2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/drivers/clk/berlin/berlin2-avpll.c

383 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2014 Marvell Technology Group Ltd.
*
* Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
* Alexandre Belloni <alexandre.belloni@free-electrons.com>
*/
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include "berlin2-avpll.h"
/*
* Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
* VCO with 8 channels each, channel 8 is the odd-one-out and does
* not provide mul/div.
*
* Unfortunately, its registers are not named but just numbered. To
* get in at least some kind of structure, we split each AVPLL into
* the VCOs and each channel into separate clock drivers.
*
* Also, here and there the VCO registers are a bit different with
* respect to bit shifts. Make sure to add a comment for those.
*/
#define NUM_CHANNELS 8
#define AVPLL_CTRL(x) ((x) * 0x4)
#define VCO_CTRL0 AVPLL_CTRL(0)
/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
#define VCO_RESET BIT(0)
#define VCO_POWERUP BIT(1)
#define VCO_INTERPOL_SHIFT 2
#define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
#define VCO_REG1V45_SEL_SHIFT 6
#define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
#define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
#define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
#define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
#define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
#define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
#define VCO_REG0V9_SEL_SHIFT 8
#define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
#define VCO_VTHCAL_SHIFT 12
#define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
#define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
#define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
#define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
#define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
#define VCO_VTHCAL_MASK VCO_VTHCAL(3)
#define VCO_KVCOEXT_SHIFT 14
#define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
#define VCO_KVCOEXT_ENABLE BIT(17)
#define VCO_V2IEXT_SHIFT 18
#define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
#define VCO_V2IEXT_ENABLE BIT(22)
#define VCO_SPEED_SHIFT 23
#define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
#define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
#define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
#define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
#define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
#define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
#define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
#define VCO_SPEED_2G22 VCO_SPEED(6)
#define VCO_SPEED_MASK VCO_SPEED(0x7)
#define VCO_CLKDET_ENABLE BIT(26)
#define VCO_CTRL1 AVPLL_CTRL(1)
#define VCO_REFDIV_SHIFT 0
#define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
#define VCO_REFDIV_1 VCO_REFDIV(0)
#define VCO_REFDIV_2 VCO_REFDIV(1)
#define VCO_REFDIV_4 VCO_REFDIV(2)
#define VCO_REFDIV_3 VCO_REFDIV(3)
#define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
#define VCO_FBDIV_SHIFT 6
#define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
#define VCO_FBDIV_MASK VCO_FBDIV(0xff)
#define VCO_ICP_SHIFT 14
/* PLL Charge Pump Current = 10uA * (x + 1) */
#define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
#define VCO_ICP_MASK VCO_ICP(0xf)
#define VCO_LOAD_CAP BIT(18)
#define VCO_CALIBRATION_START BIT(19)
#define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
#define VCO_FREQOFFSET_MASK 0x7ffff
#define VCO_CTRL10 AVPLL_CTRL(10)
#define VCO_POWERUP_CH1 BIT(20)
#define VCO_CTRL11 AVPLL_CTRL(11)
#define VCO_CTRL12 AVPLL_CTRL(12)
#define VCO_CTRL13 AVPLL_CTRL(13)
#define VCO_CTRL14 AVPLL_CTRL(14)
#define VCO_CTRL15 AVPLL_CTRL(15)
#define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
#define VCO_SYNC1_MASK 0x1ffff
#define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
#define VCO_SYNC2_MASK 0x1ffff
#define VCO_CTRL30 AVPLL_CTRL(30)
#define VCO_DPLL_CH1_ENABLE BIT(17)
struct berlin2_avpll_vco {
struct clk_hw hw;
void __iomem *base;
u8 flags;
};
#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
{
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
u32 reg;
reg = readl_relaxed(vco->base + VCO_CTRL0);
if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
reg >>= 4;
return !!(reg & VCO_POWERUP);
}
static int berlin2_avpll_vco_enable(struct clk_hw *hw)
{
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
u32 reg;
reg = readl_relaxed(vco->base + VCO_CTRL0);
if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
reg |= VCO_POWERUP << 4;
else
reg |= VCO_POWERUP;
writel_relaxed(reg, vco->base + VCO_CTRL0);
return 0;
}
static void berlin2_avpll_vco_disable(struct clk_hw *hw)
{
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
u32 reg;
reg = readl_relaxed(vco->base + VCO_CTRL0);
if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
reg &= ~(VCO_POWERUP << 4);
else
reg &= ~VCO_POWERUP;
writel_relaxed(reg, vco->base + VCO_CTRL0);
}
static u8 vco_refdiv[] = { 1, 2, 4, 3 };
static unsigned long
berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
u32 reg, refdiv, fbdiv;
u64 freq = parent_rate;
/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
reg = readl_relaxed(vco->base + VCO_CTRL1);
refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
refdiv = vco_refdiv[refdiv];
fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
freq *= fbdiv;
do_div(freq, refdiv);
return (unsigned long)freq;
}
static const struct clk_ops berlin2_avpll_vco_ops = {
.is_enabled = berlin2_avpll_vco_is_enabled,
.enable = berlin2_avpll_vco_enable,
.disable = berlin2_avpll_vco_disable,
.recalc_rate = berlin2_avpll_vco_recalc_rate,
};
int __init berlin2_avpll_vco_register(void __iomem *base,
const char *name, const char *parent_name,
u8 vco_flags, unsigned long flags)
{
struct berlin2_avpll_vco *vco;
struct clk_init_data init;
vco = kzalloc(sizeof(*vco), GFP_KERNEL);
if (!vco)
return -ENOMEM;
vco->base = base;
vco->flags = vco_flags;
vco->hw.init = &init;
init.name = name;
init.ops = &berlin2_avpll_vco_ops;
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = flags;
return clk_hw_register(NULL, &vco->hw);
}
struct berlin2_avpll_channel {
struct clk_hw hw;
void __iomem *base;
u8 flags;
u8 index;
};
#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
{
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
u32 reg;
if (ch->index == 7)
return 1;
reg = readl_relaxed(ch->base + VCO_CTRL10);
reg &= VCO_POWERUP_CH1 << ch->index;
return !!reg;
}
static int berlin2_avpll_channel_enable(struct clk_hw *hw)
{
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
u32 reg;
reg = readl_relaxed(ch->base + VCO_CTRL10);
reg |= VCO_POWERUP_CH1 << ch->index;
writel_relaxed(reg, ch->base + VCO_CTRL10);
return 0;
}
static void berlin2_avpll_channel_disable(struct clk_hw *hw)
{
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
u32 reg;
reg = readl_relaxed(ch->base + VCO_CTRL10);
reg &= ~(VCO_POWERUP_CH1 << ch->index);
writel_relaxed(reg, ch->base + VCO_CTRL10);
}
static const u8 div_hdmi[] = { 1, 2, 4, 6 };
static const u8 div_av1[] = { 1, 2, 5, 5 };
static unsigned long
berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
u32 reg, div_av2, div_av3, divider = 1;
u64 freq = parent_rate;
reg = readl_relaxed(ch->base + VCO_CTRL30);
if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
goto skip_div;
/*
* Fch = (Fref * sync2) /
* (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
*/
reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
reg >>= 4;
divider = reg & VCO_SYNC1_MASK;
reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
freq *= reg & VCO_SYNC2_MASK;
/* Channel 8 has no dividers */
if (ch->index == 7)
goto skip_div;
/*
* HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
* determine divider.
*/
reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
reg = (reg >> (ch->index * 3));
if (reg & BIT(2))
divider *= div_hdmi[reg & 0x3];
/*
* AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
* determine divider.
*/
if (ch->index == 0) {
reg = readl_relaxed(ch->base + VCO_CTRL11);
reg >>= 28;
} else {
reg = readl_relaxed(ch->base + VCO_CTRL12);
reg >>= (ch->index-1) * 3;
}
if (reg & BIT(2))
divider *= div_av1[reg & 0x3];
/*
* AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
* zero is not a valid value.
*/
if (ch->index < 2) {
reg = readl_relaxed(ch->base + VCO_CTRL12);
reg >>= 18 + (ch->index * 7);
} else if (ch->index < 7) {
reg = readl_relaxed(ch->base + VCO_CTRL13);
reg >>= (ch->index - 2) * 7;
} else {
reg = readl_relaxed(ch->base + VCO_CTRL14);
}
div_av2 = reg & 0x7f;
if (div_av2)
divider *= div_av2;
/*
* AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
* AV2/AV3 form a fractional divider, where only specfic values for AV3
* are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
*/
if (ch->index < 6) {
reg = readl_relaxed(ch->base + VCO_CTRL14);
reg >>= 7 + (ch->index * 4);
} else {
reg = readl_relaxed(ch->base + VCO_CTRL15);
}
div_av3 = reg & 0xf;
if (div_av2 && div_av3)
freq *= 2;
skip_div:
do_div(freq, divider);
return (unsigned long)freq;
}
static const struct clk_ops berlin2_avpll_channel_ops = {
.is_enabled = berlin2_avpll_channel_is_enabled,
.enable = berlin2_avpll_channel_enable,
.disable = berlin2_avpll_channel_disable,
.recalc_rate = berlin2_avpll_channel_recalc_rate,
};
/*
* Another nice quirk:
* On some production SoCs, AVPLL channels are scrambled with respect
* to the channel numbering in the registers but still referenced by
* their original channel numbers. We deal with it by having a flag
* and a translation table for the index.
*/
static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
int __init berlin2_avpll_channel_register(void __iomem *base,
const char *name, u8 index, const char *parent_name,
u8 ch_flags, unsigned long flags)
{
struct berlin2_avpll_channel *ch;
struct clk_init_data init;
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch)
return -ENOMEM;
ch->base = base;
if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
ch->index = quirk_index[index];
else
ch->index = index;
ch->flags = ch_flags;
ch->hw.init = &init;
init.name = name;
init.ops = &berlin2_avpll_channel_ops;
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = flags;
return clk_hw_register(NULL, &ch->hw);
}