
return container_of(_chip, struct kona_pwmc, chip);
}
/*
* Clear trigger bit but set smooth bit to maintain old output.
*/
static void kona_pwmc_prepare_for_settings(struct kona_pwmc *kp,
unsigned int chan)
{
unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET);
value |= 1 << PWM_CONTROL_SMOOTH_SHIFT(chan);
value &= ~(1 << PWM_CONTROL_TRIGGER_SHIFT(chan));
writel(value, kp->base + PWM_CONTROL_OFFSET);
/*
* There must be a min 400ns delay between clearing trigger and setting
* it. Failing to do this may result in no PWM signal.
*/
ndelay(400);
}
static void kona_pwmc_apply_settings(struct kona_pwmc *kp, unsigned int chan)
{
unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET);
/* Set trigger bit and clear smooth bit to apply new settings */
value &= ~(1 << PWM_CONTROL_SMOOTH_SHIFT(chan));
value |= 1 << PWM_CONTROL_TRIGGER_SHIFT(chan);
writel(value, kp->base + PWM_CONTROL_OFFSET);
/* Trigger bit must be held high for at least 400 ns. */
ndelay(400);
}
static int kona_pwmc_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct kona_pwmc *kp = to_kona_pwmc(chip);
u64 val, div, rate;
unsigned long prescale = PRESCALE_MIN, pc, dc;
unsigned int value, chan = pwm->hwpwm;
/*
* Find period count, duty count and prescale to suit duty_ns and
* period_ns. This is done according to formulas described below:
*
* period_ns = 10^9 * (PRESCALE + 1) * PC / PWM_CLK_RATE
* duty_ns = 10^9 * (PRESCALE + 1) * DC / PWM_CLK_RATE
*
* PC = (PWM_CLK_RATE * period_ns) / (10^9 * (PRESCALE + 1))
* DC = (PWM_CLK_RATE * duty_ns) / (10^9 * (PRESCALE + 1))
*/
rate = clk_get_rate(kp->clk);
while (1) {
div = 1000000000;
div *= 1 + prescale;
val = rate * period_ns;
pc = div64_u64(val, div);
val = rate * duty_ns;
dc = div64_u64(val, div);
/* If duty_ns or period_ns are not achievable then return */
if (pc < PERIOD_COUNT_MIN || dc < DUTY_CYCLE_HIGH_MIN)
return -EINVAL;
/* If pc and dc are in bounds, the calculation is done */
if (pc <= PERIOD_COUNT_MAX && dc <= DUTY_CYCLE_HIGH_MAX)
break;
/* Otherwise, increase prescale and recalculate pc and dc */
if (++prescale > PRESCALE_MAX)
return -EINVAL;
}
/*
* Don't apply settings if disabled. The period and duty cycle are
* always calculated above to ensure the new values are
* validated immediately instead of on enable.
*/
if (pwm_is_enabled(pwm)) {
kona_pwmc_prepare_for_settings(kp, chan);
value = readl(kp->base + PRESCALE_OFFSET);
value &= ~PRESCALE_MASK(chan);
value |= prescale << PRESCALE_SHIFT(chan);
writel(value, kp->base + PRESCALE_OFFSET);
writel(pc, kp->base + PERIOD_COUNT_OFFSET(chan));
writel(dc, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan));
kona_pwmc_apply_settings(kp, chan);
}
return 0;
}
static int kona_pwmc_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm,
enum pwm_polarity polarity)
{
struct kona_pwmc *kp = to_kona_pwmc(chip);
unsigned int chan = pwm->hwpwm;
unsigned int value;
int ret;
ret = clk_prepare_enable(kp->clk);
if (ret < 0) {
dev_err(chip->dev, "failed to enable clock: %d\n", ret);
return ret;
}
kona_pwmc_prepare_for_settings(kp, chan);
value = readl(kp->base + PWM_CONTROL_OFFSET);
if (polarity == PWM_POLARITY_NORMAL)
value |= 1 << PWM_CONTROL_POLARITY_SHIFT(chan);
else
value &= ~(1 << PWM_CONTROL_POLARITY_SHIFT(chan));
writel(value, kp->base + PWM_CONTROL_OFFSET);
kona_pwmc_apply_settings(kp, chan);
clk_disable_unprepare(kp->clk);
return 0;
}
static int kona_pwmc_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct kona_pwmc *kp = to_kona_pwmc(chip);
int ret;
ret = clk_prepare_enable(kp->clk);
if (ret < 0) {
dev_err(chip->dev, "failed to enable clock: %d\n", ret);
return ret;
}
ret = kona_pwmc_config(chip, pwm, pwm_get_duty_cycle(pwm),
pwm_get_period(pwm));
if (ret < 0) {
clk_disable_unprepare(kp->clk);
return ret;
}
return 0;
}
static void kona_pwmc_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct kona_pwmc *kp = to_kona_pwmc(chip);
unsigned int chan = pwm->hwpwm;
unsigned int value;
kona_pwmc_prepare_for_settings(kp, chan);
/* Simulate a disable by configuring for zero duty */
writel(0, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan));
writel(0, kp->base + PERIOD_COUNT_OFFSET(chan));
/* Set prescale to 0 for this channel */
value = readl(kp->base + PRESCALE_OFFSET);
value &= ~PRESCALE_MASK(chan);
writel(value, kp->base + PRESCALE_OFFSET);
kona_pwmc_apply_settings(kp, chan);
clk_disable_unprepare(kp->clk);
}
static const struct pwm_ops kona_pwm_ops = {
.config = kona_pwmc_config,
.set_polarity = kona_pwmc_set_polarity,
.enable = kona_pwmc_enable,
.disable = kona_pwmc_disable,
.owner = THIS_MODULE,
};
static int kona_pwmc_probe(struct platform_device *pdev)
{
struct kona_pwmc *kp;
struct resource *res;
unsigned int chan;
unsigned int value = 0;
int ret = 0;
kp = devm_kzalloc(&pdev->dev, sizeof(*kp), GFP_KERNEL);
if (kp == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, kp);
kp->chip.dev = &pdev->dev;
kp->chip.ops = &kona_pwm_ops;
kp->chip.base = -1;
kp->chip.npwm = 6;
kp->chip.of_xlate = of_pwm_xlate_with_flags;
kp->chip.of_pwm_n_cells = 3;
kp->chip.can_sleep = true;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
kp->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(kp->base))
return PTR_ERR(kp->base);
kp->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(kp->clk)) {
dev_err(&pdev->dev, "failed to get clock: %ld\n",
PTR_ERR(kp->clk));
return PTR_ERR(kp->clk);
}
ret = clk_prepare_enable(kp->clk);
if (ret < 0) {
dev_err(&pdev->dev, "failed to enable clock: %d\n", ret);
return ret;
}
/* Set push/pull for all channels */
for (chan = 0; chan < kp->chip.npwm; chan++)
value |= (1 << PWM_CONTROL_TYPE_SHIFT(chan));
writel(value, kp->base + PWM_CONTROL_OFFSET);
clk_disable_unprepare(kp->clk);
ret = pwmchip_add_with_polarity(&kp->chip, PWM_POLARITY_INVERSED);
if (ret < 0)
dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
return ret;
}
static int kona_pwmc_remove(struct platform_device *pdev)
{
struct kona_pwmc *kp = platform_get_drvdata(pdev);
unsigned int chan;
for (chan = 0; chan < kp->chip.npwm; chan++)
if (pwm_is_enabled(&kp->chip.pwms[chan]))
clk_disable_unprepare(kp->clk);
return pwmchip_remove(&kp->chip);
}
static const struct of_device_id bcm_kona_pwmc_dt[] = {
{ .compatible = "brcm,kona-pwm" },
{ },
};
MODULE_DEVICE_TABLE(of, bcm_kona_pwmc_dt);
static struct platform_driver kona_pwmc_driver = {
.driver = {
.name = "bcm-kona-pwm",
.of_match_table = bcm_kona_pwmc_dt,
},
.probe = kona_pwmc_probe,
.remove = kona_pwmc_remove,
};
module_platform_driver(kona_pwmc_driver);
MODULE_AUTHOR("Broadcom Corporation <bcm-kernel-feedback-list@broadcom.com>");
MODULE_AUTHOR("Tim Kryger <tkryger@broadcom.com>");
MODULE_DESCRIPTION("Broadcom Kona PWM driver");
MODULE_LICENSE("GPL v2");