2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 18:54:10 +08:00
linux-next/drivers/acpi/power.c

861 lines
22 KiB
C
Raw Normal View History

/*
* acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
/*
* ACPI power-managed devices may be controlled in two ways:
* 1. via "Device Specific (D-State) Control"
* 2. via "Power Resource Control".
* This module is used to manage devices relying on Power Resource Control.
*
* An ACPI "power resource object" describes a software controllable power
* plane, clock plane, or other resource used by a power managed device.
* A device may rely on multiple power resources, and a power resource
* may be shared by multiple devices.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/sysfs.h>
ACPI: Clean up inclusions of ACPI header files Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h> inclusions and remove some inclusions of those files that aren't necessary. First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h> should not be included directly from any files that are built for CONFIG_ACPI unset, because that generally leads to build warnings about undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set, <linux/acpi.h> includes those files and for CONFIG_ACPI unset it provides stub ACPI symbols to be used in that case. Second, there are ordering dependencies between those files that always have to be met. Namely, it is required that <acpi/acpi_bus.h> be included prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the latter depends on are always there. And <acpi/acpi.h> which provides basic ACPICA type declarations should always be included prior to any other ACPI headers in CONFIG_ACPI builds. That also is taken care of including <linux/acpi.h> as appropriate. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff) Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-12-03 08:49:16 +08:00
#include <linux/acpi.h>
#include "sleep.h"
#include "internal.h"
#define PREFIX "ACPI: "
#define _COMPONENT ACPI_POWER_COMPONENT
ACPI_MODULE_NAME("power");
#define ACPI_POWER_CLASS "power_resource"
#define ACPI_POWER_DEVICE_NAME "Power Resource"
#define ACPI_POWER_FILE_INFO "info"
#define ACPI_POWER_FILE_STATUS "state"
#define ACPI_POWER_RESOURCE_STATE_OFF 0x00
#define ACPI_POWER_RESOURCE_STATE_ON 0x01
#define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
struct acpi_power_resource {
struct acpi_device device;
struct list_head list_node;
char *name;
u32 system_level;
u32 order;
unsigned int ref_count;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
bool wakeup_enabled;
struct mutex resource_lock;
};
struct acpi_power_resource_entry {
struct list_head node;
struct acpi_power_resource *resource;
};
static LIST_HEAD(acpi_power_resource_list);
static DEFINE_MUTEX(power_resource_list_lock);
/* --------------------------------------------------------------------------
Power Resource Management
-------------------------------------------------------------------------- */
static inline
struct acpi_power_resource *to_power_resource(struct acpi_device *device)
{
return container_of(device, struct acpi_power_resource, device);
}
static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
{
struct acpi_device *device;
if (acpi_bus_get_device(handle, &device))
return NULL;
return to_power_resource(device);
}
static int acpi_power_resources_list_add(acpi_handle handle,
struct list_head *list)
{
struct acpi_power_resource *resource = acpi_power_get_context(handle);
struct acpi_power_resource_entry *entry;
if (!resource || !list)
return -EINVAL;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->resource = resource;
if (!list_empty(list)) {
struct acpi_power_resource_entry *e;
list_for_each_entry(e, list, node)
if (e->resource->order > resource->order) {
list_add_tail(&entry->node, &e->node);
return 0;
}
}
list_add_tail(&entry->node, list);
return 0;
}
void acpi_power_resources_list_free(struct list_head *list)
{
struct acpi_power_resource_entry *entry, *e;
list_for_each_entry_safe(entry, e, list, node) {
list_del(&entry->node);
kfree(entry);
}
}
int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
struct list_head *list)
{
unsigned int i;
int err = 0;
for (i = start; i < package->package.count; i++) {
union acpi_object *element = &package->package.elements[i];
acpi_handle rhandle;
if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
err = -ENODATA;
break;
}
rhandle = element->reference.handle;
if (!rhandle) {
err = -ENODEV;
break;
}
err = acpi_add_power_resource(rhandle);
if (err)
break;
err = acpi_power_resources_list_add(rhandle, list);
if (err)
break;
}
if (err)
acpi_power_resources_list_free(list);
return err;
}
static int acpi_power_get_state(acpi_handle handle, int *state)
{
acpi_status status = AE_OK;
unsigned long long sta = 0;
char node_name[5];
struct acpi_buffer buffer = { sizeof(node_name), node_name };
if (!handle || !state)
return -EINVAL;
status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
if (ACPI_FAILURE(status))
return -ENODEV;
*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
ACPI_POWER_RESOURCE_STATE_OFF;
acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
node_name,
*state ? "on" : "off"));
return 0;
}
static int acpi_power_get_list_state(struct list_head *list, int *state)
{
struct acpi_power_resource_entry *entry;
int cur_state;
if (!list || !state)
return -EINVAL;
/* The state of the list is 'on' IFF all resources are 'on'. */
list_for_each_entry(entry, list, node) {
struct acpi_power_resource *resource = entry->resource;
acpi_handle handle = resource->device.handle;
int result;
mutex_lock(&resource->resource_lock);
result = acpi_power_get_state(handle, &cur_state);
mutex_unlock(&resource->resource_lock);
if (result)
return result;
if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
break;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
cur_state ? "on" : "off"));
*state = cur_state;
return 0;
}
static int __acpi_power_on(struct acpi_power_resource *resource)
{
acpi_status status = AE_OK;
status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
if (ACPI_FAILURE(status))
return -ENODEV;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
resource->name));
return 0;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
{
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
int result = 0;
if (resource->ref_count++) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Power resource [%s] already on\n",
resource->name));
} else {
result = __acpi_power_on(resource);
ACPI / power: Drop automaitc resume of power resource dependent devices The mechanism causing devices depending on a given power resource (that is, devices that can be in D0 only if that power resource is on) to be resumed automatically when the power resource is turned on (and their "inferred" power state becomes D0 as a result) is inherently racy and in fact unnecessary. It is racy, because if the power resource is turned on and then immediately off, the device resume triggered by the first transition to "on" may still happen, causing the power resource to be turned on again. That again will trigger the "resume of dependent devices" mechanism, but if the devices in question are not in use, they will be suspended in the meantime causing the power resource to be turned off. However, the "resume of dependent devices" will next resume them again and so on. In some cases (USB port PM in particular) that leads to an endless busy loop of flipping the resource on and off continuously. It is needless, because whoever turns a power resource on will most likely turn it off at some point and the devices that go into "D0" as a result of turning it on will then go back into D3cold (generally, the state they were in before). Moreover, turning on all power resources a device needs to go into D0 is not sufficient for a full transition into D0 in general. Namely, _PS0 may need to be executed in addition to that in some cases. This means that the whole rationale of the "resume of dependent devices" mechanism was incorrect to begin with and it's best to remove it entirely. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 05:05:42 +08:00
if (result)
resource->ref_count--;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
return result;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_on(struct acpi_power_resource *resource)
{
int result;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_lock(&resource->resource_lock);
result = acpi_power_on_unlocked(resource);
mutex_unlock(&resource->resource_lock);
return result;
}
static int __acpi_power_off(struct acpi_power_resource *resource)
{
acpi_status status;
status = acpi_evaluate_object(resource->device.handle, "_OFF",
NULL, NULL);
if (ACPI_FAILURE(status))
return -ENODEV;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
resource->name));
return 0;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
{
int result = 0;
if (!resource->ref_count) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Power resource [%s] already off\n",
resource->name));
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
return 0;
}
if (--resource->ref_count) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Power resource [%s] still in use\n",
resource->name));
} else {
result = __acpi_power_off(resource);
if (result)
resource->ref_count++;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
return result;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_off(struct acpi_power_resource *resource)
{
int result;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_lock(&resource->resource_lock);
result = acpi_power_off_unlocked(resource);
mutex_unlock(&resource->resource_lock);
return result;
}
static int acpi_power_off_list(struct list_head *list)
{
struct acpi_power_resource_entry *entry;
int result = 0;
list_for_each_entry_reverse(entry, list, node) {
result = acpi_power_off(entry->resource);
if (result)
goto err;
}
return 0;
err:
list_for_each_entry_continue(entry, list, node)
acpi_power_on(entry->resource);
return result;
}
static int acpi_power_on_list(struct list_head *list)
{
struct acpi_power_resource_entry *entry;
int result = 0;
list_for_each_entry(entry, list, node) {
result = acpi_power_on(entry->resource);
if (result)
goto err;
}
return 0;
err:
list_for_each_entry_continue_reverse(entry, list, node)
acpi_power_off(entry->resource);
return result;
}
static struct attribute *attrs[] = {
NULL,
};
static struct attribute_group attr_groups[] = {
[ACPI_STATE_D0] = {
.name = "power_resources_D0",
.attrs = attrs,
},
[ACPI_STATE_D1] = {
.name = "power_resources_D1",
.attrs = attrs,
},
[ACPI_STATE_D2] = {
.name = "power_resources_D2",
.attrs = attrs,
},
[ACPI_STATE_D3_HOT] = {
.name = "power_resources_D3hot",
.attrs = attrs,
},
};
static struct attribute_group wakeup_attr_group = {
.name = "power_resources_wakeup",
.attrs = attrs,
};
static void acpi_power_hide_list(struct acpi_device *adev,
struct list_head *resources,
struct attribute_group *attr_group)
{
struct acpi_power_resource_entry *entry;
if (list_empty(resources))
return;
list_for_each_entry_reverse(entry, resources, node) {
struct acpi_device *res_dev = &entry->resource->device;
sysfs_remove_link_from_group(&adev->dev.kobj,
attr_group->name,
dev_name(&res_dev->dev));
}
sysfs_remove_group(&adev->dev.kobj, attr_group);
}
static void acpi_power_expose_list(struct acpi_device *adev,
struct list_head *resources,
struct attribute_group *attr_group)
{
struct acpi_power_resource_entry *entry;
int ret;
if (list_empty(resources))
return;
ret = sysfs_create_group(&adev->dev.kobj, attr_group);
if (ret)
return;
list_for_each_entry(entry, resources, node) {
struct acpi_device *res_dev = &entry->resource->device;
ret = sysfs_add_link_to_group(&adev->dev.kobj,
attr_group->name,
&res_dev->dev.kobj,
dev_name(&res_dev->dev));
if (ret) {
acpi_power_hide_list(adev, resources, attr_group);
break;
}
}
}
static void acpi_power_expose_hide(struct acpi_device *adev,
struct list_head *resources,
struct attribute_group *attr_group,
bool expose)
{
if (expose)
acpi_power_expose_list(adev, resources, attr_group);
else
acpi_power_hide_list(adev, resources, attr_group);
}
void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
{
int state;
if (adev->wakeup.flags.valid)
acpi_power_expose_hide(adev, &adev->wakeup.resources,
&wakeup_attr_group, add);
if (!adev->power.flags.power_resources)
return;
for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
acpi_power_expose_hide(adev,
&adev->power.states[state].resources,
&attr_groups[state], add);
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
{
struct acpi_power_resource_entry *entry;
int system_level = 5;
list_for_each_entry(entry, list, node) {
struct acpi_power_resource *resource = entry->resource;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
acpi_handle handle = resource->device.handle;
int result;
int state;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_lock(&resource->resource_lock);
result = acpi_power_get_state(handle, &state);
if (result) {
mutex_unlock(&resource->resource_lock);
return result;
}
if (state == ACPI_POWER_RESOURCE_STATE_ON) {
resource->ref_count++;
resource->wakeup_enabled = true;
}
if (system_level > resource->system_level)
system_level = resource->system_level;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_unlock(&resource->resource_lock);
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
*system_level_p = system_level;
return 0;
}
/* --------------------------------------------------------------------------
Device Power Management
-------------------------------------------------------------------------- */
/**
* acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
* ACPI 3.0) _PSW (Power State Wake)
* @dev: Device to handle.
* @enable: 0 - disable, 1 - enable the wake capabilities of the device.
* @sleep_state: Target sleep state of the system.
* @dev_state: Target power state of the device.
*
* Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
* State Wake) for the device, if present. On failure reset the device's
* wakeup.flags.valid flag.
*
* RETURN VALUE:
* 0 if either _DSW or _PSW has been successfully executed
* 0 if neither _DSW nor _PSW has been found
* -ENODEV if the execution of either _DSW or _PSW has failed
*/
int acpi_device_sleep_wake(struct acpi_device *dev,
int enable, int sleep_state, int dev_state)
{
union acpi_object in_arg[3];
struct acpi_object_list arg_list = { 3, in_arg };
acpi_status status = AE_OK;
/*
* Try to execute _DSW first.
*
* Three agruments are needed for the _DSW object:
* Argument 0: enable/disable the wake capabilities
* Argument 1: target system state
* Argument 2: target device state
* When _DSW object is called to disable the wake capabilities, maybe
* the first argument is filled. The values of the other two agruments
* are meaningless.
*/
in_arg[0].type = ACPI_TYPE_INTEGER;
in_arg[0].integer.value = enable;
in_arg[1].type = ACPI_TYPE_INTEGER;
in_arg[1].integer.value = sleep_state;
in_arg[2].type = ACPI_TYPE_INTEGER;
in_arg[2].integer.value = dev_state;
status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
if (ACPI_SUCCESS(status)) {
return 0;
} else if (status != AE_NOT_FOUND) {
printk(KERN_ERR PREFIX "_DSW execution failed\n");
dev->wakeup.flags.valid = 0;
return -ENODEV;
}
/* Execute _PSW */
status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
printk(KERN_ERR PREFIX "_PSW execution failed\n");
dev->wakeup.flags.valid = 0;
return -ENODEV;
}
return 0;
}
/*
* Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
* 1. Power on the power resources required for the wakeup device
* 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
* State Wake) for the device, if present
*/
int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
{
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
struct acpi_power_resource_entry *entry;
int err = 0;
if (!dev || !dev->wakeup.flags.valid)
return -EINVAL;
mutex_lock(&acpi_device_lock);
if (dev->wakeup.prepare_count++)
goto out;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
list_for_each_entry(entry, &dev->wakeup.resources, node) {
struct acpi_power_resource *resource = entry->resource;
mutex_lock(&resource->resource_lock);
if (!resource->wakeup_enabled) {
err = acpi_power_on_unlocked(resource);
if (!err)
resource->wakeup_enabled = true;
}
mutex_unlock(&resource->resource_lock);
if (err) {
dev_err(&dev->dev,
"Cannot turn wakeup power resources on\n");
dev->wakeup.flags.valid = 0;
goto out;
}
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
/*
* Passing 3 as the third argument below means the device may be
* put into arbitrary power state afterward.
*/
err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
if (err)
dev->wakeup.prepare_count = 0;
out:
mutex_unlock(&acpi_device_lock);
return err;
}
/*
* Shutdown a wakeup device, counterpart of above method
* 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
* State Wake) for the device, if present
* 2. Shutdown down the power resources
*/
int acpi_disable_wakeup_device_power(struct acpi_device *dev)
{
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
struct acpi_power_resource_entry *entry;
int err = 0;
if (!dev || !dev->wakeup.flags.valid)
return -EINVAL;
mutex_lock(&acpi_device_lock);
if (--dev->wakeup.prepare_count > 0)
goto out;
/*
* Executing the code below even if prepare_count is already zero when
* the function is called may be useful, for example for initialisation.
*/
if (dev->wakeup.prepare_count < 0)
dev->wakeup.prepare_count = 0;
err = acpi_device_sleep_wake(dev, 0, 0, 0);
if (err)
goto out;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
list_for_each_entry(entry, &dev->wakeup.resources, node) {
struct acpi_power_resource *resource = entry->resource;
mutex_lock(&resource->resource_lock);
if (resource->wakeup_enabled) {
err = acpi_power_off_unlocked(resource);
if (!err)
resource->wakeup_enabled = false;
}
mutex_unlock(&resource->resource_lock);
if (err) {
dev_err(&dev->dev,
"Cannot turn wakeup power resources off\n");
dev->wakeup.flags.valid = 0;
break;
}
}
out:
mutex_unlock(&acpi_device_lock);
return err;
}
int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
{
int result = 0;
int list_state = 0;
int i = 0;
if (!device || !state)
return -EINVAL;
/*
* We know a device's inferred power state when all the resources
* required for a given D-state are 'on'.
*/
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
struct list_head *list = &device->power.states[i].resources;
if (list_empty(list))
continue;
result = acpi_power_get_list_state(list, &list_state);
if (result)
return result;
if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
*state = i;
return 0;
}
}
*state = ACPI_STATE_D3_COLD;
return 0;
}
int acpi_power_on_resources(struct acpi_device *device, int state)
{
if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
return -EINVAL;
return acpi_power_on_list(&device->power.states[state].resources);
}
int acpi_power_transition(struct acpi_device *device, int state)
{
ACPI / PCI / PM: Fix device PM regression related to D3hot/D3cold Commit 1cc0c998fdf2 ("ACPI: Fix D3hot v D3cold confusion") introduced a bug in __acpi_bus_set_power() and changed the behavior of acpi_pci_set_power_state() in such a way that it generally doesn't work as expected if PCI_D3hot is passed to it as the second argument. First off, if ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) is passed to __acpi_bus_set_power() and the explicit_set flag is set for the D3cold state, the function will try to execute AML method called "_PS4", which doesn't exist. Fix this by adding a check to ensure that the name of the AML method to execute for transitions to ACPI_STATE_D3_COLD is correct in __acpi_bus_set_power(). Also make sure that the explicit_set flag for ACPI_STATE_D3_COLD will be set if _PS3 is present and modify acpi_power_transition() to avoid accessing power resources for ACPI_STATE_D3_COLD, because they don't exist. Second, if PCI_D3hot is passed to acpi_pci_set_power_state() as the target state, the function will request a transition to ACPI_STATE_D3_HOT instead of ACPI_STATE_D3. However, ACPI_STATE_D3_HOT is now only marked as supported if the _PR3 AML method is defined for the given device, which is rare. This causes problems to happen on systems where devices were successfully put into ACPI D3 by pci_set_power_state(PCI_D3hot) which doesn't work now. In particular, some unused graphics adapters are not turned off as a result. To fix this issue restore the old behavior of acpi_pci_set_power_state(), which is to request a transition to ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) if either PCI_D3hot or PCI_D3cold is passed to it as the argument. This approach is not ideal, because generally power should not be removed from devices if PCI_D3hot is the target power state, but since this behavior is relied on, we have no choice but to restore it at the moment and spend more time on designing a better solution in the future. References: https://bugzilla.kernel.org/show_bug.cgi?id=43228 Reported-by: rocko <rockorequin@hotmail.com> Reported-by: Cristian Rodríguez <crrodriguez@opensuse.org> Reported-and-tested-by: Peter <lekensteyn@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-18 06:39:35 +08:00
int result = 0;
if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
return -EINVAL;
if (device->power.state == state || !device->flags.power_manageable)
return 0;
if ((device->power.state < ACPI_STATE_D0)
|| (device->power.state > ACPI_STATE_D3_COLD))
return -ENODEV;
/* TBD: Resources must be ordered. */
/*
* First we reference all power resources required in the target list
* (e.g. so the device doesn't lose power while transitioning). Then,
* we dereference all power resources used in the current list.
*/
ACPI / PCI / PM: Fix device PM regression related to D3hot/D3cold Commit 1cc0c998fdf2 ("ACPI: Fix D3hot v D3cold confusion") introduced a bug in __acpi_bus_set_power() and changed the behavior of acpi_pci_set_power_state() in such a way that it generally doesn't work as expected if PCI_D3hot is passed to it as the second argument. First off, if ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) is passed to __acpi_bus_set_power() and the explicit_set flag is set for the D3cold state, the function will try to execute AML method called "_PS4", which doesn't exist. Fix this by adding a check to ensure that the name of the AML method to execute for transitions to ACPI_STATE_D3_COLD is correct in __acpi_bus_set_power(). Also make sure that the explicit_set flag for ACPI_STATE_D3_COLD will be set if _PS3 is present and modify acpi_power_transition() to avoid accessing power resources for ACPI_STATE_D3_COLD, because they don't exist. Second, if PCI_D3hot is passed to acpi_pci_set_power_state() as the target state, the function will request a transition to ACPI_STATE_D3_HOT instead of ACPI_STATE_D3. However, ACPI_STATE_D3_HOT is now only marked as supported if the _PR3 AML method is defined for the given device, which is rare. This causes problems to happen on systems where devices were successfully put into ACPI D3 by pci_set_power_state(PCI_D3hot) which doesn't work now. In particular, some unused graphics adapters are not turned off as a result. To fix this issue restore the old behavior of acpi_pci_set_power_state(), which is to request a transition to ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) if either PCI_D3hot or PCI_D3cold is passed to it as the argument. This approach is not ideal, because generally power should not be removed from devices if PCI_D3hot is the target power state, but since this behavior is relied on, we have no choice but to restore it at the moment and spend more time on designing a better solution in the future. References: https://bugzilla.kernel.org/show_bug.cgi?id=43228 Reported-by: rocko <rockorequin@hotmail.com> Reported-by: Cristian Rodríguez <crrodriguez@opensuse.org> Reported-and-tested-by: Peter <lekensteyn@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-18 06:39:35 +08:00
if (state < ACPI_STATE_D3_COLD)
result = acpi_power_on_list(
&device->power.states[state].resources);
if (!result && device->power.state < ACPI_STATE_D3_COLD)
acpi_power_off_list(
&device->power.states[device->power.state].resources);
/* We shouldn't change the state unless the above operations succeed. */
device->power.state = result ? ACPI_STATE_UNKNOWN : state;
return result;
}
static void acpi_release_power_resource(struct device *dev)
{
struct acpi_device *device = to_acpi_device(dev);
struct acpi_power_resource *resource;
resource = container_of(device, struct acpi_power_resource, device);
mutex_lock(&power_resource_list_lock);
list_del(&resource->list_node);
mutex_unlock(&power_resource_list_lock);
acpi_free_pnp_ids(&device->pnp);
kfree(resource);
}
static ssize_t acpi_power_in_use_show(struct device *dev,
struct device_attribute *attr,
char *buf) {
struct acpi_power_resource *resource;
resource = to_power_resource(to_acpi_device(dev));
return sprintf(buf, "%u\n", !!resource->ref_count);
}
static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
static void acpi_power_sysfs_remove(struct acpi_device *device)
{
device_remove_file(&device->dev, &dev_attr_resource_in_use);
}
int acpi_add_power_resource(acpi_handle handle)
{
struct acpi_power_resource *resource;
struct acpi_device *device = NULL;
union acpi_object acpi_object;
struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
acpi_status status;
int state, result = -ENODEV;
acpi_bus_get_device(handle, &device);
if (device)
return 0;
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
if (!resource)
return -ENOMEM;
device = &resource->device;
acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
ACPI_STA_DEFAULT);
mutex_init(&resource->resource_lock);
INIT_LIST_HEAD(&resource->list_node);
resource->name = device->pnp.bus_id;
strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
device->power.state = ACPI_STATE_UNKNOWN;
/* Evalute the object to get the system level and resource order. */
status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
if (ACPI_FAILURE(status))
goto err;
resource->system_level = acpi_object.power_resource.system_level;
resource->order = acpi_object.power_resource.resource_order;
result = acpi_power_get_state(handle, &state);
if (result)
goto err;
printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
acpi_device_bid(device), state ? "on" : "off");
device->flags.match_driver = true;
result = acpi_device_add(device, acpi_release_power_resource);
if (result)
goto err;
if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
device->remove = acpi_power_sysfs_remove;
mutex_lock(&power_resource_list_lock);
list_add(&resource->list_node, &acpi_power_resource_list);
mutex_unlock(&power_resource_list_lock);
acpi_device_add_finalize(device);
return 0;
err:
acpi_release_power_resource(&device->dev);
return result;
}
#ifdef CONFIG_ACPI_SLEEP
void acpi_resume_power_resources(void)
{
struct acpi_power_resource *resource;
mutex_lock(&power_resource_list_lock);
list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
int result, state;
mutex_lock(&resource->resource_lock);
result = acpi_power_get_state(resource->device.handle, &state);
if (result) {
mutex_unlock(&resource->resource_lock);
continue;
}
if (state == ACPI_POWER_RESOURCE_STATE_OFF
&& resource->ref_count) {
dev_info(&resource->device.dev, "Turning ON\n");
__acpi_power_on(resource);
} else if (state == ACPI_POWER_RESOURCE_STATE_ON
&& !resource->ref_count) {
dev_info(&resource->device.dev, "Turning OFF\n");
__acpi_power_off(resource);
}
mutex_unlock(&resource->resource_lock);
}
mutex_unlock(&power_resource_list_lock);
}
#endif