2016-06-09 21:19:10 +08:00
|
|
|
/*
|
|
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
|
|
* for more details.
|
|
|
|
*
|
|
|
|
* KVM/MIPS MMU handling in the KVM module.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
|
|
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
|
|
*/
|
|
|
|
|
2016-07-08 18:53:22 +08:00
|
|
|
#include <linux/highmem.h>
|
2016-06-09 21:19:10 +08:00
|
|
|
#include <linux/kvm_host.h>
|
2016-08-19 22:27:22 +08:00
|
|
|
#include <linux/uaccess.h>
|
2016-06-09 21:19:10 +08:00
|
|
|
#include <asm/mmu_context.h>
|
2016-12-16 23:57:00 +08:00
|
|
|
#include <asm/pgalloc.h>
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2017-01-05 18:44:38 +08:00
|
|
|
/*
|
|
|
|
* KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
|
|
|
|
* for which pages need to be cached.
|
|
|
|
*/
|
|
|
|
#if defined(__PAGETABLE_PMD_FOLDED)
|
|
|
|
#define KVM_MMU_CACHE_MIN_PAGES 1
|
|
|
|
#else
|
|
|
|
#define KVM_MMU_CACHE_MIN_PAGES 2
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
|
|
int min, int max)
|
|
|
|
{
|
|
|
|
void *page;
|
|
|
|
|
|
|
|
BUG_ON(max > KVM_NR_MEM_OBJS);
|
|
|
|
if (cache->nobjs >= min)
|
|
|
|
return 0;
|
|
|
|
while (cache->nobjs < max) {
|
|
|
|
page = (void *)__get_free_page(GFP_KERNEL);
|
|
|
|
if (!page)
|
|
|
|
return -ENOMEM;
|
|
|
|
cache->objects[cache->nobjs++] = page;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-12-16 23:57:00 +08:00
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
|
|
{
|
|
|
|
while (mc->nobjs)
|
|
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
|
|
{
|
|
|
|
void *p;
|
|
|
|
|
|
|
|
BUG_ON(!mc || !mc->nobjs);
|
|
|
|
p = mc->objects[--mc->nobjs];
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
|
|
}
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
/**
|
|
|
|
* kvm_pgd_init() - Initialise KVM GPA page directory.
|
|
|
|
* @page: Pointer to page directory (PGD) for KVM GPA.
|
|
|
|
*
|
|
|
|
* Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
|
|
|
|
* representing no mappings. This is similar to pgd_init(), however it
|
|
|
|
* initialises all the page directory pointers, not just the ones corresponding
|
|
|
|
* to the userland address space (since it is for the guest physical address
|
|
|
|
* space rather than a virtual address space).
|
|
|
|
*/
|
|
|
|
static void kvm_pgd_init(void *page)
|
|
|
|
{
|
|
|
|
unsigned long *p, *end;
|
|
|
|
unsigned long entry;
|
|
|
|
|
|
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
|
|
entry = (unsigned long)invalid_pte_table;
|
|
|
|
#else
|
|
|
|
entry = (unsigned long)invalid_pmd_table;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
p = (unsigned long *)page;
|
|
|
|
end = p + PTRS_PER_PGD;
|
|
|
|
|
|
|
|
do {
|
|
|
|
p[0] = entry;
|
|
|
|
p[1] = entry;
|
|
|
|
p[2] = entry;
|
|
|
|
p[3] = entry;
|
|
|
|
p[4] = entry;
|
|
|
|
p += 8;
|
|
|
|
p[-3] = entry;
|
|
|
|
p[-2] = entry;
|
|
|
|
p[-1] = entry;
|
|
|
|
} while (p != end);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
|
|
|
|
*
|
|
|
|
* Allocate a blank KVM GPA page directory (PGD) for representing guest physical
|
|
|
|
* to host physical page mappings.
|
|
|
|
*
|
|
|
|
* Returns: Pointer to new KVM GPA page directory.
|
|
|
|
* NULL on allocation failure.
|
|
|
|
*/
|
|
|
|
pgd_t *kvm_pgd_alloc(void)
|
|
|
|
{
|
|
|
|
pgd_t *ret;
|
|
|
|
|
|
|
|
ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
|
|
|
|
if (ret)
|
|
|
|
kvm_pgd_init(ret);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-12-16 23:57:00 +08:00
|
|
|
/**
|
|
|
|
* kvm_mips_walk_pgd() - Walk page table with optional allocation.
|
|
|
|
* @pgd: Page directory pointer.
|
|
|
|
* @addr: Address to index page table using.
|
|
|
|
* @cache: MMU page cache to allocate new page tables from, or NULL.
|
|
|
|
*
|
|
|
|
* Walk the page tables pointed to by @pgd to find the PTE corresponding to the
|
|
|
|
* address @addr. If page tables don't exist for @addr, they will be created
|
|
|
|
* from the MMU cache if @cache is not NULL.
|
|
|
|
*
|
|
|
|
* Returns: Pointer to pte_t corresponding to @addr.
|
|
|
|
* NULL if a page table doesn't exist for @addr and !@cache.
|
|
|
|
* NULL if a page table allocation failed.
|
|
|
|
*/
|
|
|
|
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
|
|
|
|
unsigned long addr)
|
|
|
|
{
|
|
|
|
pud_t *pud;
|
|
|
|
pmd_t *pmd;
|
|
|
|
|
|
|
|
pgd += pgd_index(addr);
|
|
|
|
if (pgd_none(*pgd)) {
|
|
|
|
/* Not used on MIPS yet */
|
|
|
|
BUG();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
|
|
if (pud_none(*pud)) {
|
|
|
|
pmd_t *new_pmd;
|
|
|
|
|
|
|
|
if (!cache)
|
|
|
|
return NULL;
|
|
|
|
new_pmd = mmu_memory_cache_alloc(cache);
|
|
|
|
pmd_init((unsigned long)new_pmd,
|
|
|
|
(unsigned long)invalid_pte_table);
|
|
|
|
pud_populate(NULL, pud, new_pmd);
|
|
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
if (pmd_none(*pmd)) {
|
|
|
|
pte_t *new_pte;
|
|
|
|
|
|
|
|
if (!cache)
|
|
|
|
return NULL;
|
|
|
|
new_pte = mmu_memory_cache_alloc(cache);
|
|
|
|
clear_page(new_pte);
|
|
|
|
pmd_populate_kernel(NULL, pmd, new_pte);
|
|
|
|
}
|
|
|
|
return pte_offset(pmd, addr);
|
|
|
|
}
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
/* Caller must hold kvm->mm_lock */
|
|
|
|
static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
|
|
|
|
struct kvm_mmu_memory_cache *cache,
|
|
|
|
unsigned long addr)
|
2016-06-09 21:19:10 +08:00
|
|
|
{
|
2015-05-01 20:50:18 +08:00
|
|
|
return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
|
|
|
|
}
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
/*
|
|
|
|
* kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
|
|
|
|
* Flush a range of guest physical address space from the VM's GPA page tables.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
|
|
|
|
unsigned long end_gpa)
|
|
|
|
{
|
|
|
|
int i_min = __pte_offset(start_gpa);
|
|
|
|
int i_max = __pte_offset(end_gpa);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i) {
|
|
|
|
if (!pte_present(pte[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
kvm_release_pfn_clean(pte_pfn(pte[i]));
|
|
|
|
set_pte(pte + i, __pte(0));
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
|
|
|
|
unsigned long end_gpa)
|
|
|
|
{
|
|
|
|
pte_t *pte;
|
|
|
|
unsigned long end = ~0ul;
|
|
|
|
int i_min = __pmd_offset(start_gpa);
|
|
|
|
int i_max = __pmd_offset(end_gpa);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
|
|
if (!pmd_present(pmd[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pte = pte_offset(pmd + i, 0);
|
|
|
|
if (i == i_max)
|
|
|
|
end = end_gpa;
|
|
|
|
|
|
|
|
if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
|
|
|
|
pmd_clear(pmd + i);
|
|
|
|
pte_free_kernel(NULL, pte);
|
|
|
|
} else {
|
|
|
|
safe_to_remove = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
|
|
|
|
unsigned long end_gpa)
|
|
|
|
{
|
|
|
|
pmd_t *pmd;
|
|
|
|
unsigned long end = ~0ul;
|
|
|
|
int i_min = __pud_offset(start_gpa);
|
|
|
|
int i_max = __pud_offset(end_gpa);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
|
|
if (!pud_present(pud[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pmd = pmd_offset(pud + i, 0);
|
|
|
|
if (i == i_max)
|
|
|
|
end = end_gpa;
|
|
|
|
|
|
|
|
if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
|
|
|
|
pud_clear(pud + i);
|
|
|
|
pmd_free(NULL, pmd);
|
|
|
|
} else {
|
|
|
|
safe_to_remove = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
|
|
|
|
unsigned long end_gpa)
|
|
|
|
{
|
|
|
|
pud_t *pud;
|
|
|
|
unsigned long end = ~0ul;
|
|
|
|
int i_min = pgd_index(start_gpa);
|
|
|
|
int i_max = pgd_index(end_gpa);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
|
|
if (!pgd_present(pgd[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pud = pud_offset(pgd + i, 0);
|
|
|
|
if (i == i_max)
|
|
|
|
end = end_gpa;
|
|
|
|
|
|
|
|
if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
|
|
|
|
pgd_clear(pgd + i);
|
|
|
|
pud_free(NULL, pud);
|
|
|
|
} else {
|
|
|
|
safe_to_remove = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
|
|
|
|
* @kvm: KVM pointer.
|
|
|
|
* @start_gfn: Guest frame number of first page in GPA range to flush.
|
|
|
|
* @end_gfn: Guest frame number of last page in GPA range to flush.
|
|
|
|
*
|
|
|
|
* Flushes a range of GPA mappings from the GPA page tables.
|
|
|
|
*
|
|
|
|
* The caller must hold the @kvm->mmu_lock spinlock.
|
|
|
|
*
|
|
|
|
* Returns: Whether its safe to remove the top level page directory because
|
|
|
|
* all lower levels have been removed.
|
|
|
|
*/
|
|
|
|
bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
|
|
|
|
{
|
|
|
|
return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
|
|
|
|
start_gfn << PAGE_SHIFT,
|
|
|
|
end_gfn << PAGE_SHIFT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_mips_map_page() - Map a guest physical page.
|
|
|
|
* @vcpu: VCPU pointer.
|
|
|
|
* @gpa: Guest physical address of fault.
|
|
|
|
* @out_entry: New PTE for @gpa (written on success unless NULL).
|
|
|
|
* @out_buddy: New PTE for @gpa's buddy (written on success unless
|
|
|
|
* NULL).
|
|
|
|
*
|
|
|
|
* Handle GPA faults by creating a new GPA mapping (or updating an existing
|
|
|
|
* one).
|
|
|
|
*
|
|
|
|
* This takes care of asking KVM for the corresponding PFN, and creating a
|
|
|
|
* mapping in the GPA page tables. Derived mappings (GVA page tables and TLBs)
|
|
|
|
* must be handled by the caller.
|
|
|
|
*
|
|
|
|
* Returns: 0 on success, in which case the caller may use the @out_entry
|
|
|
|
* and @out_buddy PTEs to update derived mappings and resume guest
|
|
|
|
* execution.
|
|
|
|
* -EFAULT if there is no memory region at @gpa or a write was
|
|
|
|
* attempted to a read-only memory region. This is usually handled
|
|
|
|
* as an MMIO access.
|
|
|
|
*/
|
|
|
|
static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
|
|
|
|
pte_t *out_entry, pte_t *out_buddy)
|
|
|
|
{
|
|
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
|
|
int srcu_idx, err;
|
|
|
|
kvm_pfn_t pfn;
|
|
|
|
pte_t *ptep, entry, old_pte;
|
|
|
|
unsigned long prot_bits;
|
2016-06-09 21:19:10 +08:00
|
|
|
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
2015-05-01 20:50:18 +08:00
|
|
|
|
|
|
|
/* We need a minimum of cached pages ready for page table creation */
|
|
|
|
err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
|
|
KVM_NR_MEM_OBJS);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
2016-06-09 21:19:11 +08:00
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2016-08-19 21:30:29 +08:00
|
|
|
if (is_error_noslot_pfn(pfn)) {
|
2016-06-09 21:19:10 +08:00
|
|
|
kvm_err("Couldn't get pfn for gfn %#llx!\n", gfn);
|
|
|
|
err = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
|
|
|
|
ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
|
|
|
|
|
|
|
|
prot_bits = __READABLE | _PAGE_PRESENT | __WRITEABLE;
|
|
|
|
entry = pfn_pte(pfn, __pgprot(prot_bits));
|
|
|
|
|
|
|
|
old_pte = *ptep;
|
|
|
|
set_pte(ptep, entry);
|
|
|
|
if (pte_present(old_pte))
|
|
|
|
kvm_release_pfn_clean(pte_pfn(old_pte));
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
if (out_entry)
|
|
|
|
*out_entry = *ptep;
|
|
|
|
if (out_buddy)
|
|
|
|
*out_buddy = *ptep_buddy(ptep);
|
|
|
|
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
2016-06-09 21:19:10 +08:00
|
|
|
out:
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2017-01-05 18:44:38 +08:00
|
|
|
static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
|
|
|
|
unsigned long addr)
|
|
|
|
{
|
|
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
|
|
pgd_t *pgdp;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* We need a minimum of cached pages ready for page table creation */
|
|
|
|
ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
|
|
KVM_NR_MEM_OBJS);
|
|
|
|
if (ret)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (KVM_GUEST_KERNEL_MODE(vcpu))
|
|
|
|
pgdp = vcpu->arch.guest_kernel_mm.pgd;
|
|
|
|
else
|
|
|
|
pgdp = vcpu->arch.guest_user_mm.pgd;
|
|
|
|
|
|
|
|
return kvm_mips_walk_pgd(pgdp, memcache, addr);
|
|
|
|
}
|
|
|
|
|
2016-12-16 23:57:00 +08:00
|
|
|
void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
|
|
|
|
bool user)
|
|
|
|
{
|
|
|
|
pgd_t *pgdp;
|
|
|
|
pte_t *ptep;
|
|
|
|
|
|
|
|
addr &= PAGE_MASK << 1;
|
|
|
|
|
|
|
|
pgdp = vcpu->arch.guest_kernel_mm.pgd;
|
|
|
|
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
|
|
|
|
if (ptep) {
|
|
|
|
ptep[0] = pfn_pte(0, __pgprot(0));
|
|
|
|
ptep[1] = pfn_pte(0, __pgprot(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (user) {
|
|
|
|
pgdp = vcpu->arch.guest_user_mm.pgd;
|
|
|
|
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
|
|
|
|
if (ptep) {
|
|
|
|
ptep[0] = pfn_pte(0, __pgprot(0));
|
|
|
|
ptep[1] = pfn_pte(0, __pgprot(0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-12-16 23:57:00 +08:00
|
|
|
/*
|
|
|
|
* kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
|
|
|
|
* Flush a range of guest physical address space from the VM's GPA page tables.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
|
|
|
|
unsigned long end_gva)
|
|
|
|
{
|
|
|
|
int i_min = __pte_offset(start_gva);
|
|
|
|
int i_max = __pte_offset(end_gva);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There's no freeing to do, so there's no point clearing individual
|
|
|
|
* entries unless only part of the last level page table needs flushing.
|
|
|
|
*/
|
|
|
|
if (safe_to_remove)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i) {
|
|
|
|
if (!pte_present(pte[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
set_pte(pte + i, __pte(0));
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
|
|
|
|
unsigned long end_gva)
|
|
|
|
{
|
|
|
|
pte_t *pte;
|
|
|
|
unsigned long end = ~0ul;
|
|
|
|
int i_min = __pmd_offset(start_gva);
|
|
|
|
int i_max = __pmd_offset(end_gva);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
|
|
if (!pmd_present(pmd[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pte = pte_offset(pmd + i, 0);
|
|
|
|
if (i == i_max)
|
|
|
|
end = end_gva;
|
|
|
|
|
|
|
|
if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
|
|
|
|
pmd_clear(pmd + i);
|
|
|
|
pte_free_kernel(NULL, pte);
|
|
|
|
} else {
|
|
|
|
safe_to_remove = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
|
|
|
|
unsigned long end_gva)
|
|
|
|
{
|
|
|
|
pmd_t *pmd;
|
|
|
|
unsigned long end = ~0ul;
|
|
|
|
int i_min = __pud_offset(start_gva);
|
|
|
|
int i_max = __pud_offset(end_gva);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
|
|
if (!pud_present(pud[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pmd = pmd_offset(pud + i, 0);
|
|
|
|
if (i == i_max)
|
|
|
|
end = end_gva;
|
|
|
|
|
|
|
|
if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
|
|
|
|
pud_clear(pud + i);
|
|
|
|
pmd_free(NULL, pmd);
|
|
|
|
} else {
|
|
|
|
safe_to_remove = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
|
|
|
|
unsigned long end_gva)
|
|
|
|
{
|
|
|
|
pud_t *pud;
|
|
|
|
unsigned long end = ~0ul;
|
|
|
|
int i_min = pgd_index(start_gva);
|
|
|
|
int i_max = pgd_index(end_gva);
|
|
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
|
|
if (!pgd_present(pgd[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pud = pud_offset(pgd + i, 0);
|
|
|
|
if (i == i_max)
|
|
|
|
end = end_gva;
|
|
|
|
|
|
|
|
if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
|
|
|
|
pgd_clear(pgd + i);
|
|
|
|
pud_free(NULL, pud);
|
|
|
|
} else {
|
|
|
|
safe_to_remove = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return safe_to_remove;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
|
|
|
|
{
|
|
|
|
if (flags & KMF_GPA) {
|
|
|
|
/* all of guest virtual address space could be affected */
|
|
|
|
if (flags & KMF_KERN)
|
|
|
|
/* useg, kseg0, seg2/3 */
|
|
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
|
|
|
|
else
|
|
|
|
/* useg */
|
|
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
|
|
|
|
} else {
|
|
|
|
/* useg */
|
|
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
|
|
|
|
|
|
|
|
/* kseg2/3 */
|
|
|
|
if (flags & KMF_KERN)
|
|
|
|
kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-09 21:19:10 +08:00
|
|
|
/* XXXKYMA: Must be called with interrupts disabled */
|
|
|
|
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
|
|
|
|
struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2015-05-01 20:50:18 +08:00
|
|
|
unsigned long gpa;
|
2016-06-09 21:19:10 +08:00
|
|
|
kvm_pfn_t pfn0, pfn1;
|
2015-05-01 20:50:18 +08:00
|
|
|
unsigned long vaddr;
|
|
|
|
pte_t pte_gpa[2], *ptep_gva;
|
2016-06-09 21:19:10 +08:00
|
|
|
|
|
|
|
if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
|
|
|
|
kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
|
|
|
|
kvm_mips_dump_host_tlbs();
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2017-01-05 18:44:38 +08:00
|
|
|
/* Find host PFNs */
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
gpa = KVM_GUEST_CPHYSADDR(badvaddr & (PAGE_MASK << 1));
|
2016-06-09 21:19:10 +08:00
|
|
|
vaddr = badvaddr & (PAGE_MASK << 1);
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
if (kvm_mips_map_page(vcpu, gpa, &pte_gpa[0], NULL) < 0)
|
2016-06-09 21:19:10 +08:00
|
|
|
return -1;
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
if (kvm_mips_map_page(vcpu, gpa | PAGE_SIZE, &pte_gpa[1], NULL) < 0)
|
2016-06-09 21:19:10 +08:00
|
|
|
return -1;
|
|
|
|
|
2015-05-01 20:50:18 +08:00
|
|
|
pfn0 = pte_pfn(pte_gpa[0]);
|
|
|
|
pfn1 = pte_pfn(pte_gpa[1]);
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2017-01-05 18:44:38 +08:00
|
|
|
/* Find GVA page table entry */
|
|
|
|
|
|
|
|
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, vaddr);
|
|
|
|
if (!ptep_gva) {
|
|
|
|
kvm_err("No ptep for gva %lx\n", vaddr);
|
|
|
|
return -1;
|
|
|
|
}
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2017-01-05 18:44:38 +08:00
|
|
|
/* Write host PFNs into GVA page table */
|
|
|
|
ptep_gva[0] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn0, PAGE_SHARED)));
|
|
|
|
ptep_gva[1] = pte_mkyoung(pte_mkdirty(pfn_pte(pfn1, PAGE_SHARED)));
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2017-01-05 18:44:38 +08:00
|
|
|
/* Invalidate this entry in the TLB, guest kernel ASID only */
|
|
|
|
kvm_mips_host_tlb_inv(vcpu, vaddr, false, true);
|
|
|
|
return 0;
|
2016-06-09 21:19:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
|
2016-10-08 08:15:19 +08:00
|
|
|
struct kvm_mips_tlb *tlb,
|
|
|
|
unsigned long gva)
|
2016-06-09 21:19:10 +08:00
|
|
|
{
|
2016-10-08 08:15:19 +08:00
|
|
|
kvm_pfn_t pfn;
|
|
|
|
long tlb_lo = 0;
|
2015-05-01 20:50:18 +08:00
|
|
|
pte_t pte_gpa, *ptep_gva;
|
2016-10-08 08:15:19 +08:00
|
|
|
unsigned int idx;
|
|
|
|
bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
|
2016-08-11 18:58:12 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The commpage address must not be mapped to anything else if the guest
|
|
|
|
* TLB contains entries nearby, or commpage accesses will break.
|
|
|
|
*/
|
2016-10-08 08:15:19 +08:00
|
|
|
idx = TLB_LO_IDX(*tlb, gva);
|
|
|
|
if ((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & PAGE_MASK)
|
|
|
|
tlb_lo = tlb->tlb_lo[idx];
|
|
|
|
|
|
|
|
/* Find host PFN */
|
2015-05-01 20:50:18 +08:00
|
|
|
if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo), &pte_gpa,
|
|
|
|
NULL) < 0)
|
2016-08-11 18:58:12 +08:00
|
|
|
return -1;
|
2015-05-01 20:50:18 +08:00
|
|
|
pfn = pte_pfn(pte_gpa);
|
2016-08-11 18:58:12 +08:00
|
|
|
|
2016-10-08 08:15:19 +08:00
|
|
|
/* Find GVA page table entry */
|
|
|
|
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva);
|
|
|
|
if (!ptep_gva) {
|
|
|
|
kvm_err("No ptep for gva %lx\n", gva);
|
2016-08-11 18:58:12 +08:00
|
|
|
return -1;
|
2016-10-08 08:15:19 +08:00
|
|
|
}
|
2016-08-11 18:58:12 +08:00
|
|
|
|
2016-10-08 08:15:19 +08:00
|
|
|
/* Write PFN into GVA page table, taking attributes from Guest TLB */
|
|
|
|
*ptep_gva = pfn_pte(pfn, (!(tlb_lo & ENTRYLO_V)) ? __pgprot(0) :
|
|
|
|
(tlb_lo & ENTRYLO_D) ? PAGE_SHARED :
|
|
|
|
PAGE_READONLY);
|
|
|
|
if (pte_present(*ptep_gva))
|
|
|
|
*ptep_gva = pte_mkyoung(pte_mkdirty(*ptep_gva));
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2016-10-08 08:15:19 +08:00
|
|
|
/* Invalidate this entry in the TLB, current guest mode ASID only */
|
|
|
|
kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
|
2016-06-09 21:19:10 +08:00
|
|
|
|
|
|
|
kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
|
2016-06-09 21:19:17 +08:00
|
|
|
tlb->tlb_lo[0], tlb->tlb_lo[1]);
|
2016-06-09 21:19:10 +08:00
|
|
|
|
2016-10-08 08:15:19 +08:00
|
|
|
return 0;
|
2016-06-09 21:19:10 +08:00
|
|
|
}
|
|
|
|
|
2016-10-08 08:16:21 +08:00
|
|
|
int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
|
|
|
|
struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
kvm_pfn_t pfn;
|
|
|
|
pte_t *ptep;
|
|
|
|
|
|
|
|
ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
|
|
|
|
if (!ptep) {
|
|
|
|
kvm_err("No ptep for commpage %lx\n", badvaddr);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
|
|
|
|
/* Also set valid and dirty, so refill handler doesn't have to */
|
|
|
|
*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
|
|
|
|
|
|
|
|
/* Invalidate this entry in the TLB, guest kernel ASID only */
|
|
|
|
kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-06-09 21:19:10 +08:00
|
|
|
/**
|
|
|
|
* kvm_mips_migrate_count() - Migrate timer.
|
|
|
|
* @vcpu: Virtual CPU.
|
|
|
|
*
|
|
|
|
* Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
|
|
|
|
* if it was running prior to being cancelled.
|
|
|
|
*
|
|
|
|
* Must be called when the VCPU is migrated to a different CPU to ensure that
|
|
|
|
* timer expiry during guest execution interrupts the guest and causes the
|
|
|
|
* interrupt to be delivered in a timely manner.
|
|
|
|
*/
|
|
|
|
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
|
|
|
|
hrtimer_restart(&vcpu->arch.comparecount_timer);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Restore ASID once we are scheduled back after preemption */
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
2016-11-29 06:45:04 +08:00
|
|
|
vcpu->cpu = cpu;
|
2016-06-09 21:19:10 +08:00
|
|
|
if (vcpu->arch.last_sched_cpu != cpu) {
|
|
|
|
kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
|
|
|
|
vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
|
|
|
|
/*
|
|
|
|
* Migrate the timer interrupt to the current CPU so that it
|
|
|
|
* always interrupts the guest and synchronously triggers a
|
|
|
|
* guest timer interrupt.
|
|
|
|
*/
|
|
|
|
kvm_mips_migrate_count(vcpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* restore guest state to registers */
|
2016-11-12 08:00:13 +08:00
|
|
|
kvm_mips_callbacks->vcpu_load(vcpu, cpu);
|
2016-06-09 21:19:10 +08:00
|
|
|
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ASID can change if another task is scheduled during preemption */
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
vcpu->arch.last_sched_cpu = cpu;
|
2016-11-29 06:45:04 +08:00
|
|
|
vcpu->cpu = -1;
|
2016-06-09 21:19:10 +08:00
|
|
|
|
|
|
|
/* save guest state in registers */
|
2016-11-12 08:00:13 +08:00
|
|
|
kvm_mips_callbacks->vcpu_put(vcpu, cpu);
|
2016-06-09 21:19:10 +08:00
|
|
|
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
2016-11-29 07:04:52 +08:00
|
|
|
/**
|
|
|
|
* kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
|
|
|
|
* @vcpu: Virtual CPU.
|
|
|
|
* @gva: Guest virtual address to be accessed.
|
|
|
|
* @write: True if write attempted (must be dirtied and made writable).
|
|
|
|
*
|
|
|
|
* Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
|
|
|
|
* dirtying the page if @write so that guest instructions can be modified.
|
|
|
|
*
|
|
|
|
* Returns: KVM_MIPS_MAPPED on success.
|
|
|
|
* KVM_MIPS_GVA if bad guest virtual address.
|
|
|
|
* KVM_MIPS_GPA if bad guest physical address.
|
|
|
|
* KVM_MIPS_TLB if guest TLB not present.
|
|
|
|
* KVM_MIPS_TLBINV if guest TLB present but not valid.
|
|
|
|
* KVM_MIPS_TLBMOD if guest TLB read only.
|
|
|
|
*/
|
|
|
|
enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
|
|
|
|
unsigned long gva,
|
|
|
|
bool write)
|
|
|
|
{
|
|
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
struct kvm_mips_tlb *tlb;
|
|
|
|
int index;
|
|
|
|
|
|
|
|
if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
|
|
|
|
if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu) < 0)
|
|
|
|
return KVM_MIPS_GPA;
|
|
|
|
} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
|
|
|
|
KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
|
|
|
|
/* Address should be in the guest TLB */
|
|
|
|
index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
|
|
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
|
|
|
|
if (index < 0)
|
|
|
|
return KVM_MIPS_TLB;
|
|
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
|
|
|
|
/* Entry should be valid, and dirty for writes */
|
|
|
|
if (!TLB_IS_VALID(*tlb, gva))
|
|
|
|
return KVM_MIPS_TLBINV;
|
|
|
|
if (write && !TLB_IS_DIRTY(*tlb, gva))
|
|
|
|
return KVM_MIPS_TLBMOD;
|
|
|
|
|
|
|
|
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva))
|
|
|
|
return KVM_MIPS_GPA;
|
|
|
|
} else {
|
|
|
|
return KVM_MIPS_GVA;
|
|
|
|
}
|
|
|
|
|
|
|
|
return KVM_MIPS_MAPPED;
|
|
|
|
}
|
|
|
|
|
2016-11-29 01:23:14 +08:00
|
|
|
int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
2016-06-09 21:19:10 +08:00
|
|
|
{
|
2016-08-19 22:27:22 +08:00
|
|
|
int err;
|
|
|
|
|
2016-11-29 01:23:14 +08:00
|
|
|
err = get_user(*out, opc);
|
2016-08-19 22:27:22 +08:00
|
|
|
if (unlikely(err)) {
|
2016-06-09 21:19:10 +08:00
|
|
|
kvm_err("%s: illegal address: %p\n", __func__, opc);
|
2016-11-29 01:23:14 +08:00
|
|
|
return -EFAULT;
|
2016-06-09 21:19:10 +08:00
|
|
|
}
|
|
|
|
|
2016-11-29 01:23:14 +08:00
|
|
|
return 0;
|
2016-06-09 21:19:10 +08:00
|
|
|
}
|