2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/include/linux/exportfs.h

174 lines
5.7 KiB
C
Raw Normal View History

#ifndef LINUX_EXPORTFS_H
#define LINUX_EXPORTFS_H 1
#include <linux/types.h>
struct dentry;
struct inode;
struct super_block;
struct vfsmount;
exportfs: add fid type This patchset is a medium scale rewrite of the export operations interface. The goal is to make the interface less complex, and easier to understand from the filesystem side, aswell as preparing generic support for exporting of 64bit inode numbers. This touches all nfs exporting filesystems, and I've done testing on all of the filesystems I have here locally (xfs, ext2, ext3, reiserfs, jfs) This patch: Add a structured fid type so that we don't have to pass an array of u32 values around everywhere. It's a union of possible layouts. As a start there's only the u32 array and the traditional 32bit inode format, but there will be more in one of my next patchset when I start to document the various filehandle formats we have in lowlevel filesystems better. Also add an enum that gives the various filehandle types human- readable names. Note: Some people might think the struct containing an anonymous union is ugly, but I didn't want to pass around a raw union type. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: <linux-ext4@vger.kernel.org> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Chinner <dgc@sgi.com> Cc: Timothy Shimmin <tes@sgi.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: Chris Mason <mason@suse.com> Cc: Jeff Mahoney <jeffm@suse.com> Cc: "Vladimir V. Saveliev" <vs@namesys.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22 07:42:03 +08:00
/*
* The fileid_type identifies how the file within the filesystem is encoded.
* In theory this is freely set and parsed by the filesystem, but we try to
* stick to conventions so we can share some generic code and don't confuse
* sniffers like ethereal/wireshark.
*
* The filesystem must not use the value '0' or '0xff'.
*/
enum fid_type {
/*
* The root, or export point, of the filesystem.
* (Never actually passed down to the filesystem.
*/
FILEID_ROOT = 0,
/*
* 32bit inode number, 32 bit generation number.
*/
FILEID_INO32_GEN = 1,
/*
* 32bit inode number, 32 bit generation number,
* 32 bit parent directory inode number.
*/
FILEID_INO32_GEN_PARENT = 2,
/*
* 64 bit object ID, 64 bit root object ID,
* 32 bit generation number.
*/
FILEID_BTRFS_WITHOUT_PARENT = 0x4d,
/*
* 64 bit object ID, 64 bit root object ID,
* 32 bit generation number,
* 64 bit parent object ID, 32 bit parent generation.
*/
FILEID_BTRFS_WITH_PARENT = 0x4e,
/*
* 64 bit object ID, 64 bit root object ID,
* 32 bit generation number,
* 64 bit parent object ID, 32 bit parent generation,
* 64 bit parent root object ID.
*/
FILEID_BTRFS_WITH_PARENT_ROOT = 0x4f,
/*
* 32 bit block number, 16 bit partition reference,
* 16 bit unused, 32 bit generation number.
*/
FILEID_UDF_WITHOUT_PARENT = 0x51,
/*
* 32 bit block number, 16 bit partition reference,
* 16 bit unused, 32 bit generation number,
* 32 bit parent block number, 32 bit parent generation number
*/
FILEID_UDF_WITH_PARENT = 0x52,
exportfs: add fid type This patchset is a medium scale rewrite of the export operations interface. The goal is to make the interface less complex, and easier to understand from the filesystem side, aswell as preparing generic support for exporting of 64bit inode numbers. This touches all nfs exporting filesystems, and I've done testing on all of the filesystems I have here locally (xfs, ext2, ext3, reiserfs, jfs) This patch: Add a structured fid type so that we don't have to pass an array of u32 values around everywhere. It's a union of possible layouts. As a start there's only the u32 array and the traditional 32bit inode format, but there will be more in one of my next patchset when I start to document the various filehandle formats we have in lowlevel filesystems better. Also add an enum that gives the various filehandle types human- readable names. Note: Some people might think the struct containing an anonymous union is ugly, but I didn't want to pass around a raw union type. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: <linux-ext4@vger.kernel.org> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Chinner <dgc@sgi.com> Cc: Timothy Shimmin <tes@sgi.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: Chris Mason <mason@suse.com> Cc: Jeff Mahoney <jeffm@suse.com> Cc: "Vladimir V. Saveliev" <vs@namesys.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22 07:42:03 +08:00
};
struct fid {
union {
struct {
u32 ino;
u32 gen;
u32 parent_ino;
u32 parent_gen;
} i32;
struct {
u32 block;
u16 partref;
u16 parent_partref;
u32 generation;
u32 parent_block;
u32 parent_generation;
} udf;
__u32 raw[0];
exportfs: add fid type This patchset is a medium scale rewrite of the export operations interface. The goal is to make the interface less complex, and easier to understand from the filesystem side, aswell as preparing generic support for exporting of 64bit inode numbers. This touches all nfs exporting filesystems, and I've done testing on all of the filesystems I have here locally (xfs, ext2, ext3, reiserfs, jfs) This patch: Add a structured fid type so that we don't have to pass an array of u32 values around everywhere. It's a union of possible layouts. As a start there's only the u32 array and the traditional 32bit inode format, but there will be more in one of my next patchset when I start to document the various filehandle formats we have in lowlevel filesystems better. Also add an enum that gives the various filehandle types human- readable names. Note: Some people might think the struct containing an anonymous union is ugly, but I didn't want to pass around a raw union type. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: <linux-ext4@vger.kernel.org> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Chinner <dgc@sgi.com> Cc: Timothy Shimmin <tes@sgi.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: Chris Mason <mason@suse.com> Cc: Jeff Mahoney <jeffm@suse.com> Cc: "Vladimir V. Saveliev" <vs@namesys.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22 07:42:03 +08:00
};
};
/**
* struct export_operations - for nfsd to communicate with file systems
* @encode_fh: encode a file handle fragment from a dentry
* @fh_to_dentry: find the implied object and get a dentry for it
* @fh_to_parent: find the implied object's parent and get a dentry for it
* @get_name: find the name for a given inode in a given directory
* @get_parent: find the parent of a given directory
*
* See Documentation/filesystems/Exporting for details on how to use
* this interface correctly.
*
* encode_fh:
* @encode_fh should store in the file handle fragment @fh (using at most
* @max_len bytes) information that can be used by @decode_fh to recover the
* file refered to by the &struct dentry @de. If the @connectable flag is
* set, the encode_fh() should store sufficient information so that a good
* attempt can be made to find not only the file but also it's place in the
* filesystem. This typically means storing a reference to de->d_parent in
* the filehandle fragment. encode_fh() should return the number of bytes
* stored or a negative error code such as %-ENOSPC
*
* fh_to_dentry:
* @fh_to_dentry is given a &struct super_block (@sb) and a file handle
* fragment (@fh, @fh_len). It should return a &struct dentry which refers
* to the same file that the file handle fragment refers to. If it cannot,
* it should return a %NULL pointer if the file was found but no acceptable
* &dentries were available, or an %ERR_PTR error code indicating why it
* couldn't be found (e.g. %ENOENT or %ENOMEM). Any suitable dentry can be
* returned including, if necessary, a new dentry created with d_alloc_root.
* The caller can then find any other extant dentries by following the
* d_alias links.
*
* fh_to_parent:
* Same as @fh_to_dentry, except that it returns a pointer to the parent
* dentry if it was encoded into the filehandle fragment by @encode_fh.
*
* get_name:
* @get_name should find a name for the given @child in the given @parent
* directory. The name should be stored in the @name (with the
* understanding that it is already pointing to a a %NAME_MAX+1 sized
* buffer. get_name() should return %0 on success, a negative error code
* or error. @get_name will be called without @parent->i_mutex held.
*
* get_parent:
* @get_parent should find the parent directory for the given @child which
* is also a directory. In the event that it cannot be found, or storage
* space cannot be allocated, a %ERR_PTR should be returned.
*
* Locking rules:
* get_parent is called with child->d_inode->i_mutex down
* get_name is not (which is possibly inconsistent)
*/
struct export_operations {
int (*encode_fh)(struct dentry *de, __u32 *fh, int *max_len,
int connectable);
struct dentry * (*fh_to_dentry)(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type);
struct dentry * (*fh_to_parent)(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type);
int (*get_name)(struct dentry *parent, char *name,
struct dentry *child);
struct dentry * (*get_parent)(struct dentry *child);
};
exportfs: add fid type This patchset is a medium scale rewrite of the export operations interface. The goal is to make the interface less complex, and easier to understand from the filesystem side, aswell as preparing generic support for exporting of 64bit inode numbers. This touches all nfs exporting filesystems, and I've done testing on all of the filesystems I have here locally (xfs, ext2, ext3, reiserfs, jfs) This patch: Add a structured fid type so that we don't have to pass an array of u32 values around everywhere. It's a union of possible layouts. As a start there's only the u32 array and the traditional 32bit inode format, but there will be more in one of my next patchset when I start to document the various filehandle formats we have in lowlevel filesystems better. Also add an enum that gives the various filehandle types human- readable names. Note: Some people might think the struct containing an anonymous union is ugly, but I didn't want to pass around a raw union type. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: <linux-ext4@vger.kernel.org> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Chinner <dgc@sgi.com> Cc: Timothy Shimmin <tes@sgi.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: Chris Mason <mason@suse.com> Cc: Jeff Mahoney <jeffm@suse.com> Cc: "Vladimir V. Saveliev" <vs@namesys.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22 07:42:03 +08:00
extern int exportfs_encode_fh(struct dentry *dentry, struct fid *fid,
int *max_len, int connectable);
extern struct dentry *exportfs_decode_fh(struct vfsmount *mnt, struct fid *fid,
int fh_len, int fileid_type, int (*acceptable)(void *, struct dentry *),
void *context);
/*
* Generic helpers for filesystems.
*/
extern struct dentry *generic_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type,
struct inode *(*get_inode) (struct super_block *sb, u64 ino, u32 gen));
extern struct dentry *generic_fh_to_parent(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type,
struct inode *(*get_inode) (struct super_block *sb, u64 ino, u32 gen));
#endif /* LINUX_EXPORTFS_H */