2012-03-05 19:49:27 +08:00
|
|
|
/*
|
|
|
|
* Based on arch/arm/mm/init.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1995-2005 Russell King
|
|
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/init.h>
|
2016-08-15 14:45:46 +08:00
|
|
|
#include <linux/cache.h>
|
2012-03-05 19:49:27 +08:00
|
|
|
#include <linux/mman.h>
|
|
|
|
#include <linux/nodemask.h>
|
|
|
|
#include <linux/initrd.h>
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#include <linux/memblock.h>
|
|
|
|
#include <linux/sort.h>
|
2017-04-03 10:24:32 +08:00
|
|
|
#include <linux/of.h>
|
2012-03-05 19:49:27 +08:00
|
|
|
#include <linux/of_fdt.h>
|
2014-02-27 20:09:22 +08:00
|
|
|
#include <linux/dma-mapping.h>
|
2013-12-13 03:28:33 +08:00
|
|
|
#include <linux/dma-contiguous.h>
|
2014-07-29 02:03:03 +08:00
|
|
|
#include <linux/efi.h>
|
2015-02-06 02:01:53 +08:00
|
|
|
#include <linux/swiotlb.h>
|
2016-09-05 19:30:22 +08:00
|
|
|
#include <linux/vmalloc.h>
|
2017-01-11 05:35:49 +08:00
|
|
|
#include <linux/mm.h>
|
2017-04-03 10:24:32 +08:00
|
|
|
#include <linux/kexec.h>
|
arm64: kdump: provide /proc/vmcore file
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.
A user space tool, like kexec-tools, is responsible for allocating
a separate region for the core's ELF header within crash kdump kernel
memory and filling it in when executing kexec_load().
Then, its location will be advertised to crash dump kernel via a new
device-tree property, "linux,elfcorehdr", and crash dump kernel preserves
the region for later use with reserve_elfcorehdr() at boot time.
On crash dump kernel, /proc/vmcore will access the primary kernel's memory
with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing
it since it does not reside in linear mapping on crash dump kernel.
Meanwhile, elfcorehdr_read() is simple as the region is always mapped.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-03 10:24:38 +08:00
|
|
|
#include <linux/crash_dump.h>
|
2012-03-05 19:49:27 +08:00
|
|
|
|
2016-02-16 20:52:42 +08:00
|
|
|
#include <asm/boot.h>
|
2014-07-17 00:42:43 +08:00
|
|
|
#include <asm/fixmap.h>
|
2016-02-16 20:52:40 +08:00
|
|
|
#include <asm/kasan.h>
|
2016-02-16 20:52:42 +08:00
|
|
|
#include <asm/kernel-pgtable.h>
|
arm64: Fix overlapping VA allocations
PCI IO space was intended to be 16MiB, at 32MiB below MODULES_VADDR, but
commit d1e6dc91b532d3d3 ("arm64: Add architectural support for PCI")
extended this to cover the full 32MiB. The final 8KiB of this 32MiB is
also allocated for the fixmap, allowing for potential clashes between
the two.
This change was masked by assumptions in mem_init and the page table
dumping code, which assumed the I/O space to be 16MiB long through
seaparte hard-coded definitions.
This patch changes the definition of the PCI I/O space allocation to
live in asm/memory.h, along with the other VA space allocations. As the
fixmap allocation depends on the number of fixmap entries, this is moved
below the PCI I/O space allocation. Both the fixmap and PCI I/O space
are guarded with 2MB of padding. Sites assuming the I/O space was 16MiB
are moved over use new PCI_IO_{START,END} definitions, which will keep
in sync with the size of the IO space (now restored to 16MiB).
As a useful side effect, the use of the new PCI_IO_{START,END}
definitions prevents a build issue in the dumping code due to a (now
redundant) missing include of io.h for PCI_IOBASE.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
[catalin.marinas@arm.com: reorder FIXADDR and PCI_IO address_markers_idx enum]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-23 02:20:35 +08:00
|
|
|
#include <asm/memory.h>
|
2016-04-09 06:50:27 +08:00
|
|
|
#include <asm/numa.h>
|
2012-03-05 19:49:27 +08:00
|
|
|
#include <asm/sections.h>
|
|
|
|
#include <asm/setup.h>
|
|
|
|
#include <asm/sizes.h>
|
|
|
|
#include <asm/tlb.h>
|
2014-11-14 23:54:08 +08:00
|
|
|
#include <asm/alternative.h>
|
2012-03-05 19:49:27 +08:00
|
|
|
|
2016-02-16 20:52:42 +08:00
|
|
|
/*
|
|
|
|
* We need to be able to catch inadvertent references to memstart_addr
|
|
|
|
* that occur (potentially in generic code) before arm64_memblock_init()
|
|
|
|
* executes, which assigns it its actual value. So use a default value
|
|
|
|
* that cannot be mistaken for a real physical address.
|
|
|
|
*/
|
2016-08-15 14:45:46 +08:00
|
|
|
s64 memstart_addr __ro_after_init = -1;
|
2018-12-08 02:08:15 +08:00
|
|
|
EXPORT_SYMBOL(memstart_addr);
|
|
|
|
|
2016-08-15 14:45:46 +08:00
|
|
|
phys_addr_t arm64_dma_phys_limit __ro_after_init;
|
2012-03-05 19:49:27 +08:00
|
|
|
|
2017-04-03 10:24:32 +08:00
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
|
|
/*
|
|
|
|
* reserve_crashkernel() - reserves memory for crash kernel
|
|
|
|
*
|
|
|
|
* This function reserves memory area given in "crashkernel=" kernel command
|
|
|
|
* line parameter. The memory reserved is used by dump capture kernel when
|
|
|
|
* primary kernel is crashing.
|
|
|
|
*/
|
|
|
|
static void __init reserve_crashkernel(void)
|
|
|
|
{
|
|
|
|
unsigned long long crash_base, crash_size;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
|
|
|
|
&crash_size, &crash_base);
|
|
|
|
/* no crashkernel= or invalid value specified */
|
|
|
|
if (ret || !crash_size)
|
|
|
|
return;
|
|
|
|
|
|
|
|
crash_size = PAGE_ALIGN(crash_size);
|
|
|
|
|
|
|
|
if (crash_base == 0) {
|
|
|
|
/* Current arm64 boot protocol requires 2MB alignment */
|
|
|
|
crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
|
|
|
|
crash_size, SZ_2M);
|
|
|
|
if (crash_base == 0) {
|
|
|
|
pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
|
|
|
|
crash_size);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* User specifies base address explicitly. */
|
|
|
|
if (!memblock_is_region_memory(crash_base, crash_size)) {
|
|
|
|
pr_warn("cannot reserve crashkernel: region is not memory\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (memblock_is_region_reserved(crash_base, crash_size)) {
|
|
|
|
pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!IS_ALIGNED(crash_base, SZ_2M)) {
|
|
|
|
pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memblock_reserve(crash_base, crash_size);
|
|
|
|
|
|
|
|
pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
|
|
|
|
crash_base, crash_base + crash_size, crash_size >> 20);
|
|
|
|
|
|
|
|
crashk_res.start = crash_base;
|
|
|
|
crashk_res.end = crash_base + crash_size - 1;
|
|
|
|
}
|
2017-04-03 10:24:35 +08:00
|
|
|
|
|
|
|
static void __init kexec_reserve_crashkres_pages(void)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
|
|
phys_addr_t addr;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (!crashk_res.end)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To reduce the size of hibernation image, all the pages are
|
|
|
|
* marked as Reserved initially.
|
|
|
|
*/
|
|
|
|
for (addr = crashk_res.start; addr < (crashk_res.end + 1);
|
|
|
|
addr += PAGE_SIZE) {
|
|
|
|
page = phys_to_page(addr);
|
|
|
|
SetPageReserved(page);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
2017-04-03 10:24:32 +08:00
|
|
|
#else
|
|
|
|
static void __init reserve_crashkernel(void)
|
|
|
|
{
|
|
|
|
}
|
2017-04-03 10:24:35 +08:00
|
|
|
|
|
|
|
static void __init kexec_reserve_crashkres_pages(void)
|
|
|
|
{
|
|
|
|
}
|
2017-04-03 10:24:32 +08:00
|
|
|
#endif /* CONFIG_KEXEC_CORE */
|
|
|
|
|
arm64: kdump: provide /proc/vmcore file
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.
A user space tool, like kexec-tools, is responsible for allocating
a separate region for the core's ELF header within crash kdump kernel
memory and filling it in when executing kexec_load().
Then, its location will be advertised to crash dump kernel via a new
device-tree property, "linux,elfcorehdr", and crash dump kernel preserves
the region for later use with reserve_elfcorehdr() at boot time.
On crash dump kernel, /proc/vmcore will access the primary kernel's memory
with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing
it since it does not reside in linear mapping on crash dump kernel.
Meanwhile, elfcorehdr_read() is simple as the region is always mapped.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-03 10:24:38 +08:00
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
|
|
static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
|
|
|
|
const char *uname, int depth, void *data)
|
|
|
|
{
|
|
|
|
const __be32 *reg;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
if (depth != 1 || strcmp(uname, "chosen") != 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
|
|
|
|
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
|
|
elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* reserve_elfcorehdr() - reserves memory for elf core header
|
|
|
|
*
|
|
|
|
* This function reserves the memory occupied by an elf core header
|
|
|
|
* described in the device tree. This region contains all the
|
|
|
|
* information about primary kernel's core image and is used by a dump
|
|
|
|
* capture kernel to access the system memory on primary kernel.
|
|
|
|
*/
|
|
|
|
static void __init reserve_elfcorehdr(void)
|
|
|
|
{
|
|
|
|
of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
|
|
|
|
|
|
|
|
if (!elfcorehdr_size)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
|
|
|
|
pr_warn("elfcorehdr is overlapped\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
|
|
|
|
|
|
|
|
pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
|
|
|
|
elfcorehdr_size >> 10, elfcorehdr_addr);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void __init reserve_elfcorehdr(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_CRASH_DUMP */
|
2014-07-18 18:54:37 +08:00
|
|
|
/*
|
2017-12-24 20:52:03 +08:00
|
|
|
* Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
|
2014-07-18 18:54:37 +08:00
|
|
|
* currently assumes that for memory starting above 4G, 32-bit devices will
|
|
|
|
* use a DMA offset.
|
|
|
|
*/
|
2015-11-20 17:59:10 +08:00
|
|
|
static phys_addr_t __init max_zone_dma_phys(void)
|
2014-07-18 18:54:37 +08:00
|
|
|
{
|
|
|
|
phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
|
|
|
|
return min(offset + (1ULL << 32), memblock_end_of_DRAM());
|
|
|
|
}
|
|
|
|
|
2016-04-09 06:50:27 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
|
|
|
|
static void __init zone_sizes_init(unsigned long min, unsigned long max)
|
|
|
|
{
|
|
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
|
|
|
|
|
2017-12-24 20:52:03 +08:00
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA32))
|
|
|
|
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
|
2016-04-09 06:50:27 +08:00
|
|
|
max_zone_pfns[ZONE_NORMAL] = max;
|
|
|
|
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
2012-03-05 19:49:27 +08:00
|
|
|
static void __init zone_sizes_init(unsigned long min, unsigned long max)
|
|
|
|
{
|
|
|
|
struct memblock_region *reg;
|
|
|
|
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
|
2014-02-27 20:09:22 +08:00
|
|
|
unsigned long max_dma = min;
|
2012-03-05 19:49:27 +08:00
|
|
|
|
|
|
|
memset(zone_size, 0, sizeof(zone_size));
|
|
|
|
|
|
|
|
/* 4GB maximum for 32-bit only capable devices */
|
2017-12-24 20:52:03 +08:00
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
2015-10-28 01:40:26 +08:00
|
|
|
max_dma = PFN_DOWN(arm64_dma_phys_limit);
|
2017-12-24 20:52:03 +08:00
|
|
|
zone_size[ZONE_DMA32] = max_dma - min;
|
2015-10-28 01:40:26 +08:00
|
|
|
#endif
|
2014-02-27 20:09:22 +08:00
|
|
|
zone_size[ZONE_NORMAL] = max - max_dma;
|
2012-03-05 19:49:27 +08:00
|
|
|
|
|
|
|
memcpy(zhole_size, zone_size, sizeof(zhole_size));
|
|
|
|
|
|
|
|
for_each_memblock(memory, reg) {
|
|
|
|
unsigned long start = memblock_region_memory_base_pfn(reg);
|
|
|
|
unsigned long end = memblock_region_memory_end_pfn(reg);
|
|
|
|
|
|
|
|
if (start >= max)
|
|
|
|
continue;
|
2014-02-27 20:09:22 +08:00
|
|
|
|
2017-12-24 20:52:03 +08:00
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
2015-10-28 01:40:26 +08:00
|
|
|
if (start < max_dma) {
|
2014-02-27 20:09:22 +08:00
|
|
|
unsigned long dma_end = min(end, max_dma);
|
2017-12-24 20:52:03 +08:00
|
|
|
zhole_size[ZONE_DMA32] -= dma_end - start;
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
2015-10-28 01:40:26 +08:00
|
|
|
#endif
|
2014-02-27 20:09:22 +08:00
|
|
|
if (end > max_dma) {
|
2012-03-05 19:49:27 +08:00
|
|
|
unsigned long normal_end = min(end, max);
|
2014-02-27 20:09:22 +08:00
|
|
|
unsigned long normal_start = max(start, max_dma);
|
2012-03-05 19:49:27 +08:00
|
|
|
zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
free_area_init_node(0, zone_size, min, zhole_size);
|
|
|
|
}
|
|
|
|
|
2016-04-09 06:50:27 +08:00
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
|
2012-03-05 19:49:27 +08:00
|
|
|
int pfn_valid(unsigned long pfn)
|
|
|
|
{
|
arm64: mm: check for upper PAGE_SHIFT bits in pfn_valid()
ARM64's pfn_valid() shifts away the upper PAGE_SHIFT bits of the input
before seeing if the PFN is valid. This leads to false positives when
some of the upper bits are set, but the lower bits match a valid PFN.
For example, the following userspace code looks up a bogus entry in
/proc/kpageflags:
int pagemap = open("/proc/self/pagemap", O_RDONLY);
int pageflags = open("/proc/kpageflags", O_RDONLY);
uint64_t pfn, val;
lseek64(pagemap, [...], SEEK_SET);
read(pagemap, &pfn, sizeof(pfn));
if (pfn & (1UL << 63)) { /* valid PFN */
pfn &= ((1UL << 55) - 1); /* clear flag bits */
pfn |= (1UL << 55);
lseek64(pageflags, pfn * sizeof(uint64_t), SEEK_SET);
read(pageflags, &val, sizeof(val));
}
On ARM64 this causes the userspace process to crash with SIGSEGV rather
than reading (1 << KPF_NOPAGE). kpageflags_read() treats the offset as
valid, and stable_page_flags() will try to access an address between the
user and kernel address ranges.
Fixes: c1cc1552616d ("arm64: MMU initialisation")
Cc: stable@vger.kernel.org
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-08-16 03:51:21 +08:00
|
|
|
phys_addr_t addr = pfn << PAGE_SHIFT;
|
|
|
|
|
|
|
|
if ((addr >> PAGE_SHIFT) != pfn)
|
|
|
|
return 0;
|
2018-12-12 02:48:48 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
|
|
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
|
|
|
|
return 0;
|
|
|
|
#endif
|
arm64: mm: check for upper PAGE_SHIFT bits in pfn_valid()
ARM64's pfn_valid() shifts away the upper PAGE_SHIFT bits of the input
before seeing if the PFN is valid. This leads to false positives when
some of the upper bits are set, but the lower bits match a valid PFN.
For example, the following userspace code looks up a bogus entry in
/proc/kpageflags:
int pagemap = open("/proc/self/pagemap", O_RDONLY);
int pageflags = open("/proc/kpageflags", O_RDONLY);
uint64_t pfn, val;
lseek64(pagemap, [...], SEEK_SET);
read(pagemap, &pfn, sizeof(pfn));
if (pfn & (1UL << 63)) { /* valid PFN */
pfn &= ((1UL << 55) - 1); /* clear flag bits */
pfn |= (1UL << 55);
lseek64(pageflags, pfn * sizeof(uint64_t), SEEK_SET);
read(pageflags, &val, sizeof(val));
}
On ARM64 this causes the userspace process to crash with SIGSEGV rather
than reading (1 << KPF_NOPAGE). kpageflags_read() treats the offset as
valid, and stable_page_flags() will try to access an address between the
user and kernel address ranges.
Fixes: c1cc1552616d ("arm64: MMU initialisation")
Cc: stable@vger.kernel.org
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-08-16 03:51:21 +08:00
|
|
|
return memblock_is_map_memory(addr);
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(pfn_valid);
|
|
|
|
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
2015-11-20 17:59:10 +08:00
|
|
|
static void __init arm64_memory_present(void)
|
2012-03-05 19:49:27 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
#else
|
2015-11-20 17:59:10 +08:00
|
|
|
static void __init arm64_memory_present(void)
|
2012-03-05 19:49:27 +08:00
|
|
|
{
|
|
|
|
struct memblock_region *reg;
|
|
|
|
|
2016-04-09 06:50:27 +08:00
|
|
|
for_each_memblock(memory, reg) {
|
2016-06-22 19:13:45 +08:00
|
|
|
int nid = memblock_get_region_node(reg);
|
|
|
|
|
2016-04-09 06:50:27 +08:00
|
|
|
memory_present(nid, memblock_region_memory_base_pfn(reg),
|
|
|
|
memblock_region_memory_end_pfn(reg));
|
|
|
|
}
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2018-06-15 06:28:02 +08:00
|
|
|
static phys_addr_t memory_limit = PHYS_ADDR_MAX;
|
2015-01-16 00:42:14 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Limit the memory size that was specified via FDT.
|
|
|
|
*/
|
|
|
|
static int __init early_mem(char *p)
|
|
|
|
{
|
|
|
|
if (!p)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
memory_limit = memparse(p, &p) & PAGE_MASK;
|
|
|
|
pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
early_param("mem", early_mem);
|
|
|
|
|
2017-04-03 10:24:31 +08:00
|
|
|
static int __init early_init_dt_scan_usablemem(unsigned long node,
|
|
|
|
const char *uname, int depth, void *data)
|
|
|
|
{
|
|
|
|
struct memblock_region *usablemem = data;
|
|
|
|
const __be32 *reg;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
if (depth != 1 || strcmp(uname, "chosen") != 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
|
|
|
|
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
|
|
usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init fdt_enforce_memory_region(void)
|
|
|
|
{
|
|
|
|
struct memblock_region reg = {
|
|
|
|
.size = 0,
|
|
|
|
};
|
|
|
|
|
|
|
|
of_scan_flat_dt(early_init_dt_scan_usablemem, ®);
|
|
|
|
|
|
|
|
if (reg.size)
|
|
|
|
memblock_cap_memory_range(reg.base, reg.size);
|
|
|
|
}
|
|
|
|
|
2012-03-05 19:49:27 +08:00
|
|
|
void __init arm64_memblock_init(void)
|
|
|
|
{
|
2016-02-16 20:52:42 +08:00
|
|
|
const s64 linear_region_size = -(s64)PAGE_OFFSET;
|
|
|
|
|
2017-04-03 10:24:31 +08:00
|
|
|
/* Handle linux,usable-memory-range property */
|
|
|
|
fdt_enforce_memory_region();
|
|
|
|
|
2018-01-19 03:13:11 +08:00
|
|
|
/* Remove memory above our supported physical address size */
|
|
|
|
memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
|
|
|
|
|
2016-03-02 16:47:13 +08:00
|
|
|
/*
|
|
|
|
* Ensure that the linear region takes up exactly half of the kernel
|
|
|
|
* virtual address space. This way, we can distinguish a linear address
|
|
|
|
* from a kernel/module/vmalloc address by testing a single bit.
|
|
|
|
*/
|
|
|
|
BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
|
|
|
|
|
2016-02-16 20:52:42 +08:00
|
|
|
/*
|
|
|
|
* Select a suitable value for the base of physical memory.
|
|
|
|
*/
|
|
|
|
memstart_addr = round_down(memblock_start_of_DRAM(),
|
|
|
|
ARM64_MEMSTART_ALIGN);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove the memory that we will not be able to cover with the
|
|
|
|
* linear mapping. Take care not to clip the kernel which may be
|
|
|
|
* high in memory.
|
|
|
|
*/
|
2017-01-11 05:35:49 +08:00
|
|
|
memblock_remove(max_t(u64, memstart_addr + linear_region_size,
|
|
|
|
__pa_symbol(_end)), ULLONG_MAX);
|
2016-03-30 20:25:46 +08:00
|
|
|
if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
|
|
|
|
/* ensure that memstart_addr remains sufficiently aligned */
|
|
|
|
memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
|
|
|
|
ARM64_MEMSTART_ALIGN);
|
|
|
|
memblock_remove(0, memstart_addr);
|
|
|
|
}
|
2016-02-16 20:52:42 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Apply the memory limit if it was set. Since the kernel may be loaded
|
|
|
|
* high up in memory, add back the kernel region that must be accessible
|
|
|
|
* via the linear mapping.
|
|
|
|
*/
|
2018-06-15 06:28:02 +08:00
|
|
|
if (memory_limit != PHYS_ADDR_MAX) {
|
2016-07-29 06:48:29 +08:00
|
|
|
memblock_mem_limit_remove_map(memory_limit);
|
2017-01-11 05:35:49 +08:00
|
|
|
memblock_add(__pa_symbol(_text), (u64)(_end - _text));
|
2016-02-16 20:52:42 +08:00
|
|
|
}
|
2015-01-16 00:42:14 +08:00
|
|
|
|
2018-11-06 06:54:29 +08:00
|
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
|
2016-03-30 21:18:42 +08:00
|
|
|
/*
|
|
|
|
* Add back the memory we just removed if it results in the
|
|
|
|
* initrd to become inaccessible via the linear mapping.
|
|
|
|
* Otherwise, this is a no-op
|
|
|
|
*/
|
2018-11-06 06:54:29 +08:00
|
|
|
u64 base = phys_initrd_start & PAGE_MASK;
|
|
|
|
u64 size = PAGE_ALIGN(phys_initrd_size);
|
2016-03-30 21:18:42 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We can only add back the initrd memory if we don't end up
|
|
|
|
* with more memory than we can address via the linear mapping.
|
|
|
|
* It is up to the bootloader to position the kernel and the
|
|
|
|
* initrd reasonably close to each other (i.e., within 32 GB of
|
|
|
|
* each other) so that all granule/#levels combinations can
|
|
|
|
* always access both.
|
|
|
|
*/
|
|
|
|
if (WARN(base < memblock_start_of_DRAM() ||
|
|
|
|
base + size > memblock_start_of_DRAM() +
|
|
|
|
linear_region_size,
|
|
|
|
"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
|
|
|
|
initrd_start = 0;
|
|
|
|
} else {
|
|
|
|
memblock_remove(base, size); /* clear MEMBLOCK_ flags */
|
|
|
|
memblock_add(base, size);
|
|
|
|
memblock_reserve(base, size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-01-29 18:59:03 +08:00
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
|
|
extern u16 memstart_offset_seed;
|
|
|
|
u64 range = linear_region_size -
|
|
|
|
(memblock_end_of_DRAM() - memblock_start_of_DRAM());
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the size of the linear region exceeds, by a sufficient
|
|
|
|
* margin, the size of the region that the available physical
|
|
|
|
* memory spans, randomize the linear region as well.
|
|
|
|
*/
|
|
|
|
if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
|
2018-12-24 15:40:07 +08:00
|
|
|
range /= ARM64_MEMSTART_ALIGN;
|
2016-01-29 18:59:03 +08:00
|
|
|
memstart_addr -= ARM64_MEMSTART_ALIGN *
|
|
|
|
((range * memstart_offset_seed) >> 16);
|
|
|
|
}
|
|
|
|
}
|
2015-01-16 00:42:14 +08:00
|
|
|
|
2014-06-24 23:51:35 +08:00
|
|
|
/*
|
|
|
|
* Register the kernel text, kernel data, initrd, and initial
|
|
|
|
* pagetables with memblock.
|
|
|
|
*/
|
2017-01-11 05:35:49 +08:00
|
|
|
memblock_reserve(__pa_symbol(_text), _end - _text);
|
2018-11-06 06:54:29 +08:00
|
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
|
2016-02-16 20:52:41 +08:00
|
|
|
/* the generic initrd code expects virtual addresses */
|
2018-11-06 06:54:29 +08:00
|
|
|
initrd_start = __phys_to_virt(phys_initrd_start);
|
|
|
|
initrd_end = initrd_start + phys_initrd_size;
|
2016-02-16 20:52:41 +08:00
|
|
|
}
|
2012-03-05 19:49:27 +08:00
|
|
|
|
2014-09-09 01:01:08 +08:00
|
|
|
early_init_fdt_scan_reserved_mem();
|
2014-06-13 20:41:20 +08:00
|
|
|
|
|
|
|
/* 4GB maximum for 32-bit only capable devices */
|
2017-12-24 20:52:03 +08:00
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA32))
|
2015-02-06 02:01:53 +08:00
|
|
|
arm64_dma_phys_limit = max_zone_dma_phys();
|
|
|
|
else
|
|
|
|
arm64_dma_phys_limit = PHYS_MASK + 1;
|
2017-04-03 10:24:32 +08:00
|
|
|
|
|
|
|
reserve_crashkernel();
|
|
|
|
|
arm64: kdump: provide /proc/vmcore file
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.
A user space tool, like kexec-tools, is responsible for allocating
a separate region for the core's ELF header within crash kdump kernel
memory and filling it in when executing kexec_load().
Then, its location will be advertised to crash dump kernel via a new
device-tree property, "linux,elfcorehdr", and crash dump kernel preserves
the region for later use with reserve_elfcorehdr() at boot time.
On crash dump kernel, /proc/vmcore will access the primary kernel's memory
with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing
it since it does not reside in linear mapping on crash dump kernel.
Meanwhile, elfcorehdr_read() is simple as the region is always mapped.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-03 10:24:38 +08:00
|
|
|
reserve_elfcorehdr();
|
|
|
|
|
2017-12-04 22:13:05 +08:00
|
|
|
high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
|
|
|
|
|
2015-02-06 02:01:53 +08:00
|
|
|
dma_contiguous_reserve(arm64_dma_phys_limit);
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void __init bootmem_init(void)
|
|
|
|
{
|
|
|
|
unsigned long min, max;
|
|
|
|
|
|
|
|
min = PFN_UP(memblock_start_of_DRAM());
|
|
|
|
max = PFN_DOWN(memblock_end_of_DRAM());
|
|
|
|
|
2015-04-15 06:48:33 +08:00
|
|
|
early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
|
|
|
|
|
2016-04-09 06:50:27 +08:00
|
|
|
max_pfn = max_low_pfn = max;
|
|
|
|
|
|
|
|
arm64_numa_init();
|
2012-03-05 19:49:27 +08:00
|
|
|
/*
|
|
|
|
* Sparsemem tries to allocate bootmem in memory_present(), so must be
|
|
|
|
* done after the fixed reservations.
|
|
|
|
*/
|
|
|
|
arm64_memory_present();
|
|
|
|
|
|
|
|
sparse_init();
|
|
|
|
zone_sizes_init(min, max);
|
|
|
|
|
2016-04-09 06:50:27 +08:00
|
|
|
memblock_dump_all();
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
|
|
static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
|
|
|
|
{
|
|
|
|
struct page *start_pg, *end_pg;
|
|
|
|
unsigned long pg, pgend;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert start_pfn/end_pfn to a struct page pointer.
|
|
|
|
*/
|
|
|
|
start_pg = pfn_to_page(start_pfn - 1) + 1;
|
|
|
|
end_pg = pfn_to_page(end_pfn - 1) + 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert to physical addresses, and round start upwards and end
|
|
|
|
* downwards.
|
|
|
|
*/
|
|
|
|
pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
|
|
|
|
pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there are free pages between these, free the section of the
|
|
|
|
* memmap array.
|
|
|
|
*/
|
|
|
|
if (pg < pgend)
|
2018-10-31 06:09:21 +08:00
|
|
|
memblock_free(pg, pgend - pg);
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The mem_map array can get very big. Free the unused area of the memory map.
|
|
|
|
*/
|
|
|
|
static void __init free_unused_memmap(void)
|
|
|
|
{
|
|
|
|
unsigned long start, prev_end = 0;
|
|
|
|
struct memblock_region *reg;
|
|
|
|
|
|
|
|
for_each_memblock(memory, reg) {
|
|
|
|
start = __phys_to_pfn(reg->base);
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
|
|
/*
|
|
|
|
* Take care not to free memmap entries that don't exist due
|
|
|
|
* to SPARSEMEM sections which aren't present.
|
|
|
|
*/
|
|
|
|
start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
|
|
|
|
#endif
|
|
|
|
/*
|
|
|
|
* If we had a previous bank, and there is a space between the
|
|
|
|
* current bank and the previous, free it.
|
|
|
|
*/
|
|
|
|
if (prev_end && prev_end < start)
|
|
|
|
free_memmap(prev_end, start);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Align up here since the VM subsystem insists that the
|
|
|
|
* memmap entries are valid from the bank end aligned to
|
|
|
|
* MAX_ORDER_NR_PAGES.
|
|
|
|
*/
|
2015-06-17 00:38:47 +08:00
|
|
|
prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
|
2012-03-05 19:49:27 +08:00
|
|
|
MAX_ORDER_NR_PAGES);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
|
|
if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
|
|
|
|
free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* mem_init() marks the free areas in the mem_map and tells us how much memory
|
|
|
|
* is free. This is done after various parts of the system have claimed their
|
|
|
|
* memory after the kernel image.
|
|
|
|
*/
|
|
|
|
void __init mem_init(void)
|
|
|
|
{
|
2016-12-16 21:28:41 +08:00
|
|
|
if (swiotlb_force == SWIOTLB_FORCE ||
|
|
|
|
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
|
2016-06-08 15:53:46 +08:00
|
|
|
swiotlb_init(1);
|
2017-01-16 19:46:33 +08:00
|
|
|
else
|
|
|
|
swiotlb_force = SWIOTLB_NO_FORCE;
|
2015-02-06 02:01:53 +08:00
|
|
|
|
2014-09-17 01:53:54 +08:00
|
|
|
set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
|
2012-03-05 19:49:27 +08:00
|
|
|
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
|
|
free_unused_memmap();
|
|
|
|
#endif
|
2013-07-04 06:03:49 +08:00
|
|
|
/* this will put all unused low memory onto the freelists */
|
2018-10-31 06:09:30 +08:00
|
|
|
memblock_free_all();
|
2012-03-05 19:49:27 +08:00
|
|
|
|
2017-04-03 10:24:35 +08:00
|
|
|
kexec_reserve_crashkres_pages();
|
|
|
|
|
2013-07-04 06:04:02 +08:00
|
|
|
mem_init_print_info(NULL);
|
2012-03-05 19:49:27 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check boundaries twice: Some fundamental inconsistencies can be
|
|
|
|
* detected at build time already.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_COMPAT
|
2018-12-07 06:50:37 +08:00
|
|
|
BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
|
2012-03-05 19:49:27 +08:00
|
|
|
#endif
|
|
|
|
|
2013-07-04 06:03:49 +08:00
|
|
|
if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
|
2012-03-05 19:49:27 +08:00
|
|
|
extern int sysctl_overcommit_memory;
|
|
|
|
/*
|
|
|
|
* On a machine this small we won't get anywhere without
|
|
|
|
* overcommit, so turn it on by default.
|
|
|
|
*/
|
|
|
|
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_initmem(void)
|
|
|
|
{
|
2017-01-11 05:35:49 +08:00
|
|
|
free_reserved_area(lm_alias(__init_begin),
|
|
|
|
lm_alias(__init_end),
|
2016-03-30 22:45:57 +08:00
|
|
|
0, "unused kernel");
|
2016-09-05 19:30:22 +08:00
|
|
|
/*
|
|
|
|
* Unmap the __init region but leave the VM area in place. This
|
|
|
|
* prevents the region from being reused for kernel modules, which
|
|
|
|
* is not supported by kallsyms.
|
|
|
|
*/
|
|
|
|
unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
|
2015-07-27 10:32:53 +08:00
|
|
|
static int keep_initrd __initdata;
|
2012-03-05 19:49:27 +08:00
|
|
|
|
2015-07-27 10:32:53 +08:00
|
|
|
void __init free_initrd_mem(unsigned long start, unsigned long end)
|
2012-03-05 19:49:27 +08:00
|
|
|
{
|
2018-04-30 12:20:18 +08:00
|
|
|
if (!keep_initrd) {
|
2013-07-04 06:02:54 +08:00
|
|
|
free_reserved_area((void *)start, (void *)end, 0, "initrd");
|
2018-04-30 12:20:18 +08:00
|
|
|
memblock_free(__virt_to_phys(start), end - start);
|
|
|
|
}
|
2012-03-05 19:49:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int __init keepinitrd_setup(char *__unused)
|
|
|
|
{
|
|
|
|
keep_initrd = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("keepinitrd", keepinitrd_setup);
|
|
|
|
#endif
|
2016-02-16 20:52:42 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Dump out memory limit information on panic.
|
|
|
|
*/
|
|
|
|
static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
|
|
|
|
{
|
2018-06-15 06:28:02 +08:00
|
|
|
if (memory_limit != PHYS_ADDR_MAX) {
|
2016-02-16 20:52:42 +08:00
|
|
|
pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
|
|
|
|
} else {
|
|
|
|
pr_emerg("Memory Limit: none\n");
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct notifier_block mem_limit_notifier = {
|
|
|
|
.notifier_call = dump_mem_limit,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init register_mem_limit_dumper(void)
|
|
|
|
{
|
|
|
|
atomic_notifier_chain_register(&panic_notifier_list,
|
|
|
|
&mem_limit_notifier);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
__initcall(register_mem_limit_dumper);
|