2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/drivers/block/amiflop.c

1856 lines
46 KiB
C
Raw Normal View History

/*
* linux/amiga/amiflop.c
*
* Copyright (C) 1993 Greg Harp
* Portions of this driver are based on code contributed by Brad Pepers
*
* revised 28.5.95 by Joerg Dorchain
* - now no bugs(?) any more for both HD & DD
* - added support for 40 Track 5.25" drives, 80-track hopefully behaves
* like 3.5" dd (no way to test - are there any 5.25" drives out there
* that work on an A4000?)
* - wrote formatting routine (maybe dirty, but works)
*
* june/july 1995 added ms-dos support by Joerg Dorchain
* (portions based on messydos.device and various contributors)
* - currently only 9 and 18 sector disks
*
* - fixed a bug with the internal trackbuffer when using multiple
* disks the same time
* - made formatting a bit safer
* - added command line and machine based default for "silent" df0
*
* december 1995 adapted for 1.2.13pl4 by Joerg Dorchain
* - works but I think it's inefficient. (look in redo_fd_request)
* But the changes were very efficient. (only three and a half lines)
*
* january 1996 added special ioctl for tracking down read/write problems
* - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data
* is copied to area. (area should be large enough since no checking is
* done - 30K is currently sufficient). return the actual size of the
* trackbuffer
* - replaced udelays() by a timer (CIAA timer B) for the waits
* needed for the disk mechanic.
*
* february 1996 fixed error recovery and multiple disk access
* - both got broken the first time I tampered with the driver :-(
* - still not safe, but better than before
*
* revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel.
* - Minor changes to accept the kdev_t.
* - Replaced some more udelays with ms_delays. Udelay is just a loop,
* and so the delay will be different depending on the given
* processor :-(
* - The driver could use a major cleanup because of the new
* major/minor handling that came with kdev_t. It seems to work for
* the time being, but I can't guarantee that it will stay like
* that when we start using 16 (24?) bit minors.
*
* restructured jan 1997 by Joerg Dorchain
* - Fixed Bug accessing multiple disks
* - some code cleanup
* - added trackbuffer for each drive to speed things up
* - fixed some race conditions (who finds the next may send it to me ;-)
*/
#include <linux/module.h>
#include <linux/fd.h>
#include <linux/hdreg.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/amifdreg.h>
#include <linux/amifd.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/elevator.h>
#include <linux/interrupt.h>
#include <asm/setup.h>
#include <asm/uaccess.h>
#include <asm/amigahw.h>
#include <asm/amigaints.h>
#include <asm/irq.h>
#undef DEBUG /* print _LOTS_ of infos */
#define RAW_IOCTL
#ifdef RAW_IOCTL
#define IOCTL_RAW_TRACK 0x5254524B /* 'RTRK' */
#endif
/*
* Defines
*/
/*
* Error codes
*/
#define FD_OK 0 /* operation succeeded */
#define FD_ERROR -1 /* general error (seek, read, write, etc) */
#define FD_NOUNIT 1 /* unit does not exist */
#define FD_UNITBUSY 2 /* unit already active */
#define FD_NOTACTIVE 3 /* unit is not active */
#define FD_NOTREADY 4 /* unit is not ready (motor not on/no disk) */
#define MFM_NOSYNC 1
#define MFM_HEADER 2
#define MFM_DATA 3
#define MFM_TRACK 4
/*
* Floppy ID values
*/
#define FD_NODRIVE 0x00000000 /* response when no unit is present */
#define FD_DD_3 0xffffffff /* double-density 3.5" (880K) drive */
#define FD_HD_3 0x55555555 /* high-density 3.5" (1760K) drive */
#define FD_DD_5 0xaaaaaaaa /* double-density 5.25" (440K) drive */
static unsigned long int fd_def_df0 = FD_DD_3; /* default for df0 if it doesn't identify */
module_param(fd_def_df0, ulong, 0);
MODULE_LICENSE("GPL");
static struct request_queue *floppy_queue;
#define QUEUE (floppy_queue)
#define CURRENT elv_next_request(floppy_queue)
/*
* Macros
*/
#define MOTOR_ON (ciab.prb &= ~DSKMOTOR)
#define MOTOR_OFF (ciab.prb |= DSKMOTOR)
#define SELECT(mask) (ciab.prb &= ~mask)
#define DESELECT(mask) (ciab.prb |= mask)
#define SELMASK(drive) (1 << (3 + (drive & 3)))
static struct fd_drive_type drive_types[] = {
/* code name tr he rdsz wrsz sm pc1 pc2 sd st st*/
/* warning: times are now in milliseconds (ms) */
{ FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80,161, 3, 18, 1},
{ FD_HD_3, "HD 3.5", 80, 2, 28344, 27258, 2, 80,161, 3, 18, 1},
{ FD_DD_5, "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2},
{ FD_NODRIVE, "No Drive", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
static int num_dr_types = ARRAY_SIZE(drive_types);
static int amiga_read(int), dos_read(int);
static void amiga_write(int), dos_write(int);
static struct fd_data_type data_types[] = {
{ "Amiga", 11 , amiga_read, amiga_write},
{ "MS-Dos", 9, dos_read, dos_write}
};
/* current info on each unit */
static struct amiga_floppy_struct unit[FD_MAX_UNITS];
static struct timer_list flush_track_timer[FD_MAX_UNITS];
static struct timer_list post_write_timer;
static struct timer_list motor_on_timer;
static struct timer_list motor_off_timer[FD_MAX_UNITS];
static int on_attempts;
/* Synchronization of FDC access */
/* request loop (trackbuffer) */
static volatile int fdc_busy = -1;
static volatile int fdc_nested;
static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
static DECLARE_WAIT_QUEUE_HEAD(motor_wait);
static volatile int selected = -1; /* currently selected drive */
static int writepending;
static int writefromint;
static char *raw_buf;
static DEFINE_SPINLOCK(amiflop_lock);
#define RAW_BUF_SIZE 30000 /* size of raw disk data */
/*
* These are global variables, as that's the easiest way to give
* information to interrupts. They are the data used for the current
* request.
*/
static volatile char block_flag;
static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block);
/* MS-Dos MFM Coding tables (should go quick and easy) */
static unsigned char mfmencode[16]={
0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15,
0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55
};
static unsigned char mfmdecode[128];
/* floppy internal millisecond timer stuff */
static volatile int ms_busy = -1;
static DECLARE_WAIT_QUEUE_HEAD(ms_wait);
#define MS_TICKS ((amiga_eclock+50)/1000)
/*
* Note that MAX_ERRORS=X doesn't imply that we retry every bad read
* max X times - some types of errors increase the errorcount by 2 or
* even 3, so we might actually retry only X/2 times before giving up.
*/
#define MAX_ERRORS 12
#define custom amiga_custom
/* Prevent "aliased" accesses. */
static int fd_ref[4] = { 0,0,0,0 };
static int fd_device[4] = { 0, 0, 0, 0 };
/*
* Here come the actual hardware access and helper functions.
* They are not reentrant and single threaded because all drives
* share the same hardware and the same trackbuffer.
*/
/* Milliseconds timer */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t ms_isr(int irq, void *dummy)
{
ms_busy = -1;
wake_up(&ms_wait);
return IRQ_HANDLED;
}
/* all waits are queued up
A more generic routine would do a schedule a la timer.device */
static void ms_delay(int ms)
{
unsigned long flags;
int ticks;
if (ms > 0) {
local_irq_save(flags);
while (ms_busy == 0)
sleep_on(&ms_wait);
ms_busy = 0;
local_irq_restore(flags);
ticks = MS_TICKS*ms-1;
ciaa.tblo=ticks%256;
ciaa.tbhi=ticks/256;
ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */
sleep_on(&ms_wait);
}
}
/* Hardware semaphore */
/* returns true when we would get the semaphore */
static inline int try_fdc(int drive)
{
drive &= 3;
return ((fdc_busy < 0) || (fdc_busy == drive));
}
static void get_fdc(int drive)
{
unsigned long flags;
drive &= 3;
#ifdef DEBUG
printk("get_fdc: drive %d fdc_busy %d fdc_nested %d\n",drive,fdc_busy,fdc_nested);
#endif
local_irq_save(flags);
while (!try_fdc(drive))
sleep_on(&fdc_wait);
fdc_busy = drive;
fdc_nested++;
local_irq_restore(flags);
}
static inline void rel_fdc(void)
{
#ifdef DEBUG
if (fdc_nested == 0)
printk("fd: unmatched rel_fdc\n");
printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested);
#endif
fdc_nested--;
if (fdc_nested == 0) {
fdc_busy = -1;
wake_up(&fdc_wait);
}
}
static void fd_select (int drive)
{
unsigned char prb = ~0;
drive&=3;
#ifdef DEBUG
printk("selecting %d\n",drive);
#endif
if (drive == selected)
return;
get_fdc(drive);
selected = drive;
if (unit[drive].track % 2 != 0)
prb &= ~DSKSIDE;
if (unit[drive].motor == 1)
prb &= ~DSKMOTOR;
ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
ciab.prb = prb;
prb &= ~SELMASK(drive);
ciab.prb = prb;
rel_fdc();
}
static void fd_deselect (int drive)
{
unsigned char prb;
unsigned long flags;
drive&=3;
#ifdef DEBUG
printk("deselecting %d\n",drive);
#endif
if (drive != selected) {
printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected);
return;
}
get_fdc(drive);
local_irq_save(flags);
selected = -1;
prb = ciab.prb;
prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
ciab.prb = prb;
local_irq_restore (flags);
rel_fdc();
}
static void motor_on_callback(unsigned long nr)
{
if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) {
wake_up (&motor_wait);
} else {
motor_on_timer.expires = jiffies + HZ/10;
add_timer(&motor_on_timer);
}
}
static int fd_motor_on(int nr)
{
nr &= 3;
del_timer(motor_off_timer + nr);
if (!unit[nr].motor) {
unit[nr].motor = 1;
fd_select(nr);
motor_on_timer.data = nr;
mod_timer(&motor_on_timer, jiffies + HZ/2);
on_attempts = 10;
sleep_on (&motor_wait);
fd_deselect(nr);
}
if (on_attempts == 0) {
on_attempts = -1;
#if 0
printk (KERN_ERR "motor_on failed, turning motor off\n");
fd_motor_off (nr);
return 0;
#else
printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n");
#endif
}
return 1;
}
static void fd_motor_off(unsigned long drive)
{
long calledfromint;
#ifdef MODULE
long decusecount;
decusecount = drive & 0x40000000;
#endif
calledfromint = drive & 0x80000000;
drive&=3;
if (calledfromint && !try_fdc(drive)) {
/* We would be blocked in an interrupt, so try again later */
motor_off_timer[drive].expires = jiffies + 1;
add_timer(motor_off_timer + drive);
return;
}
unit[drive].motor = 0;
fd_select(drive);
udelay (1);
fd_deselect(drive);
}
static void floppy_off (unsigned int nr)
{
int drive;
drive = nr & 3;
/* called this way it is always from interrupt */
motor_off_timer[drive].data = nr | 0x80000000;
mod_timer(motor_off_timer + drive, jiffies + 3*HZ);
}
static int fd_calibrate(int drive)
{
unsigned char prb;
int n;
drive &= 3;
get_fdc(drive);
if (!fd_motor_on (drive))
return 0;
fd_select (drive);
prb = ciab.prb;
prb |= DSKSIDE;
prb &= ~DSKDIREC;
ciab.prb = prb;
for (n = unit[drive].type->tracks/2; n != 0; --n) {
if (ciaa.pra & DSKTRACK0)
break;
prb &= ~DSKSTEP;
ciab.prb = prb;
prb |= DSKSTEP;
udelay (2);
ciab.prb = prb;
ms_delay(unit[drive].type->step_delay);
}
ms_delay (unit[drive].type->settle_time);
prb |= DSKDIREC;
n = unit[drive].type->tracks + 20;
for (;;) {
prb &= ~DSKSTEP;
ciab.prb = prb;
prb |= DSKSTEP;
udelay (2);
ciab.prb = prb;
ms_delay(unit[drive].type->step_delay + 1);
if ((ciaa.pra & DSKTRACK0) == 0)
break;
if (--n == 0) {
printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive);
fd_motor_off (drive);
unit[drive].track = -1;
rel_fdc();
return 0;
}
}
unit[drive].track = 0;
ms_delay(unit[drive].type->settle_time);
rel_fdc();
fd_deselect(drive);
return 1;
}
static int fd_seek(int drive, int track)
{
unsigned char prb;
int cnt;
#ifdef DEBUG
printk("seeking drive %d to track %d\n",drive,track);
#endif
drive &= 3;
get_fdc(drive);
if (unit[drive].track == track) {
rel_fdc();
return 1;
}
if (!fd_motor_on(drive)) {
rel_fdc();
return 0;
}
if (unit[drive].track < 0 && !fd_calibrate(drive)) {
rel_fdc();
return 0;
}
fd_select (drive);
cnt = unit[drive].track/2 - track/2;
prb = ciab.prb;
prb |= DSKSIDE | DSKDIREC;
if (track % 2 != 0)
prb &= ~DSKSIDE;
if (cnt < 0) {
cnt = - cnt;
prb &= ~DSKDIREC;
}
ciab.prb = prb;
if (track % 2 != unit[drive].track % 2)
ms_delay (unit[drive].type->side_time);
unit[drive].track = track;
if (cnt == 0) {
rel_fdc();
fd_deselect(drive);
return 1;
}
do {
prb &= ~DSKSTEP;
ciab.prb = prb;
prb |= DSKSTEP;
udelay (1);
ciab.prb = prb;
ms_delay (unit[drive].type->step_delay);
} while (--cnt != 0);
ms_delay (unit[drive].type->settle_time);
rel_fdc();
fd_deselect(drive);
return 1;
}
static unsigned long fd_get_drive_id(int drive)
{
int i;
ulong id = 0;
drive&=3;
get_fdc(drive);
/* set up for ID */
MOTOR_ON;
udelay(2);
SELECT(SELMASK(drive));
udelay(2);
DESELECT(SELMASK(drive));
udelay(2);
MOTOR_OFF;
udelay(2);
SELECT(SELMASK(drive));
udelay(2);
DESELECT(SELMASK(drive));
udelay(2);
/* loop and read disk ID */
for (i=0; i<32; i++) {
SELECT(SELMASK(drive));
udelay(2);
/* read and store value of DSKRDY */
id <<= 1;
id |= (ciaa.pra & DSKRDY) ? 0 : 1; /* cia regs are low-active! */
DESELECT(SELMASK(drive));
}
rel_fdc();
/*
* RB: At least A500/A2000's df0: don't identify themselves.
* As every (real) Amiga has at least a 3.5" DD drive as df0:
* we default to that if df0: doesn't identify as a certain
* type.
*/
if(drive == 0 && id == FD_NODRIVE)
{
id = fd_def_df0;
printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0);
}
/* return the ID value */
return (id);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t fd_block_done(int irq, void *dummy)
{
if (block_flag)
custom.dsklen = 0x4000;
if (block_flag == 2) { /* writing */
writepending = 2;
post_write_timer.expires = jiffies + 1; /* at least 2 ms */
post_write_timer.data = selected;
add_timer(&post_write_timer);
}
else { /* reading */
block_flag = 0;
wake_up (&wait_fd_block);
}
return IRQ_HANDLED;
}
static void raw_read(int drive)
{
drive&=3;
get_fdc(drive);
while (block_flag)
sleep_on(&wait_fd_block);
fd_select(drive);
/* setup adkcon bits correctly */
custom.adkcon = ADK_MSBSYNC;
custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST;
custom.dsksync = MFM_SYNC;
custom.dsklen = 0;
custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
block_flag = 1;
while (block_flag)
sleep_on (&wait_fd_block);
custom.dsklen = 0;
fd_deselect(drive);
rel_fdc();
}
static int raw_write(int drive)
{
ushort adk;
drive&=3;
get_fdc(drive); /* corresponds to rel_fdc() in post_write() */
if ((ciaa.pra & DSKPROT) == 0) {
rel_fdc();
return 0;
}
while (block_flag)
sleep_on(&wait_fd_block);
fd_select(drive);
/* clear adkcon bits */
custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC;
/* set appropriate adkcon bits */
adk = ADK_SETCLR|ADK_FAST;
if ((ulong)unit[drive].track >= unit[drive].type->precomp2)
adk |= ADK_PRECOMP1;
else if ((ulong)unit[drive].track >= unit[drive].type->precomp1)
adk |= ADK_PRECOMP0;
custom.adkcon = adk;
custom.dsklen = DSKLEN_WRITE;
custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
block_flag = 2;
return 1;
}
/*
* to be called at least 2ms after the write has finished but before any
* other access to the hardware.
*/
static void post_write (unsigned long drive)
{
#ifdef DEBUG
printk("post_write for drive %ld\n",drive);
#endif
drive &= 3;
custom.dsklen = 0;
block_flag = 0;
writepending = 0;
writefromint = 0;
unit[drive].dirty = 0;
wake_up(&wait_fd_block);
fd_deselect(drive);
rel_fdc(); /* corresponds to get_fdc() in raw_write */
}
/*
* The following functions are to convert the block contents into raw data
* written to disk and vice versa.
* (Add other formats here ;-))
*/
static unsigned long scan_sync(unsigned long raw, unsigned long end)
{
ushort *ptr = (ushort *)raw, *endp = (ushort *)end;
while (ptr < endp && *ptr++ != 0x4489)
;
if (ptr < endp) {
while (*ptr == 0x4489 && ptr < endp)
ptr++;
return (ulong)ptr;
}
return 0;
}
static inline unsigned long checksum(unsigned long *addr, int len)
{
unsigned long csum = 0;
len /= sizeof(*addr);
while (len-- > 0)
csum ^= *addr++;
csum = ((csum>>1) & 0x55555555) ^ (csum & 0x55555555);
return csum;
}
static unsigned long decode (unsigned long *data, unsigned long *raw,
int len)
{
ulong *odd, *even;
/* convert length from bytes to longwords */
len >>= 2;
odd = raw;
even = odd + len;
/* prepare return pointer */
raw += len * 2;
do {
*data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555);
} while (--len != 0);
return (ulong)raw;
}
struct header {
unsigned char magic;
unsigned char track;
unsigned char sect;
unsigned char ord;
unsigned char labels[16];
unsigned long hdrchk;
unsigned long datachk;
};
static int amiga_read(int drive)
{
unsigned long raw;
unsigned long end;
int scnt;
unsigned long csum;
struct header hdr;
drive&=3;
raw = (long) raw_buf;
end = raw + unit[drive].type->read_size;
for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
if (!(raw = scan_sync(raw, end))) {
printk (KERN_INFO "can't find sync for sector %d\n", scnt);
return MFM_NOSYNC;
}
raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4);
raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16);
raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4);
raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4);
csum = checksum((ulong *)&hdr,
(char *)&hdr.hdrchk-(char *)&hdr);
#ifdef DEBUG
printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n",
hdr.magic, hdr.track, hdr.sect, hdr.ord,
*(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4],
*(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12],
hdr.hdrchk, hdr.datachk);
#endif
if (hdr.hdrchk != csum) {
printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum);
return MFM_HEADER;
}
/* verify track */
if (hdr.track != unit[drive].track) {
printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track);
return MFM_TRACK;
}
raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512),
(ulong *)raw, 512);
csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512);
if (hdr.datachk != csum) {
printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n",
hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt,
hdr.datachk, csum);
printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n",
((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0],
((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1],
((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2],
((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]);
return MFM_DATA;
}
}
return 0;
}
static void encode(unsigned long data, unsigned long *dest)
{
unsigned long data2;
data &= 0x55555555;
data2 = data ^ 0x55555555;
data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
if (*(dest - 1) & 0x00000001)
data &= 0x7FFFFFFF;
*dest = data;
}
static void encode_block(unsigned long *dest, unsigned long *src, int len)
{
int cnt, to_cnt = 0;
unsigned long data;
/* odd bits */
for (cnt = 0; cnt < len / 4; cnt++) {
data = src[cnt] >> 1;
encode(data, dest + to_cnt++);
}
/* even bits */
for (cnt = 0; cnt < len / 4; cnt++) {
data = src[cnt];
encode(data, dest + to_cnt++);
}
}
static unsigned long *putsec(int disk, unsigned long *raw, int cnt)
{
struct header hdr;
int i;
disk&=3;
*raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA;
raw++;
*raw++ = 0x44894489;
hdr.magic = 0xFF;
hdr.track = unit[disk].track;
hdr.sect = cnt;
hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt;
for (i = 0; i < 16; i++)
hdr.labels[i] = 0;
hdr.hdrchk = checksum((ulong *)&hdr,
(char *)&hdr.hdrchk-(char *)&hdr);
hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512);
encode_block(raw, (ulong *)&hdr.magic, 4);
raw += 2;
encode_block(raw, (ulong *)&hdr.labels, 16);
raw += 8;
encode_block(raw, (ulong *)&hdr.hdrchk, 4);
raw += 2;
encode_block(raw, (ulong *)&hdr.datachk, 4);
raw += 2;
encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512);
raw += 256;
return raw;
}
static void amiga_write(int disk)
{
unsigned int cnt;
unsigned long *ptr = (unsigned long *)raw_buf;
disk&=3;
/* gap space */
for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++)
*ptr++ = 0xaaaaaaaa;
/* sectors */
for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
ptr = putsec (disk, ptr, cnt);
*(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8;
}
struct dos_header {
unsigned char track, /* 0-80 */
side, /* 0-1 */
sec, /* 0-...*/
len_desc;/* 2 */
unsigned short crc; /* on 68000 we got an alignment problem,
but this compiler solves it by adding silently
adding a pad byte so data won't fit
and this took about 3h to discover.... */
unsigned char gap1[22]; /* for longword-alignedness (0x4e) */
};
/* crc routines are borrowed from the messydos-handler */
/* excerpt from the messydos-device
; The CRC is computed not only over the actual data, but including
; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb).
; As we don't read or encode these fields into our buffers, we have to
; preload the registers containing the CRC with the values they would have
; after stepping over these fields.
;
; How CRCs "really" work:
;
; First, you should regard a bitstring as a series of coefficients of
; polynomials. We calculate with these polynomials in modulo-2
; arithmetic, in which both add and subtract are done the same as
; exclusive-or. Now, we modify our data (a very long polynomial) in
; such a way that it becomes divisible by the CCITT-standard 16-bit
; 16 12 5
; polynomial: x + x + x + 1, represented by $11021. The easiest
; way to do this would be to multiply (using proper arithmetic) our
; datablock with $11021. So we have:
; data * $11021 =
; data * ($10000 + $1021) =
; data * $10000 + data * $1021
; The left part of this is simple: Just add two 0 bytes. But then
; the right part (data $1021) remains difficult and even could have
; a carry into the left part. The solution is to use a modified
; multiplication, which has a result that is not correct, but with
; a difference of any multiple of $11021. We then only need to keep
; the 16 least significant bits of the result.
;
; The following algorithm does this for us:
;
; unsigned char *data, c, crclo, crchi;
; while (not done) {
; c = *data++ + crchi;
; crchi = (@ c) >> 8 + crclo;
; crclo = @ c;
; }
;
; Remember, + is done with EOR, the @ operator is in two tables (high
; and low byte separately), which is calculated as
;
; $1021 * (c & $F0)
; xor $1021 * (c & $0F)
; xor $1021 * (c >> 4) (* is regular multiplication)
;
;
; Anyway, the end result is the same as the remainder of the division of
; the data by $11021. I am afraid I need to study theory a bit more...
my only works was to code this from manx to C....
*/
static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3)
{
static unsigned char CRCTable1[] = {
0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1,
0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3,
0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5,
0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7,
0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9,
0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab,
0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d,
0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f,
0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60,
0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72,
0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44,
0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56,
0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28,
0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a,
0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c,
0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e
};
static unsigned char CRCTable2[] = {
0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef,
0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde,
0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d,
0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc,
0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b,
0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a,
0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49,
0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78,
0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67,
0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56,
0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05,
0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34,
0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3,
0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92,
0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1,
0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0
};
/* look at the asm-code - what looks in C a bit strange is almost as good as handmade */
register int i;
register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl;
CRCT1=CRCTable1;
CRCT2=CRCTable2;
data=data_a3;
crcl=data_d1;
crch=data_d0;
for (i=data_d3; i>=0; i--) {
c = (*data++) ^ crch;
crch = CRCT1[c] ^ crcl;
crcl = CRCT2[c];
}
return (crch<<8)|crcl;
}
static inline ushort dos_hdr_crc (struct dos_header *hdr)
{
return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */
}
static inline ushort dos_data_crc(unsigned char *data)
{
return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */
}
static inline unsigned char dos_decode_byte(ushort word)
{
register ushort w2;
register unsigned char byte;
register unsigned char *dec = mfmdecode;
w2=word;
w2>>=8;
w2&=127;
byte = dec[w2];
byte <<= 4;
w2 = word & 127;
byte |= dec[w2];
return byte;
}
static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len)
{
int i;
for (i = 0; i < len; i++)
*data++=dos_decode_byte(*raw++);
return ((ulong)raw);
}
#ifdef DEBUG
static void dbg(unsigned long ptr)
{
printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr,
((ulong *)ptr)[0], ((ulong *)ptr)[1],
((ulong *)ptr)[2], ((ulong *)ptr)[3]);
}
#endif
static int dos_read(int drive)
{
unsigned long end;
unsigned long raw;
int scnt;
unsigned short crc,data_crc[2];
struct dos_header hdr;
drive&=3;
raw = (long) raw_buf;
end = raw + unit[drive].type->read_size;
for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
do { /* search for the right sync of each sec-hdr */
if (!(raw = scan_sync (raw, end))) {
printk(KERN_INFO "dos_read: no hdr sync on "
"track %d, unit %d for sector %d\n",
unit[drive].track,drive,scnt);
return MFM_NOSYNC;
}
#ifdef DEBUG
dbg(raw);
#endif
} while (*((ushort *)raw)!=0x5554); /* loop usually only once done */
raw+=2; /* skip over headermark */
raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8);
crc = dos_hdr_crc(&hdr);
#ifdef DEBUG
printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side,
hdr.sec, hdr.len_desc, hdr.crc);
#endif
if (crc != hdr.crc) {
printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n",
hdr.crc, crc);
return MFM_HEADER;
}
if (hdr.track != unit[drive].track/unit[drive].type->heads) {
printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n",
hdr.track,
unit[drive].track/unit[drive].type->heads);
return MFM_TRACK;
}
if (hdr.side != unit[drive].track%unit[drive].type->heads) {
printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n",
hdr.side,
unit[drive].track%unit[drive].type->heads);
return MFM_TRACK;
}
if (hdr.len_desc != 2) {
printk(KERN_INFO "dos_read: unknown sector len "
"descriptor %d\n", hdr.len_desc);
return MFM_DATA;
}
#ifdef DEBUG
printk("hdr accepted\n");
#endif
if (!(raw = scan_sync (raw, end))) {
printk(KERN_INFO "dos_read: no data sync on track "
"%d, unit %d for sector%d, disk sector %d\n",
unit[drive].track, drive, scnt, hdr.sec);
return MFM_NOSYNC;
}
#ifdef DEBUG
dbg(raw);
#endif
if (*((ushort *)raw)!=0x5545) {
printk(KERN_INFO "dos_read: no data mark after "
"sync (%d,%d,%d,%d) sc=%d\n",
hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt);
return MFM_NOSYNC;
}
raw+=2; /* skip data mark (included in checksum) */
raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512);
raw = dos_decode((unsigned char *)data_crc,(ushort *) raw,4);
crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512);
if (crc != data_crc[0]) {
printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) "
"sc=%d, %x %x\n", hdr.track, hdr.side,
hdr.sec, hdr.len_desc, scnt,data_crc[0], crc);
printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n",
((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0],
((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1],
((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2],
((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]);
return MFM_DATA;
}
}
return 0;
}
static inline ushort dos_encode_byte(unsigned char byte)
{
register unsigned char *enc, b2, b1;
register ushort word;
enc=mfmencode;
b1=byte;
b2=b1>>4;
b1&=15;
word=enc[b2] <<8 | enc [b1];
return (word|((word&(256|64)) ? 0: 128));
}
static void dos_encode_block(ushort *dest, unsigned char *src, int len)
{
int i;
for (i = 0; i < len; i++) {
*dest=dos_encode_byte(*src++);
*dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000;
dest++;
}
}
static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt)
{
static struct dos_header hdr={0,0,0,2,0,
{78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}};
int i;
static ushort crc[2]={0,0x4e4e};
drive&=3;
/* id gap 1 */
/* the MFM word before is always 9254 */
for(i=0;i<6;i++)
*raw++=0xaaaaaaaa;
/* 3 sync + 1 headermark */
*raw++=0x44894489;
*raw++=0x44895554;
/* fill in the variable parts of the header */
hdr.track=unit[drive].track/unit[drive].type->heads;
hdr.side=unit[drive].track%unit[drive].type->heads;
hdr.sec=cnt+1;
hdr.crc=dos_hdr_crc(&hdr);
/* header (without "magic") and id gap 2*/
dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28);
raw+=14;
/*id gap 3 */
for(i=0;i<6;i++)
*raw++=0xaaaaaaaa;
/* 3 syncs and 1 datamark */
*raw++=0x44894489;
*raw++=0x44895545;
/* data */
dos_encode_block((ushort *)raw,
(unsigned char *)unit[drive].trackbuf+cnt*512,512);
raw+=256;
/*data crc + jd's special gap (long words :-/) */
crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512);
dos_encode_block((ushort *) raw,(unsigned char *)crc,4);
raw+=2;
/* data gap */
for(i=0;i<38;i++)
*raw++=0x92549254;
return raw; /* wrote 652 MFM words */
}
static void dos_write(int disk)
{
int cnt;
unsigned long raw = (unsigned long) raw_buf;
unsigned long *ptr=(unsigned long *)raw;
disk&=3;
/* really gap4 + indexgap , but we write it first and round it up */
for (cnt=0;cnt<425;cnt++)
*ptr++=0x92549254;
/* the following is just guessed */
if (unit[disk].type->sect_mult==2) /* check for HD-Disks */
for(cnt=0;cnt<473;cnt++)
*ptr++=0x92549254;
/* now the index marks...*/
for (cnt=0;cnt<20;cnt++)
*ptr++=0x92549254;
for (cnt=0;cnt<6;cnt++)
*ptr++=0xaaaaaaaa;
*ptr++=0x52245224;
*ptr++=0x52245552;
for (cnt=0;cnt<20;cnt++)
*ptr++=0x92549254;
/* sectors */
for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
ptr=ms_putsec(disk,ptr,cnt);
*(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */
}
/*
* Here comes the high level stuff (i.e. the filesystem interface)
* and helper functions.
* Normally this should be the only part that has to be adapted to
* different kernel versions.
*/
/* FIXME: this assumes the drive is still spinning -
* which is only true if we complete writing a track within three seconds
*/
static void flush_track_callback(unsigned long nr)
{
nr&=3;
writefromint = 1;
if (!try_fdc(nr)) {
/* we might block in an interrupt, so try again later */
flush_track_timer[nr].expires = jiffies + 1;
add_timer(flush_track_timer + nr);
return;
}
get_fdc(nr);
(*unit[nr].dtype->write_fkt)(nr);
if (!raw_write(nr)) {
printk (KERN_NOTICE "floppy disk write protected\n");
writefromint = 0;
writepending = 0;
}
rel_fdc();
}
static int non_int_flush_track (unsigned long nr)
{
unsigned long flags;
nr&=3;
writefromint = 0;
del_timer(&post_write_timer);
get_fdc(nr);
if (!fd_motor_on(nr)) {
writepending = 0;
rel_fdc();
return 0;
}
local_irq_save(flags);
if (writepending != 2) {
local_irq_restore(flags);
(*unit[nr].dtype->write_fkt)(nr);
if (!raw_write(nr)) {
printk (KERN_NOTICE "floppy disk write protected "
"in write!\n");
writepending = 0;
return 0;
}
while (block_flag == 2)
sleep_on (&wait_fd_block);
}
else {
local_irq_restore(flags);
ms_delay(2); /* 2 ms post_write delay */
post_write(nr);
}
rel_fdc();
return 1;
}
static int get_track(int drive, int track)
{
int error, errcnt;
drive&=3;
if (unit[drive].track == track)
return 0;
get_fdc(drive);
if (!fd_motor_on(drive)) {
rel_fdc();
return -1;
}
if (unit[drive].dirty == 1) {
del_timer (flush_track_timer + drive);
non_int_flush_track (drive);
}
errcnt = 0;
while (errcnt < MAX_ERRORS) {
if (!fd_seek(drive, track))
return -1;
raw_read(drive);
error = (*unit[drive].dtype->read_fkt)(drive);
if (error == 0) {
rel_fdc();
return 0;
}
/* Read Error Handling: recalibrate and try again */
unit[drive].track = -1;
errcnt++;
}
rel_fdc();
return -1;
}
static void redo_fd_request(void)
{
unsigned int cnt, block, track, sector;
int drive;
struct amiga_floppy_struct *floppy;
char *data;
unsigned long flags;
repeat:
if (!CURRENT) {
/* Nothing left to do */
return;
}
floppy = CURRENT->rq_disk->private_data;
drive = floppy - unit;
/* Here someone could investigate to be more efficient */
for (cnt = 0; cnt < CURRENT->current_nr_sectors; cnt++) {
#ifdef DEBUG
printk("fd: sector %ld + %d requested for %s\n",
CURRENT->sector,cnt,
(rq_data_dir(CURRENT) == READ) ? "read" : "write");
#endif
block = CURRENT->sector + cnt;
if ((int)block > floppy->blocks) {
end_request(CURRENT, 0);
goto repeat;
}
track = block / (floppy->dtype->sects * floppy->type->sect_mult);
sector = block % (floppy->dtype->sects * floppy->type->sect_mult);
data = CURRENT->buffer + 512 * cnt;
#ifdef DEBUG
printk("access to track %d, sector %d, with buffer at "
"0x%08lx\n", track, sector, data);
#endif
if ((rq_data_dir(CURRENT) != READ) && (rq_data_dir(CURRENT) != WRITE)) {
printk(KERN_WARNING "do_fd_request: unknown command\n");
end_request(CURRENT, 0);
goto repeat;
}
if (get_track(drive, track) == -1) {
end_request(CURRENT, 0);
goto repeat;
}
switch (rq_data_dir(CURRENT)) {
case READ:
memcpy(data, floppy->trackbuf + sector * 512, 512);
break;
case WRITE:
memcpy(floppy->trackbuf + sector * 512, data, 512);
/* keep the drive spinning while writes are scheduled */
if (!fd_motor_on(drive)) {
end_request(CURRENT, 0);
goto repeat;
}
/*
* setup a callback to write the track buffer
* after a short (1 tick) delay.
*/
local_irq_save(flags);
floppy->dirty = 1;
/* reset the timer */
mod_timer (flush_track_timer + drive, jiffies + 1);
local_irq_restore(flags);
break;
}
}
CURRENT->nr_sectors -= CURRENT->current_nr_sectors;
CURRENT->sector += CURRENT->current_nr_sectors;
end_request(CURRENT, 1);
goto repeat;
}
static void do_fd_request(struct request_queue * q)
{
redo_fd_request();
}
static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
int drive = MINOR(bdev->bd_dev) & 3;
geo->heads = unit[drive].type->heads;
geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult;
geo->cylinders = unit[drive].type->tracks;
return 0;
}
static int fd_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long param)
{
int drive = iminor(inode) & 3;
static struct floppy_struct getprm;
void __user *argp = (void __user *)param;
switch(cmd){
case FDFMTBEG:
get_fdc(drive);
if (fd_ref[drive] > 1) {
rel_fdc();
return -EBUSY;
}
fsync_bdev(inode->i_bdev);
if (fd_motor_on(drive) == 0) {
rel_fdc();
return -ENODEV;
}
if (fd_calibrate(drive) == 0) {
rel_fdc();
return -ENXIO;
}
floppy_off(drive);
rel_fdc();
break;
case FDFMTTRK:
if (param < unit[drive].type->tracks * unit[drive].type->heads)
{
get_fdc(drive);
if (fd_seek(drive,param) != 0){
memset(unit[drive].trackbuf, FD_FILL_BYTE,
unit[drive].dtype->sects * unit[drive].type->sect_mult * 512);
non_int_flush_track(drive);
}
floppy_off(drive);
rel_fdc();
}
else
return -EINVAL;
break;
case FDFMTEND:
floppy_off(drive);
invalidate_bdev(inode->i_bdev);
break;
case FDGETPRM:
memset((void *)&getprm, 0, sizeof (getprm));
getprm.track=unit[drive].type->tracks;
getprm.head=unit[drive].type->heads;
getprm.sect=unit[drive].dtype->sects * unit[drive].type->sect_mult;
getprm.size=unit[drive].blocks;
if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct)))
return -EFAULT;
break;
case FDSETPRM:
case FDDEFPRM:
return -EINVAL;
case FDFLUSH: /* unconditionally, even if not needed */
del_timer (flush_track_timer + drive);
non_int_flush_track(drive);
break;
#ifdef RAW_IOCTL
case IOCTL_RAW_TRACK:
if (copy_to_user(argp, raw_buf, unit[drive].type->read_size))
return -EFAULT;
else
return unit[drive].type->read_size;
#endif
default:
printk(KERN_DEBUG "fd_ioctl: unknown cmd %d for drive %d.",
cmd, drive);
return -ENOSYS;
}
return 0;
}
static void fd_probe(int dev)
{
unsigned long code;
int type;
int drive;
drive = dev & 3;
code = fd_get_drive_id(drive);
/* get drive type */
for (type = 0; type < num_dr_types; type++)
if (drive_types[type].code == code)
break;
if (type >= num_dr_types) {
printk(KERN_WARNING "fd_probe: unsupported drive type "
"%08lx found\n", code);
unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */
return;
}
unit[drive].type = drive_types + type;
unit[drive].track = -1;
unit[drive].disk = -1;
unit[drive].motor = 0;
unit[drive].busy = 0;
unit[drive].status = -1;
}
/*
* floppy_open check for aliasing (/dev/fd0 can be the same as
* /dev/PS0 etc), and disallows simultaneous access to the same
* drive with different device numbers.
*/
static int floppy_open(struct inode *inode, struct file *filp)
{
int drive = iminor(inode) & 3;
int system = (iminor(inode) & 4) >> 2;
int old_dev;
unsigned long flags;
old_dev = fd_device[drive];
if (fd_ref[drive] && old_dev != system)
return -EBUSY;
if (filp && filp->f_mode & 3) {
check_disk_change(inode->i_bdev);
if (filp->f_mode & 2 ) {
int wrprot;
get_fdc(drive);
fd_select (drive);
wrprot = !(ciaa.pra & DSKPROT);
fd_deselect (drive);
rel_fdc();
if (wrprot)
return -EROFS;
}
}
local_irq_save(flags);
fd_ref[drive]++;
fd_device[drive] = system;
local_irq_restore(flags);
unit[drive].dtype=&data_types[system];
unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks*
data_types[system].sects*unit[drive].type->sect_mult;
set_capacity(unit[drive].gendisk, unit[drive].blocks);
printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive,
unit[drive].type->name, data_types[system].name);
return 0;
}
static int floppy_release(struct inode * inode, struct file * filp)
{
int drive = iminor(inode) & 3;
if (unit[drive].dirty == 1) {
del_timer (flush_track_timer + drive);
non_int_flush_track (drive);
}
if (!fd_ref[drive]--) {
printk(KERN_CRIT "floppy_release with fd_ref == 0");
fd_ref[drive] = 0;
}
#ifdef MODULE
/* the mod_use counter is handled this way */
floppy_off (drive | 0x40000000);
#endif
return 0;
}
/*
* floppy-change is never called from an interrupt, so we can relax a bit
* here, sleep etc. Note that floppy-on tries to set current_DOR to point
* to the desired drive, but it will probably not survive the sleep if
* several floppies are used at the same time: thus the loop.
*/
static int amiga_floppy_change(struct gendisk *disk)
{
struct amiga_floppy_struct *p = disk->private_data;
int drive = p - unit;
int changed;
static int first_time = 1;
if (first_time)
changed = first_time--;
else {
get_fdc(drive);
fd_select (drive);
changed = !(ciaa.pra & DSKCHANGE);
fd_deselect (drive);
rel_fdc();
}
if (changed) {
fd_probe(drive);
p->track = -1;
p->dirty = 0;
writepending = 0; /* if this was true before, too bad! */
writefromint = 0;
return 1;
}
return 0;
}
static struct block_device_operations floppy_fops = {
.owner = THIS_MODULE,
.open = floppy_open,
.release = floppy_release,
.ioctl = fd_ioctl,
.getgeo = fd_getgeo,
.media_changed = amiga_floppy_change,
};
static int __init fd_probe_drives(void)
{
int drive,drives,nomem;
printk(KERN_INFO "FD: probing units\n" KERN_INFO "found ");
drives=0;
nomem=0;
for(drive=0;drive<FD_MAX_UNITS;drive++) {
struct gendisk *disk;
fd_probe(drive);
if (unit[drive].type->code == FD_NODRIVE)
continue;
disk = alloc_disk(1);
if (!disk) {
unit[drive].type->code = FD_NODRIVE;
continue;
}
unit[drive].gendisk = disk;
drives++;
if ((unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL)) == NULL) {
printk("no mem for ");
unit[drive].type = &drive_types[num_dr_types - 1]; /* FD_NODRIVE */
drives--;
nomem = 1;
}
printk("fd%d ",drive);
disk->major = FLOPPY_MAJOR;
disk->first_minor = drive;
disk->fops = &floppy_fops;
sprintf(disk->disk_name, "fd%d", drive);
disk->private_data = &unit[drive];
disk->queue = floppy_queue;
set_capacity(disk, 880*2);
add_disk(disk);
}
if ((drives > 0) || (nomem == 0)) {
if (drives == 0)
printk("no drives");
printk("\n");
return drives;
}
printk("\n");
return -ENOMEM;
}
static struct kobject *floppy_find(dev_t dev, int *part, void *data)
{
int drive = *part & 3;
if (unit[drive].type->code == FD_NODRIVE)
return NULL;
*part = 0;
return get_disk(unit[drive].gendisk);
}
static int __init amiga_floppy_init(void)
{
int i, ret;
if (!MACH_IS_AMIGA)
return -ENXIO;
if (!AMIGAHW_PRESENT(AMI_FLOPPY))
return -ENXIO;
if (register_blkdev(FLOPPY_MAJOR,"fd"))
return -EBUSY;
/*
* We request DSKPTR, DSKLEN and DSKDATA only, because the other
* floppy registers are too spreaded over the custom register space
*/
ret = -EBUSY;
if (!request_mem_region(CUSTOM_PHYSADDR+0x20, 8, "amiflop [Paula]")) {
printk("fd: cannot get floppy registers\n");
goto out_blkdev;
}
ret = -ENOMEM;
if ((raw_buf = (char *)amiga_chip_alloc (RAW_BUF_SIZE, "Floppy")) ==
NULL) {
printk("fd: cannot get chip mem buffer\n");
goto out_memregion;
}
ret = -EBUSY;
if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) {
printk("fd: cannot get irq for dma\n");
goto out_irq;
}
if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) {
printk("fd: cannot get irq for timer\n");
goto out_irq2;
}
ret = -ENOMEM;
floppy_queue = blk_init_queue(do_fd_request, &amiflop_lock);
if (!floppy_queue)
goto out_queue;
ret = -ENXIO;
if (fd_probe_drives() < 1) /* No usable drives */
goto out_probe;
blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE,
floppy_find, NULL, NULL);
/* initialize variables */
init_timer(&motor_on_timer);
motor_on_timer.expires = 0;
motor_on_timer.data = 0;
motor_on_timer.function = motor_on_callback;
for (i = 0; i < FD_MAX_UNITS; i++) {
init_timer(&motor_off_timer[i]);
motor_off_timer[i].expires = 0;
motor_off_timer[i].data = i|0x80000000;
motor_off_timer[i].function = fd_motor_off;
init_timer(&flush_track_timer[i]);
flush_track_timer[i].expires = 0;
flush_track_timer[i].data = i;
flush_track_timer[i].function = flush_track_callback;
unit[i].track = -1;
}
init_timer(&post_write_timer);
post_write_timer.expires = 0;
post_write_timer.data = 0;
post_write_timer.function = post_write;
for (i = 0; i < 128; i++)
mfmdecode[i]=255;
for (i = 0; i < 16; i++)
mfmdecode[mfmencode[i]]=i;
/* make sure that disk DMA is enabled */
custom.dmacon = DMAF_SETCLR | DMAF_DISK;
/* init ms timer */
ciaa.crb = 8; /* one-shot, stop */
return 0;
out_probe:
blk_cleanup_queue(floppy_queue);
out_queue:
free_irq(IRQ_AMIGA_CIAA_TB, NULL);
out_irq2:
free_irq(IRQ_AMIGA_DSKBLK, NULL);
out_irq:
amiga_chip_free(raw_buf);
out_memregion:
release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
out_blkdev:
unregister_blkdev(FLOPPY_MAJOR,"fd");
return ret;
}
module_init(amiga_floppy_init);
#ifdef MODULE
#if 0 /* not safe to unload */
void cleanup_module(void)
{
int i;
for( i = 0; i < FD_MAX_UNITS; i++) {
if (unit[i].type->code != FD_NODRIVE) {
del_gendisk(unit[i].gendisk);
put_disk(unit[i].gendisk);
kfree(unit[i].trackbuf);
}
}
blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256);
free_irq(IRQ_AMIGA_CIAA_TB, NULL);
free_irq(IRQ_AMIGA_DSKBLK, NULL);
custom.dmacon = DMAF_DISK; /* disable DMA */
amiga_chip_free(raw_buf);
blk_cleanup_queue(floppy_queue);
release_mem_region(CUSTOM_PHYSADDR+0x20, 8);
unregister_blkdev(FLOPPY_MAJOR, "fd");
}
#endif
#else
static int __init amiga_floppy_setup (char *str)
{
int n;
if (!MACH_IS_AMIGA)
return 0;
if (!get_option(&str, &n))
return 0;
printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n);
fd_def_df0 = n;
return 1;
}
__setup("floppy=", amiga_floppy_setup);
#endif