2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-14 08:34:02 +08:00
linux-next/drivers/block/zram/Kconfig

40 lines
1.4 KiB
Plaintext
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
config ZRAM
tristate "Compressed RAM block device support"
zram: switch to crypto compress API We don't have an idle zstreams list anymore and our write path now works absolutely differently, preventing preemption during compression. This removes possibilities of read paths preempting writes at wrong places (which could badly affect the performance of both paths) and at the same time opens the door for a move from custom LZO/LZ4 compression backends implementation to a more generic one, using crypto compress API. Joonsoo Kim [1] attempted to do this a while ago, but faced with the need of introducing a new crypto API interface. The root cause was the fact that crypto API compression algorithms require a compression stream structure (in zram terminology) for both compression and decompression ops, while in reality only several of compression algorithms really need it. This resulted in a concept of context-less crypto API compression backends [2]. Both write and read paths, though, would have been executed with the preemption enabled, which in the worst case could have resulted in a decreased worst-case performance, e.g. consider the following case: CPU0 zram_write() spin_lock() take the last idle stream spin_unlock() << preempted >> zram_read() spin_lock() no idle streams spin_unlock() schedule() resuming zram_write compression() but it took me some time to realize that, and it took even longer to evolve zram and to make it ready for crypto API. The key turned out to be -- drop the idle streams list entirely. Without the idle streams list we are free to use compression algorithms that require compression stream for decompression (read), because streams are now placed in per-cpu data and each write path has to disable preemption for compression op, almost completely eliminating the aforementioned case (technically, we still have a small chance, because write path has a fast and a slow paths and the slow path is executed with the preemption enabled; but the frequency of failed fast path is too low). TEST ==== - 4 CPUs, x86_64 system - 3G zram, lzo - fio tests: read, randread, write, randwrite, rw, randrw test script [3] command: ZRAM_SIZE=3G LOG_SUFFIX=XXXX FIO_LOOPS=5 ./zram-fio-test.sh BASE PATCHED jobs1 READ: 2527.2MB/s 2482.7MB/s READ: 2102.7MB/s 2045.0MB/s WRITE: 1284.3MB/s 1324.3MB/s WRITE: 1080.7MB/s 1101.9MB/s READ: 430125KB/s 437498KB/s WRITE: 430538KB/s 437919KB/s READ: 399593KB/s 403987KB/s WRITE: 399910KB/s 404308KB/s jobs2 READ: 8133.5MB/s 7854.8MB/s READ: 7086.6MB/s 6912.8MB/s WRITE: 3177.2MB/s 3298.3MB/s WRITE: 2810.2MB/s 2871.4MB/s READ: 1017.6MB/s 1023.4MB/s WRITE: 1018.2MB/s 1023.1MB/s READ: 977836KB/s 984205KB/s WRITE: 979435KB/s 985814KB/s jobs3 READ: 13557MB/s 13391MB/s READ: 11876MB/s 11752MB/s WRITE: 4641.5MB/s 4682.1MB/s WRITE: 4164.9MB/s 4179.3MB/s READ: 1453.8MB/s 1455.1MB/s WRITE: 1455.1MB/s 1458.2MB/s READ: 1387.7MB/s 1395.7MB/s WRITE: 1386.1MB/s 1394.9MB/s jobs4 READ: 20271MB/s 20078MB/s READ: 18033MB/s 17928MB/s WRITE: 6176.8MB/s 6180.5MB/s WRITE: 5686.3MB/s 5705.3MB/s READ: 2009.4MB/s 2006.7MB/s WRITE: 2007.5MB/s 2004.9MB/s READ: 1929.7MB/s 1935.6MB/s WRITE: 1926.8MB/s 1932.6MB/s jobs5 READ: 18823MB/s 19024MB/s READ: 18968MB/s 19071MB/s WRITE: 6191.6MB/s 6372.1MB/s WRITE: 5818.7MB/s 5787.1MB/s READ: 2011.7MB/s 1981.3MB/s WRITE: 2011.4MB/s 1980.1MB/s READ: 1949.3MB/s 1935.7MB/s WRITE: 1940.4MB/s 1926.1MB/s jobs6 READ: 21870MB/s 21715MB/s READ: 19957MB/s 19879MB/s WRITE: 6528.4MB/s 6537.6MB/s WRITE: 6098.9MB/s 6073.6MB/s READ: 2048.6MB/s 2049.9MB/s WRITE: 2041.7MB/s 2042.9MB/s READ: 2013.4MB/s 1990.4MB/s WRITE: 2009.4MB/s 1986.5MB/s jobs7 READ: 21359MB/s 21124MB/s READ: 19746MB/s 19293MB/s WRITE: 6660.4MB/s 6518.8MB/s WRITE: 6211.6MB/s 6193.1MB/s READ: 2089.7MB/s 2080.6MB/s WRITE: 2085.8MB/s 2076.5MB/s READ: 2041.2MB/s 2052.5MB/s WRITE: 2037.5MB/s 2048.8MB/s jobs8 READ: 20477MB/s 19974MB/s READ: 18922MB/s 18576MB/s WRITE: 6851.9MB/s 6788.3MB/s WRITE: 6407.7MB/s 6347.5MB/s READ: 2134.8MB/s 2136.1MB/s WRITE: 2132.8MB/s 2134.4MB/s READ: 2074.2MB/s 2069.6MB/s WRITE: 2087.3MB/s 2082.4MB/s jobs9 READ: 19797MB/s 19994MB/s READ: 18806MB/s 18581MB/s WRITE: 6878.7MB/s 6822.7MB/s WRITE: 6456.8MB/s 6447.2MB/s READ: 2141.1MB/s 2154.7MB/s WRITE: 2144.4MB/s 2157.3MB/s READ: 2084.1MB/s 2085.1MB/s WRITE: 2091.5MB/s 2092.5MB/s jobs10 READ: 19794MB/s 19784MB/s READ: 18794MB/s 18745MB/s WRITE: 6984.4MB/s 6676.3MB/s WRITE: 6532.3MB/s 6342.7MB/s READ: 2150.6MB/s 2155.4MB/s WRITE: 2156.8MB/s 2161.5MB/s READ: 2106.4MB/s 2095.6MB/s WRITE: 2109.7MB/s 2098.4MB/s BASE PATCHED jobs1 perfstat stalled-cycles-frontend 102,480,595,419 ( 41.53%) 114,508,864,804 ( 46.92%) stalled-cycles-backend 51,941,417,832 ( 21.05%) 46,836,112,388 ( 19.19%) instructions 283,612,054,215 ( 1.15) 283,918,134,959 ( 1.16) branches 56,372,560,385 ( 724.923) 56,449,814,753 ( 733.766) branch-misses 374,826,000 ( 0.66%) 326,935,859 ( 0.58%) jobs2 perfstat stalled-cycles-frontend 155,142,745,777 ( 40.99%) 164,170,979,198 ( 43.82%) stalled-cycles-backend 70,813,866,387 ( 18.71%) 66,456,858,165 ( 17.74%) instructions 463,436,648,173 ( 1.22) 464,221,890,191 ( 1.24) branches 91,088,733,902 ( 760.088) 91,278,144,546 ( 769.133) branch-misses 504,460,363 ( 0.55%) 394,033,842 ( 0.43%) jobs3 perfstat stalled-cycles-frontend 201,300,397,212 ( 39.84%) 223,969,902,257 ( 44.44%) stalled-cycles-backend 87,712,593,974 ( 17.36%) 81,618,888,712 ( 16.19%) instructions 642,869,545,023 ( 1.27) 644,677,354,132 ( 1.28) branches 125,724,560,594 ( 690.682) 126,133,159,521 ( 694.542) branch-misses 527,941,798 ( 0.42%) 444,782,220 ( 0.35%) jobs4 perfstat stalled-cycles-frontend 246,701,197,429 ( 38.12%) 280,076,030,886 ( 43.29%) stalled-cycles-backend 119,050,341,112 ( 18.40%) 110,955,641,671 ( 17.15%) instructions 822,716,962,127 ( 1.27) 825,536,969,320 ( 1.28) branches 160,590,028,545 ( 688.614) 161,152,996,915 ( 691.068) branch-misses 650,295,287 ( 0.40%) 550,229,113 ( 0.34%) jobs5 perfstat stalled-cycles-frontend 298,958,462,516 ( 38.30%) 344,852,200,358 ( 44.16%) stalled-cycles-backend 137,558,742,122 ( 17.62%) 129,465,067,102 ( 16.58%) instructions 1,005,714,688,752 ( 1.29) 1,007,657,999,432 ( 1.29) branches 195,988,773,962 ( 697.730) 196,446,873,984 ( 700.319) branch-misses 695,818,940 ( 0.36%) 624,823,263 ( 0.32%) jobs6 perfstat stalled-cycles-frontend 334,497,602,856 ( 36.71%) 387,590,419,779 ( 42.38%) stalled-cycles-backend 163,539,365,335 ( 17.95%) 152,640,193,639 ( 16.69%) instructions 1,184,738,177,851 ( 1.30) 1,187,396,281,677 ( 1.30) branches 230,592,915,640 ( 702.902) 231,253,802,882 ( 702.356) branch-misses 747,934,786 ( 0.32%) 643,902,424 ( 0.28%) jobs7 perfstat stalled-cycles-frontend 396,724,684,187 ( 37.71%) 460,705,858,952 ( 43.84%) stalled-cycles-backend 188,096,616,496 ( 17.88%) 175,785,787,036 ( 16.73%) instructions 1,364,041,136,608 ( 1.30) 1,366,689,075,112 ( 1.30) branches 265,253,096,936 ( 700.078) 265,890,524,883 ( 702.839) branch-misses 784,991,589 ( 0.30%) 729,196,689 ( 0.27%) jobs8 perfstat stalled-cycles-frontend 440,248,299,870 ( 36.92%) 509,554,793,816 ( 42.46%) stalled-cycles-backend 222,575,930,616 ( 18.67%) 213,401,248,432 ( 17.78%) instructions 1,542,262,045,114 ( 1.29) 1,545,233,932,257 ( 1.29) branches 299,775,178,439 ( 697.666) 300,528,458,505 ( 694.769) branch-misses 847,496,084 ( 0.28%) 748,794,308 ( 0.25%) jobs9 perfstat stalled-cycles-frontend 506,269,882,480 ( 37.86%) 592,798,032,820 ( 44.43%) stalled-cycles-backend 253,192,498,861 ( 18.93%) 233,727,666,185 ( 17.52%) instructions 1,721,985,080,913 ( 1.29) 1,724,666,236,005 ( 1.29) branches 334,517,360,255 ( 694.134) 335,199,758,164 ( 697.131) branch-misses 873,496,730 ( 0.26%) 815,379,236 ( 0.24%) jobs10 perfstat stalled-cycles-frontend 549,063,363,749 ( 37.18%) 651,302,376,662 ( 43.61%) stalled-cycles-backend 281,680,986,810 ( 19.07%) 277,005,235,582 ( 18.55%) instructions 1,901,859,271,180 ( 1.29) 1,906,311,064,230 ( 1.28) branches 369,398,536,153 ( 694.004) 370,527,696,358 ( 688.409) branch-misses 967,929,335 ( 0.26%) 890,125,056 ( 0.24%) BASE PATCHED seconds elapsed 79.421641008 78.735285546 seconds elapsed 61.471246133 60.869085949 seconds elapsed 62.317058173 62.224188495 seconds elapsed 60.030739363 60.081102518 seconds elapsed 74.070398362 74.317582865 seconds elapsed 84.985953007 85.414364176 seconds elapsed 97.724553255 98.173311344 seconds elapsed 109.488066758 110.268399318 seconds elapsed 122.768189405 122.967164498 seconds elapsed 135.130035105 136.934770801 On my other system (8 x86_64 CPUs, short version of test results): BASE PATCHED seconds elapsed 19.518065994 19.806320662 seconds elapsed 15.172772749 15.594718291 seconds elapsed 13.820925970 13.821708564 seconds elapsed 13.293097816 14.585206405 seconds elapsed 16.207284118 16.064431606 seconds elapsed 17.958376158 17.771825767 seconds elapsed 19.478009164 19.602961508 seconds elapsed 21.347152811 21.352318709 seconds elapsed 24.478121126 24.171088735 seconds elapsed 26.865057442 26.767327618 So performance-wise the numbers are quite similar. Also update zcomp interface to be more aligned with the crypto API. [1] http://marc.info/?l=linux-kernel&m=144480832108927&w=2 [2] http://marc.info/?l=linux-kernel&m=145379613507518&w=2 [3] https://github.com/sergey-senozhatsky/zram-perf-test Link: http://lkml.kernel.org/r/20160531122017.2878-3-sergey.senozhatsky@gmail.com Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Suggested-by: Minchan Kim <minchan@kernel.org> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 06:22:45 +08:00
depends on BLOCK && SYSFS && ZSMALLOC && CRYPTO
select CRYPTO_LZO
help
Creates virtual block devices called /dev/zramX (X = 0, 1, ...).
Pages written to these disks are compressed and stored in memory
itself. These disks allow very fast I/O and compression provides
good amounts of memory savings.
It has several use cases, for example: /tmp storage, use as swap
disks and maybe many more.
zram: introduce zram memory tracking zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. Better idea is app developers free them directly rather than remaining them on heap. This patch tell us last access time of each block of zram via "cat /sys/kernel/debug/zram/zram0/block_state". The output is as follows, 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. Admin can leverage this information to catch cold|incompressible pages of process with *pagemap* once part of heaps are swapped out. I used the feature a few years ago to find memory hoggers in userspace to notify them what memory they have wasted without touch for a long time. With it, they could reduce unnecessary memory space. However, at that time, I hacked up zram for the feature but now I need the feature again so I decided it would be better to upstream rather than keeping it alone. I hope I submit the userspace tool to use the feature soon. [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: use ktime_get_boottime() instead of sched_clock()] Link: http://lkml.kernel.org/r/20180420063525.GA253739@rodete-desktop-imager.corp.google.com [akpm@linux-foundation.org: documentation tweak] [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: fix compile warning] Link: http://lkml.kernel.org/r/20180508104849.GA8209@rodete-desktop-imager.corp.google.com [rdunlap@infradead.org: fix printk formats] Link: http://lkml.kernel.org/r/3652ccb1-96ef-0b0b-05d1-f661d7733dcc@infradead.org Link: http://lkml.kernel.org/r/20180416090946.63057-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:05:49 +08:00
See Documentation/blockdev/zram.txt for more information.
config ZRAM_WRITEBACK
zram: support idle/huge page writeback Add a new feature "zram idle/huge page writeback". In the zram-swap use case, zram usually has many idle/huge swap pages. It's pointless to keep them in memory (ie, zram). To solve this problem, this feature introduces idle/huge page writeback to the backing device so the goal is to save more memory space on embedded systems. Normal sequence to use idle/huge page writeback feature is as follows, while (1) { # mark allocated zram slot to idle echo all > /sys/block/zram0/idle # leave system working for several hours # Unless there is no access for some blocks on zram, # they are still IDLE marked pages. echo "idle" > /sys/block/zram0/writeback or/and echo "huge" > /sys/block/zram0/writeback # write the IDLE or/and huge marked slot into backing device # and free the memory. } Per the discussion at https://lore.kernel.org/lkml/20181122065926.GG3441@jagdpanzerIV/T/#u, This patch removes direct incommpressibe page writeback feature (d2afd25114f4 ("zram: write incompressible pages to backing device")). Below concerns from Sergey: == &< == "IDLE writeback" is superior to "incompressible writeback". "incompressible writeback" is completely unpredictable and uncontrollable; it depens on data patterns and compression algorithms. While "IDLE writeback" is predictable. I even suspect, that, *ideally*, we can remove "incompressible writeback". "IDLE pages" is a super set which also includes "incompressible" pages. So, technically, we still can do "incompressible writeback" from "IDLE writeback" path; but a much more reasonable one, based on a page idling period. I understand that you want to keep "direct incompressible writeback" around. ZRAM is especially popular on devices which do suffer from flash wearout, so I can see "incompressible writeback" path becoming a dead code, long term. == &< == Below concerns from Minchan: == &< == My concern is if we enable CONFIG_ZRAM_WRITEBACK in this implementation, both hugepage/idlepage writeck will turn on. However someuser want to enable only idlepage writeback so we need to introduce turn on/off knob for hugepage or new CONFIG_ZRAM_IDLEPAGE_WRITEBACK for those usecase. I don't want to make it complicated *if possible*. Long term, I imagine we need to make VM aware of new swap hierarchy a little bit different with as-is. For example, first high priority swap can return -EIO or -ENOCOMP, swap try to fallback to next lower priority swap device. With that, hugepage writeback will work tranparently. So we could regard it as regression because incompressible pages doesn't go to backing storage automatically. Instead, user should do it via "echo huge" > /sys/block/zram/writeback" manually. == &< == Link: http://lkml.kernel.org/r/20181127055429.251614-6-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:36:47 +08:00
bool "Write back incompressible or idle page to backing device"
depends on ZRAM
help
With incompressible page, there is no memory saving to keep it
in memory. Instead, write it out to backing device.
For this feature, admin should set up backing device via
/sys/block/zramX/backing_dev.
zram: support idle/huge page writeback Add a new feature "zram idle/huge page writeback". In the zram-swap use case, zram usually has many idle/huge swap pages. It's pointless to keep them in memory (ie, zram). To solve this problem, this feature introduces idle/huge page writeback to the backing device so the goal is to save more memory space on embedded systems. Normal sequence to use idle/huge page writeback feature is as follows, while (1) { # mark allocated zram slot to idle echo all > /sys/block/zram0/idle # leave system working for several hours # Unless there is no access for some blocks on zram, # they are still IDLE marked pages. echo "idle" > /sys/block/zram0/writeback or/and echo "huge" > /sys/block/zram0/writeback # write the IDLE or/and huge marked slot into backing device # and free the memory. } Per the discussion at https://lore.kernel.org/lkml/20181122065926.GG3441@jagdpanzerIV/T/#u, This patch removes direct incommpressibe page writeback feature (d2afd25114f4 ("zram: write incompressible pages to backing device")). Below concerns from Sergey: == &< == "IDLE writeback" is superior to "incompressible writeback". "incompressible writeback" is completely unpredictable and uncontrollable; it depens on data patterns and compression algorithms. While "IDLE writeback" is predictable. I even suspect, that, *ideally*, we can remove "incompressible writeback". "IDLE pages" is a super set which also includes "incompressible" pages. So, technically, we still can do "incompressible writeback" from "IDLE writeback" path; but a much more reasonable one, based on a page idling period. I understand that you want to keep "direct incompressible writeback" around. ZRAM is especially popular on devices which do suffer from flash wearout, so I can see "incompressible writeback" path becoming a dead code, long term. == &< == Below concerns from Minchan: == &< == My concern is if we enable CONFIG_ZRAM_WRITEBACK in this implementation, both hugepage/idlepage writeck will turn on. However someuser want to enable only idlepage writeback so we need to introduce turn on/off knob for hugepage or new CONFIG_ZRAM_IDLEPAGE_WRITEBACK for those usecase. I don't want to make it complicated *if possible*. Long term, I imagine we need to make VM aware of new swap hierarchy a little bit different with as-is. For example, first high priority swap can return -EIO or -ENOCOMP, swap try to fallback to next lower priority swap device. With that, hugepage writeback will work tranparently. So we could regard it as regression because incompressible pages doesn't go to backing storage automatically. Instead, user should do it via "echo huge" > /sys/block/zram/writeback" manually. == &< == Link: http://lkml.kernel.org/r/20181127055429.251614-6-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:36:47 +08:00
With /sys/block/zramX/{idle,writeback}, application could ask
idle page's writeback to the backing device to save in memory.
zram: introduce zram memory tracking zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. Better idea is app developers free them directly rather than remaining them on heap. This patch tell us last access time of each block of zram via "cat /sys/kernel/debug/zram/zram0/block_state". The output is as follows, 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. Admin can leverage this information to catch cold|incompressible pages of process with *pagemap* once part of heaps are swapped out. I used the feature a few years ago to find memory hoggers in userspace to notify them what memory they have wasted without touch for a long time. With it, they could reduce unnecessary memory space. However, at that time, I hacked up zram for the feature but now I need the feature again so I decided it would be better to upstream rather than keeping it alone. I hope I submit the userspace tool to use the feature soon. [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: use ktime_get_boottime() instead of sched_clock()] Link: http://lkml.kernel.org/r/20180420063525.GA253739@rodete-desktop-imager.corp.google.com [akpm@linux-foundation.org: documentation tweak] [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: fix compile warning] Link: http://lkml.kernel.org/r/20180508104849.GA8209@rodete-desktop-imager.corp.google.com [rdunlap@infradead.org: fix printk formats] Link: http://lkml.kernel.org/r/3652ccb1-96ef-0b0b-05d1-f661d7733dcc@infradead.org Link: http://lkml.kernel.org/r/20180416090946.63057-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 08:05:49 +08:00
See Documentation/blockdev/zram.txt for more information.
config ZRAM_MEMORY_TRACKING
bool "Track zRam block status"
depends on ZRAM && DEBUG_FS
help
With this feature, admin can track the state of allocated blocks
of zRAM. Admin could see the information via
/sys/kernel/debug/zram/zramX/block_state.
See Documentation/blockdev/zram.txt for more information.