2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/drivers/usb/serial/opticon.c

656 lines
16 KiB
C
Raw Normal View History

/*
* Opticon USB barcode to serial driver
*
* Copyright (C) 2011 Martin Jansen <martin.jansen@opticon.com>
* Copyright (C) 2008 - 2009 Greg Kroah-Hartman <gregkh@suse.de>
* Copyright (C) 2008 - 2009 Novell Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/module.h>
#include <linux/usb.h>
#include <linux/usb/serial.h>
#include <linux/uaccess.h>
#define CONTROL_RTS 0x02
#define RESEND_CTS_STATE 0x03
/* max number of write urbs in flight */
#define URB_UPPER_LIMIT 8
/* This driver works for the Opticon 1D barcode reader
* an examples of 1D barcode types are EAN, UPC, Code39, IATA etc.. */
#define DRIVER_DESC "Opticon USB barcode to serial driver (1D)"
static int debug;
static const struct usb_device_id id_table[] = {
{ USB_DEVICE(0x065a, 0x0009) },
{ },
};
MODULE_DEVICE_TABLE(usb, id_table);
/* This structure holds all of the individual device information */
struct opticon_private {
struct usb_device *udev;
struct usb_serial *serial;
struct usb_serial_port *port;
unsigned char *bulk_in_buffer;
struct urb *bulk_read_urb;
int buffer_size;
u8 bulk_address;
spinlock_t lock; /* protects the following flags */
bool throttled;
bool actually_throttled;
bool rts;
bool cts;
int outstanding_urbs;
};
static void opticon_read_bulk_callback(struct urb *urb)
{
struct opticon_private *priv = urb->context;
unsigned char *data = urb->transfer_buffer;
struct usb_serial_port *port = priv->port;
int status = urb->status;
struct tty_struct *tty;
int result;
int data_length;
unsigned long flags;
dbg("%s - port %d", __func__, port->number);
switch (status) {
case 0:
/* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* this urb is terminated, clean up */
dbg("%s - urb shutting down with status: %d",
__func__, status);
return;
default:
dbg("%s - nonzero urb status received: %d",
__func__, status);
goto exit;
}
usb_serial_debug_data(debug, &port->dev, __func__, urb->actual_length,
data);
if (urb->actual_length > 2) {
data_length = urb->actual_length - 2;
/*
* Data from the device comes with a 2 byte header:
*
* <0x00><0x00>data...
* This is real data to be sent to the tty layer
* <0x00><0x01)level
* This is a CTS level change, the third byte is the CTS
* value (0 for low, 1 for high).
*/
if ((data[0] == 0x00) && (data[1] == 0x00)) {
/* real data, send it to the tty layer */
tty = tty_port_tty_get(&port->port);
if (tty) {
tty_insert_flip_string(tty, data + 2,
data_length);
tty_flip_buffer_push(tty);
tty_kref_put(tty);
}
} else {
if ((data[0] == 0x00) && (data[1] == 0x01)) {
spin_lock_irqsave(&priv->lock, flags);
/* CTS status information package */
if (data[2] == 0x00)
priv->cts = false;
else
priv->cts = true;
spin_unlock_irqrestore(&priv->lock, flags);
} else {
dev_dbg(&priv->udev->dev,
"Unknown data packet received from the device:"
" %2x %2x\n",
data[0], data[1]);
}
}
} else {
dev_dbg(&priv->udev->dev,
"Improper amount of data received from the device, "
"%d bytes", urb->actual_length);
}
exit:
spin_lock(&priv->lock);
/* Continue trying to always read if we should */
if (!priv->throttled) {
usb_fill_bulk_urb(priv->bulk_read_urb, priv->udev,
usb_rcvbulkpipe(priv->udev,
priv->bulk_address),
priv->bulk_in_buffer, priv->buffer_size,
opticon_read_bulk_callback, priv);
result = usb_submit_urb(priv->bulk_read_urb, GFP_ATOMIC);
if (result)
dev_err(&port->dev,
"%s - failed resubmitting read urb, error %d\n",
__func__, result);
} else
priv->actually_throttled = true;
spin_unlock(&priv->lock);
}
static int send_control_msg(struct usb_serial_port *port, u8 requesttype,
u8 val)
{
struct usb_serial *serial = port->serial;
int retval;
u8 buffer[2];
buffer[0] = val;
/* Send the message to the vendor control endpoint
* of the connected device */
retval = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
requesttype,
USB_DIR_OUT|USB_TYPE_VENDOR|USB_RECIP_INTERFACE,
0, 0, buffer, 1, 0);
return retval;
}
static int opticon_open(struct tty_struct *tty, struct usb_serial_port *port)
{
struct opticon_private *priv = usb_get_serial_data(port->serial);
unsigned long flags;
int result = 0;
dbg("%s - port %d", __func__, port->number);
spin_lock_irqsave(&priv->lock, flags);
priv->throttled = false;
priv->actually_throttled = false;
priv->port = port;
priv->rts = false;
spin_unlock_irqrestore(&priv->lock, flags);
/* Clear RTS line */
send_control_msg(port, CONTROL_RTS, 0);
/* Setup the read URB and start reading from the device */
usb_fill_bulk_urb(priv->bulk_read_urb, priv->udev,
usb_rcvbulkpipe(priv->udev,
priv->bulk_address),
priv->bulk_in_buffer, priv->buffer_size,
opticon_read_bulk_callback, priv);
/* clear the halt status of the enpoint */
usb_clear_halt(priv->udev, priv->bulk_read_urb->pipe);
result = usb_submit_urb(priv->bulk_read_urb, GFP_KERNEL);
if (result)
dev_err(&port->dev,
"%s - failed resubmitting read urb, error %d\n",
__func__, result);
/* Request CTS line state, sometimes during opening the current
* CTS state can be missed. */
send_control_msg(port, RESEND_CTS_STATE, 1);
return result;
}
static void opticon_close(struct usb_serial_port *port)
{
struct opticon_private *priv = usb_get_serial_data(port->serial);
dbg("%s - port %d", __func__, port->number);
/* shutdown our urbs */
usb_kill_urb(priv->bulk_read_urb);
}
static void opticon_write_control_callback(struct urb *urb)
{
struct opticon_private *priv = urb->context;
int status = urb->status;
unsigned long flags;
/* free up the transfer buffer, as usb_free_urb() does not do this */
kfree(urb->transfer_buffer);
/* setup packet may be set if we're using it for writing */
kfree(urb->setup_packet);
if (status)
dbg("%s - nonzero write bulk status received: %d",
__func__, status);
spin_lock_irqsave(&priv->lock, flags);
--priv->outstanding_urbs;
spin_unlock_irqrestore(&priv->lock, flags);
usb_serial_port_softint(priv->port);
}
static int opticon_write(struct tty_struct *tty, struct usb_serial_port *port,
const unsigned char *buf, int count)
{
struct opticon_private *priv = usb_get_serial_data(port->serial);
struct usb_serial *serial = port->serial;
struct urb *urb;
unsigned char *buffer;
unsigned long flags;
int status;
struct usb_ctrlrequest *dr;
dbg("%s - port %d", __func__, port->number);
spin_lock_irqsave(&priv->lock, flags);
if (priv->outstanding_urbs > URB_UPPER_LIMIT) {
spin_unlock_irqrestore(&priv->lock, flags);
dbg("%s - write limit hit", __func__);
return 0;
}
priv->outstanding_urbs++;
spin_unlock_irqrestore(&priv->lock, flags);
buffer = kmalloc(count, GFP_ATOMIC);
if (!buffer) {
dev_err(&port->dev, "out of memory\n");
count = -ENOMEM;
goto error_no_buffer;
}
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
dev_err(&port->dev, "no more free urbs\n");
count = -ENOMEM;
goto error_no_urb;
}
memcpy(buffer, buf, count);
usb_serial_debug_data(debug, &port->dev, __func__, count, buffer);
/* The conncected devices do not have a bulk write endpoint,
* to transmit data to de barcode device the control endpoint is used */
dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
if (!dr)
return -ENOMEM;
dr->bRequestType = USB_TYPE_VENDOR | USB_RECIP_INTERFACE | USB_DIR_OUT;
dr->bRequest = 0x01;
dr->wValue = 0;
dr->wIndex = 0;
dr->wLength = cpu_to_le16(count);
usb_fill_control_urb(urb, serial->dev,
usb_sndctrlpipe(serial->dev, 0),
(unsigned char *)dr, buffer, count,
opticon_write_control_callback, priv);
/* send it down the pipe */
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status) {
dev_err(&port->dev,
"%s - usb_submit_urb(write endpoint) failed status = %d\n",
__func__, status);
count = status;
goto error;
}
/* we are done with this urb, so let the host driver
* really free it when it is finished with it */
usb_free_urb(urb);
return count;
error:
usb_free_urb(urb);
error_no_urb:
kfree(buffer);
error_no_buffer:
spin_lock_irqsave(&priv->lock, flags);
--priv->outstanding_urbs;
spin_unlock_irqrestore(&priv->lock, flags);
return count;
}
static int opticon_write_room(struct tty_struct *tty)
{
struct usb_serial_port *port = tty->driver_data;
struct opticon_private *priv = usb_get_serial_data(port->serial);
unsigned long flags;
dbg("%s - port %d", __func__, port->number);
/*
* We really can take almost anything the user throws at us
* but let's pick a nice big number to tell the tty
* layer that we have lots of free space, unless we don't.
*/
spin_lock_irqsave(&priv->lock, flags);
if (priv->outstanding_urbs > URB_UPPER_LIMIT * 2 / 3) {
spin_unlock_irqrestore(&priv->lock, flags);
dbg("%s - write limit hit", __func__);
return 0;
}
spin_unlock_irqrestore(&priv->lock, flags);
return 2048;
}
static void opticon_throttle(struct tty_struct *tty)
{
struct usb_serial_port *port = tty->driver_data;
struct opticon_private *priv = usb_get_serial_data(port->serial);
unsigned long flags;
dbg("%s - port %d", __func__, port->number);
spin_lock_irqsave(&priv->lock, flags);
priv->throttled = true;
spin_unlock_irqrestore(&priv->lock, flags);
}
static void opticon_unthrottle(struct tty_struct *tty)
{
struct usb_serial_port *port = tty->driver_data;
struct opticon_private *priv = usb_get_serial_data(port->serial);
unsigned long flags;
int result, was_throttled;
dbg("%s - port %d", __func__, port->number);
spin_lock_irqsave(&priv->lock, flags);
priv->throttled = false;
was_throttled = priv->actually_throttled;
priv->actually_throttled = false;
spin_unlock_irqrestore(&priv->lock, flags);
priv->bulk_read_urb->dev = port->serial->dev;
if (was_throttled) {
result = usb_submit_urb(priv->bulk_read_urb, GFP_ATOMIC);
if (result)
dev_err(&port->dev,
"%s - failed submitting read urb, error %d\n",
__func__, result);
}
}
static int opticon_tiocmget(struct tty_struct *tty)
{
struct usb_serial_port *port = tty->driver_data;
struct opticon_private *priv = usb_get_serial_data(port->serial);
unsigned long flags;
int result = 0;
dbg("%s - port %d", __func__, port->number);
if (!usb_get_intfdata(port->serial->interface))
return -ENODEV;
spin_lock_irqsave(&priv->lock, flags);
if (priv->rts)
result |= TIOCM_RTS;
if (priv->cts)
result |= TIOCM_CTS;
spin_unlock_irqrestore(&priv->lock, flags);
dbg("%s - %x", __func__, result);
return result;
}
static int opticon_tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct usb_serial_port *port = tty->driver_data;
struct opticon_private *priv = usb_get_serial_data(port->serial);
unsigned long flags;
bool rts;
bool changed = false;
if (!usb_get_intfdata(port->serial->interface))
return -ENODEV;
/* We only support RTS so we only handle that */
spin_lock_irqsave(&priv->lock, flags);
rts = priv->rts;
if (set & TIOCM_RTS)
priv->rts = true;
if (clear & TIOCM_RTS)
priv->rts = false;
changed = rts ^ priv->rts;
spin_unlock_irqrestore(&priv->lock, flags);
if (!changed)
return 0;
/* Send the new RTS state to the connected device */
return send_control_msg(port, CONTROL_RTS, !rts);
}
static int get_serial_info(struct opticon_private *priv,
struct serial_struct __user *serial)
{
struct serial_struct tmp;
if (!serial)
return -EFAULT;
memset(&tmp, 0x00, sizeof(tmp));
/* fake emulate a 16550 uart to make userspace code happy */
tmp.type = PORT_16550A;
tmp.line = priv->serial->minor;
tmp.port = 0;
tmp.irq = 0;
tmp.flags = ASYNC_SKIP_TEST | ASYNC_AUTO_IRQ;
tmp.xmit_fifo_size = 1024;
tmp.baud_base = 9600;
tmp.close_delay = 5*HZ;
tmp.closing_wait = 30*HZ;
if (copy_to_user(serial, &tmp, sizeof(*serial)))
return -EFAULT;
return 0;
}
static int opticon_ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
struct usb_serial_port *port = tty->driver_data;
struct opticon_private *priv = usb_get_serial_data(port->serial);
dbg("%s - port %d, cmd = 0x%x", __func__, port->number, cmd);
switch (cmd) {
case TIOCGSERIAL:
return get_serial_info(priv,
(struct serial_struct __user *)arg);
}
return -ENOIOCTLCMD;
}
static int opticon_startup(struct usb_serial *serial)
{
struct opticon_private *priv;
struct usb_host_interface *intf;
int i;
int retval = -ENOMEM;
bool bulk_in_found = false;
/* create our private serial structure */
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (priv == NULL) {
dev_err(&serial->dev->dev, "%s - Out of memory\n", __func__);
return -ENOMEM;
}
spin_lock_init(&priv->lock);
priv->serial = serial;
priv->port = serial->port[0];
priv->udev = serial->dev;
priv->outstanding_urbs = 0; /* Init the outstanding urbs */
/* find our bulk endpoint */
intf = serial->interface->altsetting;
for (i = 0; i < intf->desc.bNumEndpoints; ++i) {
struct usb_endpoint_descriptor *endpoint;
endpoint = &intf->endpoint[i].desc;
if (!usb_endpoint_is_bulk_in(endpoint))
continue;
priv->bulk_read_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!priv->bulk_read_urb) {
dev_err(&priv->udev->dev, "out of memory\n");
goto error;
}
priv->buffer_size = le16_to_cpu(endpoint->wMaxPacketSize) * 2;
priv->bulk_in_buffer = kmalloc(priv->buffer_size, GFP_KERNEL);
if (!priv->bulk_in_buffer) {
dev_err(&priv->udev->dev, "out of memory\n");
goto error;
}
priv->bulk_address = endpoint->bEndpointAddress;
bulk_in_found = true;
break;
}
if (!bulk_in_found) {
dev_err(&priv->udev->dev,
"Error - the proper endpoints were not found!\n");
goto error;
}
usb_set_serial_data(serial, priv);
return 0;
error:
usb_free_urb(priv->bulk_read_urb);
kfree(priv->bulk_in_buffer);
kfree(priv);
return retval;
}
static void opticon_disconnect(struct usb_serial *serial)
{
struct opticon_private *priv = usb_get_serial_data(serial);
dbg("%s", __func__);
usb_kill_urb(priv->bulk_read_urb);
usb_free_urb(priv->bulk_read_urb);
}
static void opticon_release(struct usb_serial *serial)
{
struct opticon_private *priv = usb_get_serial_data(serial);
dbg("%s", __func__);
kfree(priv->bulk_in_buffer);
kfree(priv);
}
static int opticon_suspend(struct usb_interface *intf, pm_message_t message)
{
struct usb_serial *serial = usb_get_intfdata(intf);
struct opticon_private *priv = usb_get_serial_data(serial);
usb_kill_urb(priv->bulk_read_urb);
return 0;
}
static int opticon_resume(struct usb_interface *intf)
{
struct usb_serial *serial = usb_get_intfdata(intf);
struct opticon_private *priv = usb_get_serial_data(serial);
struct usb_serial_port *port = serial->port[0];
int result;
mutex_lock(&port->port.mutex);
/* This is protected by the port mutex against close/open */
if (test_bit(ASYNCB_INITIALIZED, &port->port.flags))
result = usb_submit_urb(priv->bulk_read_urb, GFP_NOIO);
else
result = 0;
mutex_unlock(&port->port.mutex);
return result;
}
static struct usb_driver opticon_driver = {
.name = "opticon",
.probe = usb_serial_probe,
.disconnect = usb_serial_disconnect,
.suspend = opticon_suspend,
.resume = opticon_resume,
.id_table = id_table,
.no_dynamic_id = 1,
};
static struct usb_serial_driver opticon_device = {
.driver = {
.owner = THIS_MODULE,
.name = "opticon",
},
.id_table = id_table,
.usb_driver = &opticon_driver,
.num_ports = 1,
.attach = opticon_startup,
.open = opticon_open,
.close = opticon_close,
.write = opticon_write,
.write_room = opticon_write_room,
.disconnect = opticon_disconnect,
.release = opticon_release,
.throttle = opticon_throttle,
.unthrottle = opticon_unthrottle,
.ioctl = opticon_ioctl,
.tiocmget = opticon_tiocmget,
.tiocmset = opticon_tiocmset,
};
static int __init opticon_init(void)
{
int retval;
retval = usb_serial_register(&opticon_device);
if (retval)
return retval;
retval = usb_register(&opticon_driver);
if (retval)
usb_serial_deregister(&opticon_device);
return retval;
}
static void __exit opticon_exit(void)
{
usb_deregister(&opticon_driver);
usb_serial_deregister(&opticon_device);
}
module_init(opticon_init);
module_exit(opticon_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug enabled or not");