2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/drivers/thermal/x86_pkg_temp_thermal.c

652 lines
16 KiB
C
Raw Normal View History

/*
* x86_pkg_temp_thermal driver
* Copyright (c) 2013, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/param.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/thermal.h>
#include <linux/debugfs.h>
#include <asm/cpu_device_id.h>
#include <asm/mce.h>
/*
* Rate control delay: Idea is to introduce denounce effect
* This should be long enough to avoid reduce events, when
* threshold is set to a temperature, which is constantly
* violated, but at the short enough to take any action.
* The action can be remove threshold or change it to next
* interesting setting. Based on experiments, in around
* every 5 seconds under load will give us a significant
* temperature change.
*/
#define PKG_TEMP_THERMAL_NOTIFY_DELAY 5000
static int notify_delay_ms = PKG_TEMP_THERMAL_NOTIFY_DELAY;
module_param(notify_delay_ms, int, 0644);
MODULE_PARM_DESC(notify_delay_ms,
"User space notification delay in milli seconds.");
/* Number of trip points in thermal zone. Currently it can't
* be more than 2. MSR can allow setting and getting notifications
* for only 2 thresholds. This define enforces this, if there
* is some wrong values returned by cpuid for number of thresholds.
*/
#define MAX_NUMBER_OF_TRIPS 2
/* Limit number of package temp zones */
#define MAX_PKG_TEMP_ZONE_IDS 256
struct phy_dev_entry {
struct list_head list;
u16 phys_proc_id;
u16 first_cpu;
u32 tj_max;
int ref_cnt;
u32 start_pkg_therm_low;
u32 start_pkg_therm_high;
struct thermal_zone_device *tzone;
};
static const struct thermal_zone_params pkg_temp_tz_params = {
.no_hwmon = true,
};
/* List maintaining number of package instances */
static LIST_HEAD(phy_dev_list);
static DEFINE_MUTEX(phy_dev_list_mutex);
/* Interrupt to work function schedule queue */
static DEFINE_PER_CPU(struct delayed_work, pkg_temp_thermal_threshold_work);
/* To track if the work is already scheduled on a package */
static u8 *pkg_work_scheduled;
/* Spin lock to prevent races with pkg_work_scheduled */
static spinlock_t pkg_work_lock;
static u16 max_phy_id;
/* Debug counters to show using debugfs */
static struct dentry *debugfs;
static unsigned int pkg_interrupt_cnt;
static unsigned int pkg_work_cnt;
static int pkg_temp_debugfs_init(void)
{
struct dentry *d;
debugfs = debugfs_create_dir("pkg_temp_thermal", NULL);
if (!debugfs)
return -ENOENT;
d = debugfs_create_u32("pkg_thres_interrupt", S_IRUGO, debugfs,
(u32 *)&pkg_interrupt_cnt);
if (!d)
goto err_out;
d = debugfs_create_u32("pkg_thres_work", S_IRUGO, debugfs,
(u32 *)&pkg_work_cnt);
if (!d)
goto err_out;
return 0;
err_out:
debugfs_remove_recursive(debugfs);
return -ENOENT;
}
static struct phy_dev_entry
*pkg_temp_thermal_get_phy_entry(unsigned int cpu)
{
u16 phys_proc_id = topology_physical_package_id(cpu);
struct phy_dev_entry *phy_ptr;
mutex_lock(&phy_dev_list_mutex);
list_for_each_entry(phy_ptr, &phy_dev_list, list)
if (phy_ptr->phys_proc_id == phys_proc_id) {
mutex_unlock(&phy_dev_list_mutex);
return phy_ptr;
}
mutex_unlock(&phy_dev_list_mutex);
return NULL;
}
/*
* tj-max is is interesting because threshold is set relative to this
* temperature.
*/
static int get_tj_max(int cpu, u32 *tj_max)
{
u32 eax, edx;
u32 val;
int err;
err = rdmsr_safe_on_cpu(cpu, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
if (err)
goto err_ret;
else {
val = (eax >> 16) & 0xff;
if (val)
*tj_max = val * 1000;
else {
err = -EINVAL;
goto err_ret;
}
}
return 0;
err_ret:
*tj_max = 0;
return err;
}
static int sys_get_curr_temp(struct thermal_zone_device *tzd, unsigned long *temp)
{
u32 eax, edx;
struct phy_dev_entry *phy_dev_entry;
phy_dev_entry = tzd->devdata;
rdmsr_on_cpu(phy_dev_entry->first_cpu, MSR_IA32_PACKAGE_THERM_STATUS,
&eax, &edx);
if (eax & 0x80000000) {
*temp = phy_dev_entry->tj_max -
((eax >> 16) & 0x7f) * 1000;
pr_debug("sys_get_curr_temp %ld\n", *temp);
return 0;
}
return -EINVAL;
}
static int sys_get_trip_temp(struct thermal_zone_device *tzd,
int trip, unsigned long *temp)
{
u32 eax, edx;
struct phy_dev_entry *phy_dev_entry;
u32 mask, shift;
unsigned long thres_reg_value;
int ret;
if (trip >= MAX_NUMBER_OF_TRIPS)
return -EINVAL;
phy_dev_entry = tzd->devdata;
if (trip) {
mask = THERM_MASK_THRESHOLD1;
shift = THERM_SHIFT_THRESHOLD1;
} else {
mask = THERM_MASK_THRESHOLD0;
shift = THERM_SHIFT_THRESHOLD0;
}
ret = rdmsr_on_cpu(phy_dev_entry->first_cpu,
MSR_IA32_PACKAGE_THERM_INTERRUPT, &eax, &edx);
if (ret < 0)
return -EINVAL;
thres_reg_value = (eax & mask) >> shift;
if (thres_reg_value)
*temp = phy_dev_entry->tj_max - thres_reg_value * 1000;
else
*temp = 0;
pr_debug("sys_get_trip_temp %ld\n", *temp);
return 0;
}
static int sys_set_trip_temp(struct thermal_zone_device *tzd, int trip,
unsigned long temp)
{
u32 l, h;
struct phy_dev_entry *phy_dev_entry;
u32 mask, shift, intr;
int ret;
phy_dev_entry = tzd->devdata;
if (trip >= MAX_NUMBER_OF_TRIPS || temp >= phy_dev_entry->tj_max)
return -EINVAL;
ret = rdmsr_on_cpu(phy_dev_entry->first_cpu,
MSR_IA32_PACKAGE_THERM_INTERRUPT,
&l, &h);
if (ret < 0)
return -EINVAL;
if (trip) {
mask = THERM_MASK_THRESHOLD1;
shift = THERM_SHIFT_THRESHOLD1;
intr = THERM_INT_THRESHOLD1_ENABLE;
} else {
mask = THERM_MASK_THRESHOLD0;
shift = THERM_SHIFT_THRESHOLD0;
intr = THERM_INT_THRESHOLD0_ENABLE;
}
l &= ~mask;
/*
* When users space sets a trip temperature == 0, which is indication
* that, it is no longer interested in receiving notifications.
*/
if (!temp)
l &= ~intr;
else {
l |= (phy_dev_entry->tj_max - temp)/1000 << shift;
l |= intr;
}
return wrmsr_on_cpu(phy_dev_entry->first_cpu,
MSR_IA32_PACKAGE_THERM_INTERRUPT,
l, h);
}
static int sys_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
*type = THERMAL_TRIP_PASSIVE;
return 0;
}
/* Thermal zone callback registry */
static struct thermal_zone_device_ops tzone_ops = {
.get_temp = sys_get_curr_temp,
.get_trip_temp = sys_get_trip_temp,
.get_trip_type = sys_get_trip_type,
.set_trip_temp = sys_set_trip_temp,
};
static bool pkg_temp_thermal_platform_thermal_rate_control(void)
{
return true;
}
/* Enable threshold interrupt on local package/cpu */
static inline void enable_pkg_thres_interrupt(void)
{
u32 l, h;
u8 thres_0, thres_1;
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
/* only enable/disable if it had valid threshold value */
thres_0 = (l & THERM_MASK_THRESHOLD0) >> THERM_SHIFT_THRESHOLD0;
thres_1 = (l & THERM_MASK_THRESHOLD1) >> THERM_SHIFT_THRESHOLD1;
if (thres_0)
l |= THERM_INT_THRESHOLD0_ENABLE;
if (thres_1)
l |= THERM_INT_THRESHOLD1_ENABLE;
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* Disable threshold interrupt on local package/cpu */
static inline void disable_pkg_thres_interrupt(void)
{
u32 l, h;
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
l & (~THERM_INT_THRESHOLD0_ENABLE) &
(~THERM_INT_THRESHOLD1_ENABLE), h);
}
static void pkg_temp_thermal_threshold_work_fn(struct work_struct *work)
{
__u64 msr_val;
int cpu = smp_processor_id();
int phy_id = topology_physical_package_id(cpu);
struct phy_dev_entry *phdev = pkg_temp_thermal_get_phy_entry(cpu);
bool notify = false;
unsigned long flags;
if (!phdev)
return;
spin_lock_irqsave(&pkg_work_lock, flags);
++pkg_work_cnt;
if (unlikely(phy_id > max_phy_id)) {
spin_unlock_irqrestore(&pkg_work_lock, flags);
return;
}
pkg_work_scheduled[phy_id] = 0;
spin_unlock_irqrestore(&pkg_work_lock, flags);
enable_pkg_thres_interrupt();
rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
if (msr_val & THERM_LOG_THRESHOLD0) {
wrmsrl(MSR_IA32_PACKAGE_THERM_STATUS,
msr_val & ~THERM_LOG_THRESHOLD0);
notify = true;
}
if (msr_val & THERM_LOG_THRESHOLD1) {
wrmsrl(MSR_IA32_PACKAGE_THERM_STATUS,
msr_val & ~THERM_LOG_THRESHOLD1);
notify = true;
}
if (notify) {
pr_debug("thermal_zone_device_update\n");
thermal_zone_device_update(phdev->tzone);
}
}
static int pkg_temp_thermal_platform_thermal_notify(__u64 msr_val)
{
unsigned long flags;
int cpu = smp_processor_id();
int phy_id = topology_physical_package_id(cpu);
/*
* When a package is in interrupted state, all CPU's in that package
* are in the same interrupt state. So scheduling on any one CPU in
* the package is enough and simply return for others.
*/
spin_lock_irqsave(&pkg_work_lock, flags);
++pkg_interrupt_cnt;
if (unlikely(phy_id > max_phy_id) || unlikely(!pkg_work_scheduled) ||
pkg_work_scheduled[phy_id]) {
disable_pkg_thres_interrupt();
spin_unlock_irqrestore(&pkg_work_lock, flags);
return -EINVAL;
}
pkg_work_scheduled[phy_id] = 1;
spin_unlock_irqrestore(&pkg_work_lock, flags);
disable_pkg_thres_interrupt();
schedule_delayed_work_on(cpu,
&per_cpu(pkg_temp_thermal_threshold_work, cpu),
msecs_to_jiffies(notify_delay_ms));
return 0;
}
static int find_siblings_cpu(int cpu)
{
int i;
int id = topology_physical_package_id(cpu);
for_each_online_cpu(i)
if (i != cpu && topology_physical_package_id(i) == id)
return i;
return 0;
}
static int pkg_temp_thermal_device_add(unsigned int cpu)
{
int err;
u32 tj_max;
struct phy_dev_entry *phy_dev_entry;
int thres_count;
u32 eax, ebx, ecx, edx;
u8 *temp;
unsigned long flags;
cpuid(6, &eax, &ebx, &ecx, &edx);
thres_count = ebx & 0x07;
if (!thres_count)
return -ENODEV;
if (topology_physical_package_id(cpu) > MAX_PKG_TEMP_ZONE_IDS)
return -ENODEV;
thres_count = clamp_val(thres_count, 0, MAX_NUMBER_OF_TRIPS);
err = get_tj_max(cpu, &tj_max);
if (err)
goto err_ret;
mutex_lock(&phy_dev_list_mutex);
phy_dev_entry = kzalloc(sizeof(*phy_dev_entry), GFP_KERNEL);
if (!phy_dev_entry) {
err = -ENOMEM;
goto err_ret_unlock;
}
spin_lock_irqsave(&pkg_work_lock, flags);
if (topology_physical_package_id(cpu) > max_phy_id)
max_phy_id = topology_physical_package_id(cpu);
temp = krealloc(pkg_work_scheduled,
(max_phy_id+1) * sizeof(u8), GFP_ATOMIC);
if (!temp) {
spin_unlock_irqrestore(&pkg_work_lock, flags);
err = -ENOMEM;
goto err_ret_free;
}
pkg_work_scheduled = temp;
pkg_work_scheduled[topology_physical_package_id(cpu)] = 0;
spin_unlock_irqrestore(&pkg_work_lock, flags);
phy_dev_entry->phys_proc_id = topology_physical_package_id(cpu);
phy_dev_entry->first_cpu = cpu;
phy_dev_entry->tj_max = tj_max;
phy_dev_entry->ref_cnt = 1;
phy_dev_entry->tzone = thermal_zone_device_register("x86_pkg_temp",
thres_count,
(thres_count == MAX_NUMBER_OF_TRIPS) ?
0x03 : 0x01,
phy_dev_entry, &tzone_ops, &pkg_temp_tz_params, 0, 0);
if (IS_ERR(phy_dev_entry->tzone)) {
err = PTR_ERR(phy_dev_entry->tzone);
goto err_ret_free;
}
/* Store MSR value for package thermal interrupt, to restore at exit */
rdmsr_on_cpu(cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT,
&phy_dev_entry->start_pkg_therm_low,
&phy_dev_entry->start_pkg_therm_high);
list_add_tail(&phy_dev_entry->list, &phy_dev_list);
pr_debug("pkg_temp_thermal_device_add :phy_id %d cpu %d\n",
phy_dev_entry->phys_proc_id, cpu);
mutex_unlock(&phy_dev_list_mutex);
return 0;
err_ret_free:
kfree(phy_dev_entry);
err_ret_unlock:
mutex_unlock(&phy_dev_list_mutex);
err_ret:
return err;
}
static int pkg_temp_thermal_device_remove(unsigned int cpu)
{
struct phy_dev_entry *n;
u16 phys_proc_id = topology_physical_package_id(cpu);
struct phy_dev_entry *phdev =
pkg_temp_thermal_get_phy_entry(cpu);
if (!phdev)
return -ENODEV;
mutex_lock(&phy_dev_list_mutex);
/* If we are loosing the first cpu for this package, we need change */
if (phdev->first_cpu == cpu) {
phdev->first_cpu = find_siblings_cpu(cpu);
pr_debug("thermal_device_remove: first cpu switched %d\n",
phdev->first_cpu);
}
/*
* It is possible that no siblings left as this was the last cpu
* going offline. We don't need to worry about this assignment
* as the phydev entry will be removed in this case and
* thermal zone is removed.
*/
--phdev->ref_cnt;
pr_debug("thermal_device_remove: pkg: %d cpu %d ref_cnt %d\n",
phys_proc_id, cpu, phdev->ref_cnt);
if (!phdev->ref_cnt)
list_for_each_entry_safe(phdev, n, &phy_dev_list, list) {
if (phdev->phys_proc_id == phys_proc_id) {
thermal_zone_device_unregister(phdev->tzone);
list_del(&phdev->list);
kfree(phdev);
break;
}
}
mutex_unlock(&phy_dev_list_mutex);
return 0;
}
static int get_core_online(unsigned int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct phy_dev_entry *phdev = pkg_temp_thermal_get_phy_entry(cpu);
/* Check if there is already an instance for this package */
if (!phdev) {
if (!cpu_has(c, X86_FEATURE_DTHERM) ||
!cpu_has(c, X86_FEATURE_PTS))
return -ENODEV;
if (pkg_temp_thermal_device_add(cpu))
return -ENODEV;
} else {
mutex_lock(&phy_dev_list_mutex);
++phdev->ref_cnt;
pr_debug("get_core_online: cpu %d ref_cnt %d\n",
cpu, phdev->ref_cnt);
mutex_unlock(&phy_dev_list_mutex);
}
INIT_DELAYED_WORK(&per_cpu(pkg_temp_thermal_threshold_work, cpu),
pkg_temp_thermal_threshold_work_fn);
pr_debug("get_core_online: cpu %d successful\n", cpu);
return 0;
}
static void put_core_offline(unsigned int cpu)
{
if (!pkg_temp_thermal_device_remove(cpu))
cancel_delayed_work_sync(
&per_cpu(pkg_temp_thermal_threshold_work, cpu));
pr_debug("put_core_offline: cpu %d\n", cpu);
}
static int pkg_temp_thermal_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long) hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_DOWN_FAILED:
get_core_online(cpu);
break;
case CPU_DOWN_PREPARE:
put_core_offline(cpu);
break;
}
return NOTIFY_OK;
}
static struct notifier_block pkg_temp_thermal_notifier __refdata = {
.notifier_call = pkg_temp_thermal_cpu_callback,
};
static const struct x86_cpu_id __initconst pkg_temp_thermal_ids[] = {
{ X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_PTS },
{}
};
MODULE_DEVICE_TABLE(x86cpu, pkg_temp_thermal_ids);
static int __init pkg_temp_thermal_init(void)
{
int i;
if (!x86_match_cpu(pkg_temp_thermal_ids))
return -ENODEV;
spin_lock_init(&pkg_work_lock);
platform_thermal_package_notify =
pkg_temp_thermal_platform_thermal_notify;
platform_thermal_package_rate_control =
pkg_temp_thermal_platform_thermal_rate_control;
cpu_notifier_register_begin();
for_each_online_cpu(i)
if (get_core_online(i))
goto err_ret;
__register_hotcpu_notifier(&pkg_temp_thermal_notifier);
cpu_notifier_register_done();
pkg_temp_debugfs_init(); /* Don't care if fails */
return 0;
err_ret:
for_each_online_cpu(i)
put_core_offline(i);
cpu_notifier_register_done();
kfree(pkg_work_scheduled);
platform_thermal_package_notify = NULL;
platform_thermal_package_rate_control = NULL;
return -ENODEV;
}
static void __exit pkg_temp_thermal_exit(void)
{
struct phy_dev_entry *phdev, *n;
int i;
cpu_notifier_register_begin();
__unregister_hotcpu_notifier(&pkg_temp_thermal_notifier);
mutex_lock(&phy_dev_list_mutex);
list_for_each_entry_safe(phdev, n, &phy_dev_list, list) {
/* Retore old MSR value for package thermal interrupt */
wrmsr_on_cpu(phdev->first_cpu,
MSR_IA32_PACKAGE_THERM_INTERRUPT,
phdev->start_pkg_therm_low,
phdev->start_pkg_therm_high);
thermal_zone_device_unregister(phdev->tzone);
list_del(&phdev->list);
kfree(phdev);
}
mutex_unlock(&phy_dev_list_mutex);
platform_thermal_package_notify = NULL;
platform_thermal_package_rate_control = NULL;
for_each_online_cpu(i)
cancel_delayed_work_sync(
&per_cpu(pkg_temp_thermal_threshold_work, i));
cpu_notifier_register_done();
kfree(pkg_work_scheduled);
debugfs_remove_recursive(debugfs);
}
module_init(pkg_temp_thermal_init)
module_exit(pkg_temp_thermal_exit)
MODULE_DESCRIPTION("X86 PKG TEMP Thermal Driver");
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");