2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/arch/x86/include/asm/thread_info.h

245 lines
7.7 KiB
C
Raw Normal View History

/* thread_info.h: low-level thread information
*
* Copyright (C) 2002 David Howells (dhowells@redhat.com)
* - Incorporating suggestions made by Linus Torvalds and Dave Miller
*/
#ifndef _ASM_X86_THREAD_INFO_H
#define _ASM_X86_THREAD_INFO_H
#include <linux/compiler.h>
#include <asm/page.h>
#include <asm/percpu.h>
#include <asm/types.h>
/*
* TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we
* reserve at the top of the kernel stack. We do it because of a nasty
* 32-bit corner case. On x86_32, the hardware stack frame is
* variable-length. Except for vm86 mode, struct pt_regs assumes a
* maximum-length frame. If we enter from CPL 0, the top 8 bytes of
* pt_regs don't actually exist. Ordinarily this doesn't matter, but it
* does in at least one case:
*
* If we take an NMI early enough in SYSENTER, then we can end up with
* pt_regs that extends above sp0. On the way out, in the espfix code,
* we can read the saved SS value, but that value will be above sp0.
* Without this offset, that can result in a page fault. (We are
* careful that, in this case, the value we read doesn't matter.)
*
* In vm86 mode, the hardware frame is much longer still, so add 16
* bytes to make room for the real-mode segments.
*
* x86_64 has a fixed-length stack frame.
*/
#ifdef CONFIG_X86_32
# ifdef CONFIG_VM86
# define TOP_OF_KERNEL_STACK_PADDING 16
# else
# define TOP_OF_KERNEL_STACK_PADDING 8
# endif
#else
# define TOP_OF_KERNEL_STACK_PADDING 0
#endif
/*
* low level task data that entry.S needs immediate access to
* - this struct should fit entirely inside of one cache line
* - this struct shares the supervisor stack pages
*/
#ifndef __ASSEMBLY__
struct task_struct;
#include <asm/cpufeature.h>
#include <linux/atomic.h>
sched/core, x86: Make struct thread_info arch specific again The following commit: c65eacbe290b ("sched/core: Allow putting thread_info into task_struct") ... made 'struct thread_info' a generic struct with only a single ::flags member, if CONFIG_THREAD_INFO_IN_TASK_STRUCT=y is selected. This change however seems to be quite x86 centric, since at least the generic preemption code (asm-generic/preempt.h) assumes that struct thread_info also has a preempt_count member, which apparently was not true for x86. We could add a bit more #ifdefs to solve this problem too, but it seems to be much simpler to make struct thread_info arch specific again. This also makes the conversion to THREAD_INFO_IN_TASK_STRUCT a bit easier for architectures that have a couple of arch specific stuff in their thread_info definition. The arch specific stuff _could_ be moved to thread_struct. However keeping them in thread_info makes it easier: accessing thread_info members is simple, since it is at the beginning of the task_struct, while the thread_struct is at the end. At least on s390 the offsets needed to access members of the thread_struct (with task_struct as base) are too large for various asm instructions. This is not a problem when keeping these members within thread_info. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: keescook@chromium.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/1476901693-8492-2-git-send-email-mark.rutland@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 02:28:11 +08:00
struct thread_info {
unsigned long flags; /* low level flags */
};
#define INIT_THREAD_INFO(tsk) \
{ \
.flags = 0, \
}
#define init_stack (init_thread_union.stack)
#else /* !__ASSEMBLY__ */
#include <asm/asm-offsets.h>
#endif
/*
* thread information flags
* - these are process state flags that various assembly files
* may need to access
* - pending work-to-be-done flags are in LSW
* - other flags in MSW
* Warning: layout of LSW is hardcoded in entry.S
*/
#define TIF_SYSCALL_TRACE 0 /* syscall trace active */
#define TIF_NOTIFY_RESUME 1 /* callback before returning to user */
#define TIF_SIGPENDING 2 /* signal pending */
#define TIF_NEED_RESCHED 3 /* rescheduling necessary */
#define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/
#define TIF_SYSCALL_EMU 6 /* syscall emulation active */
#define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */
#define TIF_SECCOMP 8 /* secure computing */
#define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */
uprobes/core: Handle breakpoint and singlestep exceptions Uprobes uses exception notifiers to get to know if a thread hit a breakpoint or a singlestep exception. When a thread hits a uprobe or is singlestepping post a uprobe hit, the uprobe exception notifier sets its TIF_UPROBE bit, which will then be checked on its return to userspace path (do_notify_resume() ->uprobe_notify_resume()), where the consumers handlers are run (in task context) based on the defined filters. Uprobe hits are thread specific and hence we need to maintain information about if a task hit a uprobe, what uprobe was hit, the slot where the original instruction was copied for xol so that it can be singlestepped with appropriate fixups. In some cases, special care is needed for instructions that are executed out of line (xol). These are architecture specific artefacts, such as handling RIP relative instructions on x86_64. Since the instruction at which the uprobe was inserted is executed out of line, architecture specific fixups are added so that the thread continues normal execution in the presence of a uprobe. Postpone the signals until we execute the probed insn. post_xol() path does a recalc_sigpending() before return to user-mode, this ensures the signal can't be lost. Uprobes relies on DIE_DEBUG notification to notify if a singlestep is complete. Adds x86 specific uprobe exception notifiers and appropriate hooks needed to determine a uprobe hit and subsequent post processing. Add requisite x86 fixups for xol for uprobes. Specific cases needing fixups include relative jumps (x86_64), calls, etc. Where possible, we check and skip singlestepping the breakpointed instructions. For now we skip single byte as well as few multibyte nop instructions. However this can be extended to other instructions too. Credits to Oleg Nesterov for suggestions/patches related to signal, breakpoint, singlestep handling code. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Linux-mm <linux-mm@kvack.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com [ Performed various cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-14 02:00:11 +08:00
#define TIF_UPROBE 12 /* breakpointed or singlestepping */
#define TIF_NOTSC 16 /* TSC is not accessible in userland */
#define TIF_IA32 17 /* IA32 compatibility process */
#define TIF_NOHZ 19 /* in adaptive nohz mode */
#define TIF_MEMDIE 20 /* is terminating due to OOM killer */
#define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */
#define TIF_IO_BITMAP 22 /* uses I/O bitmap */
#define TIF_FORCED_TF 24 /* true if TF in eflags artificially */
#define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */
#define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */
#define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */
#define TIF_ADDR32 29 /* 32-bit address space on 64 bits */
#define TIF_X32 30 /* 32-bit native x86-64 binary */
#define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE)
#define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME)
#define _TIF_SIGPENDING (1 << TIF_SIGPENDING)
#define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP)
#define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED)
#define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU)
#define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT)
#define _TIF_SECCOMP (1 << TIF_SECCOMP)
#define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY)
uprobes/core: Handle breakpoint and singlestep exceptions Uprobes uses exception notifiers to get to know if a thread hit a breakpoint or a singlestep exception. When a thread hits a uprobe or is singlestepping post a uprobe hit, the uprobe exception notifier sets its TIF_UPROBE bit, which will then be checked on its return to userspace path (do_notify_resume() ->uprobe_notify_resume()), where the consumers handlers are run (in task context) based on the defined filters. Uprobe hits are thread specific and hence we need to maintain information about if a task hit a uprobe, what uprobe was hit, the slot where the original instruction was copied for xol so that it can be singlestepped with appropriate fixups. In some cases, special care is needed for instructions that are executed out of line (xol). These are architecture specific artefacts, such as handling RIP relative instructions on x86_64. Since the instruction at which the uprobe was inserted is executed out of line, architecture specific fixups are added so that the thread continues normal execution in the presence of a uprobe. Postpone the signals until we execute the probed insn. post_xol() path does a recalc_sigpending() before return to user-mode, this ensures the signal can't be lost. Uprobes relies on DIE_DEBUG notification to notify if a singlestep is complete. Adds x86 specific uprobe exception notifiers and appropriate hooks needed to determine a uprobe hit and subsequent post processing. Add requisite x86 fixups for xol for uprobes. Specific cases needing fixups include relative jumps (x86_64), calls, etc. Where possible, we check and skip singlestepping the breakpointed instructions. For now we skip single byte as well as few multibyte nop instructions. However this can be extended to other instructions too. Credits to Oleg Nesterov for suggestions/patches related to signal, breakpoint, singlestep handling code. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Linux-mm <linux-mm@kvack.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com [ Performed various cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-14 02:00:11 +08:00
#define _TIF_UPROBE (1 << TIF_UPROBE)
#define _TIF_NOTSC (1 << TIF_NOTSC)
#define _TIF_IA32 (1 << TIF_IA32)
#define _TIF_NOHZ (1 << TIF_NOHZ)
#define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG)
#define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP)
#define _TIF_FORCED_TF (1 << TIF_FORCED_TF)
#define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP)
#define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES)
#define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT)
#define _TIF_ADDR32 (1 << TIF_ADDR32)
#define _TIF_X32 (1 << TIF_X32)
/*
* work to do in syscall_trace_enter(). Also includes TIF_NOHZ for
* enter_from_user_mode()
*/
#define _TIF_WORK_SYSCALL_ENTRY \
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU | _TIF_SYSCALL_AUDIT | \
_TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT | \
_TIF_NOHZ)
/* work to do on any return to user space */
#define _TIF_ALLWORK_MASK \
((0x0000FFFF & ~_TIF_SECCOMP) | _TIF_SYSCALL_TRACEPOINT | \
_TIF_NOHZ)
/* flags to check in __switch_to() */
#define _TIF_WORK_CTXSW \
(_TIF_IO_BITMAP|_TIF_NOTSC|_TIF_BLOCKSTEP)
#define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY)
#define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW)
#define STACK_WARN (THREAD_SIZE/8)
/*
* macros/functions for gaining access to the thread information structure
*
* preempt_count needs to be 1 initially, until the scheduler is functional.
*/
#ifndef __ASSEMBLY__
static inline unsigned long current_stack_pointer(void)
{
unsigned long sp;
#ifdef CONFIG_X86_64
asm("mov %%rsp,%0" : "=g" (sp));
#else
asm("mov %%esp,%0" : "=g" (sp));
#endif
return sp;
}
/*
* Walks up the stack frames to make sure that the specified object is
* entirely contained by a single stack frame.
*
* Returns:
* 1 if within a frame
* -1 if placed across a frame boundary (or outside stack)
* 0 unable to determine (no frame pointers, etc)
*/
static inline int arch_within_stack_frames(const void * const stack,
const void * const stackend,
const void *obj, unsigned long len)
{
#if defined(CONFIG_FRAME_POINTER)
const void *frame = NULL;
const void *oldframe;
oldframe = __builtin_frame_address(1);
if (oldframe)
frame = __builtin_frame_address(2);
/*
* low ----------------------------------------------> high
* [saved bp][saved ip][args][local vars][saved bp][saved ip]
* ^----------------^
* allow copies only within here
*/
while (stack <= frame && frame < stackend) {
/*
* If obj + len extends past the last frame, this
* check won't pass and the next frame will be 0,
* causing us to bail out and correctly report
* the copy as invalid.
*/
if (obj + len <= frame)
return obj >= oldframe + 2 * sizeof(void *) ? 1 : -1;
oldframe = frame;
frame = *(const void * const *)frame;
}
return -1;
#else
return 0;
#endif
}
#else /* !__ASSEMBLY__ */
#ifdef CONFIG_X86_64
# define cpu_current_top_of_stack (cpu_tss + TSS_sp0)
#endif
#endif
#ifdef CONFIG_COMPAT
#define TS_I386_REGS_POKED 0x0004 /* regs poked by 32-bit ptracer */
#endif
#ifndef __ASSEMBLY__
#ifdef CONFIG_X86_32
#define in_ia32_syscall() true
#else
#define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \
current->thread.status & TS_COMPAT)
#endif
/*
* Force syscall return via IRET by making it look as if there was
* some work pending. IRET is our most capable (but slowest) syscall
* return path, which is able to restore modified SS, CS and certain
* EFLAGS values that other (fast) syscall return instructions
* are not able to restore properly.
*/
#define force_iret() set_thread_flag(TIF_NOTIFY_RESUME)
extern void arch_task_cache_init(void);
extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
extern void arch_release_task_struct(struct task_struct *tsk);
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_X86_THREAD_INFO_H */