2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 15:15:33 +08:00
linux-next/arch/powerpc/kernel/ibmebus.c

751 lines
16 KiB
C
Raw Normal View History

/*
* IBM PowerPC IBM eBus Infrastructure Support.
*
* Copyright (c) 2005 IBM Corporation
* Joachim Fenkes <fenkes@de.ibm.com>
* Heiko J Schick <schickhj@de.ibm.com>
*
* All rights reserved.
*
* This source code is distributed under a dual license of GPL v2.0 and OpenIB
* BSD.
*
* OpenIB BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/init.h>
#include <linux/console.h>
#include <linux/kobject.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/of.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/of_platform.h>
#include <asm/ibmebus.h>
#include <asm/abs_addr.h>
static struct device ibmebus_bus_device = { /* fake "parent" device */
.init_name = "ibmebus",
};
struct bus_type ibmebus_bus_type;
/* These devices will automatically be added to the bus during init */
static struct of_device_id __initdata ibmebus_matches[] = {
{ .compatible = "IBM,lhca" },
{ .compatible = "IBM,lhea" },
{},
};
static void *ibmebus_alloc_coherent(struct device *dev,
size_t size,
dma_addr_t *dma_handle,
gfp_t flag)
{
void *mem;
mem = kmalloc(size, flag);
*dma_handle = (dma_addr_t)mem;
return mem;
}
static void ibmebus_free_coherent(struct device *dev,
size_t size, void *vaddr,
dma_addr_t dma_handle)
{
kfree(vaddr);
}
static dma_addr_t ibmebus_map_page(struct device *dev,
struct page *page,
unsigned long offset,
size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
return (dma_addr_t)(page_address(page) + offset);
}
static void ibmebus_unmap_page(struct device *dev,
dma_addr_t dma_addr,
size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
return;
}
static int ibmebus_map_sg(struct device *dev,
struct scatterlist *sgl,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
sg->dma_address = (dma_addr_t) sg_virt(sg);
sg->dma_length = sg->length;
}
return nents;
}
static void ibmebus_unmap_sg(struct device *dev,
struct scatterlist *sg,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
return;
}
static int ibmebus_dma_supported(struct device *dev, u64 mask)
{
return 1;
}
static struct dma_map_ops ibmebus_dma_ops = {
.alloc_coherent = ibmebus_alloc_coherent,
.free_coherent = ibmebus_free_coherent,
.map_sg = ibmebus_map_sg,
.unmap_sg = ibmebus_unmap_sg,
.dma_supported = ibmebus_dma_supported,
.map_page = ibmebus_map_page,
.unmap_page = ibmebus_unmap_page,
};
static int ibmebus_match_path(struct device *dev, void *data)
{
struct device_node *dn = to_platform_device(dev)->dev.of_node;
return (dn->full_name &&
(strcasecmp((char *)data, dn->full_name) == 0));
}
static int ibmebus_match_node(struct device *dev, void *data)
{
return to_platform_device(dev)->dev.of_node == data;
}
static int ibmebus_create_device(struct device_node *dn)
{
struct platform_device *dev;
int ret;
dev = of_device_alloc(dn, NULL, &ibmebus_bus_device);
if (!dev)
return -ENOMEM;
dev->dev.bus = &ibmebus_bus_type;
dev->dev.archdata.dma_ops = &ibmebus_dma_ops;
ret = of_device_add(dev);
if (ret)
platform_device_put(dev);
return ret;
}
static int ibmebus_create_devices(const struct of_device_id *matches)
{
struct device_node *root, *child;
int ret = 0;
root = of_find_node_by_path("/");
for_each_child_of_node(root, child) {
if (!of_match_node(matches, child))
continue;
if (bus_find_device(&ibmebus_bus_type, NULL, child,
ibmebus_match_node))
continue;
ret = ibmebus_create_device(child);
if (ret) {
printk(KERN_ERR "%s: failed to create device (%i)",
__func__, ret);
of_node_put(child);
break;
}
}
of_node_put(root);
return ret;
}
int ibmebus_register_driver(struct of_platform_driver *drv)
{
/* If the driver uses devices that ibmebus doesn't know, add them */
ibmebus_create_devices(drv->driver.of_match_table);
drv->driver.bus = &ibmebus_bus_type;
return driver_register(&drv->driver);
}
EXPORT_SYMBOL(ibmebus_register_driver);
void ibmebus_unregister_driver(struct of_platform_driver *drv)
{
driver_unregister(&drv->driver);
}
EXPORT_SYMBOL(ibmebus_unregister_driver);
int ibmebus_request_irq(u32 ist, irq_handler_t handler,
unsigned long irq_flags, const char *devname,
void *dev_id)
{
[PATCH] powerpc: fix trigger handling in the new irq code This patch slightly reworks the new irq code to fix a small design error. I removed the passing of the trigger to the map() calls entirely, it was not a good idea to have one call do two different things. It also fixes a couple of corner cases. Mapping a linux virtual irq to a physical irq now does only that. Setting the trigger is a different action which has a different call. The main changes are: - I no longer call host->ops->map() for an already mapped irq, I just return the virtual number that was already mapped. It was called before to give an opportunity to change the trigger, but that was causing issues as that could happen while the interrupt was in use by a device, and because of the trigger change, map would potentially muck around with things in a racy way. That was causing much burden on a given's controller implementation of map() to get it right. This is much simpler now. map() is only called on the initial mapping of an irq, meaning that you know that this irq is _not_ being used. You can initialize the hardware if you want (though you don't have to). - Controllers that can handle different type of triggers (level/edge/etc...) now implement the standard irq_chip->set_type() call as defined by the generic code. That means that you can use the standard set_irq_type() to configure an irq line manually if you wish or (though I don't like that interface), pass explicit trigger flags to request_irq() as defined by the generic kernel interfaces. Also, using those interfaces guarantees that your controller set_type callback is called with the descriptor lock held, thus providing locking against activity on the same interrupt (including mask/unmask/etc...) automatically. A result is that, for example, MPIC's own map() implementation calls irq_set_type(NONE) to configure the hardware to the default triggers. - To allow the above, the irq_map array entry for the new mapped interrupt is now set before map() callback is called for the controller. - The irq_create_of_mapping() (also used by irq_of_parse_and_map()) function for mapping interrupts from the device-tree now also call the separate set_irq_type(), and only does so if there is a change in the trigger type. - While I was at it, I changed pci_read_irq_line() (which is the helper I would expect most archs to use in their pcibios_fixup() to get the PCI interrupt routing from the device tree) to also handle a fallback when the DT mapping fails consisting of reading the PCI_INTERRUPT_PIN to know wether the device has an interrupt at all, and the the PCI_INTERRUPT_LINE to get an interrupt number from the device. That number is then mapped using the default controller, and the trigger is set to level low. That default behaviour works for several platforms that don't have a proper interrupt tree like Pegasos. If it doesn't work for your platform, then either provide a proper interrupt tree from the firmware so that fallback isn't needed, or don't call pci_read_irq_line() - Add back a bit that got dropped by my main rework patch for properly clearing pending IPIs on pSeries when using a kexec Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10 19:44:42 +08:00
unsigned int irq = irq_create_mapping(NULL, ist);
if (irq == NO_IRQ)
return -EINVAL;
return request_irq(irq, handler, irq_flags, devname, dev_id);
}
EXPORT_SYMBOL(ibmebus_request_irq);
void ibmebus_free_irq(u32 ist, void *dev_id)
{
2006-07-03 19:36:01 +08:00
unsigned int irq = irq_find_mapping(NULL, ist);
free_irq(irq, dev_id);
irq_dispose_mapping(irq);
}
EXPORT_SYMBOL(ibmebus_free_irq);
static char *ibmebus_chomp(const char *in, size_t count)
{
char *out = kmalloc(count + 1, GFP_KERNEL);
if (!out)
return NULL;
memcpy(out, in, count);
out[count] = '\0';
if (out[count - 1] == '\n')
out[count - 1] = '\0';
return out;
}
static ssize_t ibmebus_store_probe(struct bus_type *bus,
const char *buf, size_t count)
{
struct device_node *dn = NULL;
char *path;
ssize_t rc = 0;
path = ibmebus_chomp(buf, count);
if (!path)
return -ENOMEM;
if (bus_find_device(&ibmebus_bus_type, NULL, path,
ibmebus_match_path)) {
printk(KERN_WARNING "%s: %s has already been probed\n",
__func__, path);
rc = -EEXIST;
goto out;
}
if ((dn = of_find_node_by_path(path))) {
rc = ibmebus_create_device(dn);
of_node_put(dn);
} else {
printk(KERN_WARNING "%s: no such device node: %s\n",
__func__, path);
rc = -ENODEV;
}
out:
kfree(path);
if (rc)
return rc;
return count;
}
static ssize_t ibmebus_store_remove(struct bus_type *bus,
const char *buf, size_t count)
{
struct device *dev;
char *path;
path = ibmebus_chomp(buf, count);
if (!path)
return -ENOMEM;
if ((dev = bus_find_device(&ibmebus_bus_type, NULL, path,
ibmebus_match_path))) {
of_device_unregister(to_platform_device(dev));
kfree(path);
return count;
} else {
printk(KERN_WARNING "%s: %s not on the bus\n",
__func__, path);
kfree(path);
return -ENODEV;
}
}
static struct bus_attribute ibmebus_bus_attrs[] = {
__ATTR(probe, S_IWUSR, NULL, ibmebus_store_probe),
__ATTR(remove, S_IWUSR, NULL, ibmebus_store_remove),
__ATTR_NULL
};
static int ibmebus_bus_bus_match(struct device *dev, struct device_driver *drv)
{
const struct of_device_id *matches = drv->of_match_table;
if (!matches)
return 0;
return of_match_device(matches, dev) != NULL;
}
static int ibmebus_bus_device_probe(struct device *dev)
{
int error = -ENODEV;
struct of_platform_driver *drv;
struct platform_device *of_dev;
const struct of_device_id *match;
drv = to_of_platform_driver(dev->driver);
of_dev = to_platform_device(dev);
if (!drv->probe)
return error;
of_dev_get(of_dev);
match = of_match_device(drv->driver.of_match_table, dev);
if (match)
error = drv->probe(of_dev, match);
if (error)
of_dev_put(of_dev);
return error;
}
static int ibmebus_bus_device_remove(struct device *dev)
{
struct platform_device *of_dev = to_platform_device(dev);
struct of_platform_driver *drv = to_of_platform_driver(dev->driver);
if (dev->driver && drv->remove)
drv->remove(of_dev);
return 0;
}
static void ibmebus_bus_device_shutdown(struct device *dev)
{
struct platform_device *of_dev = to_platform_device(dev);
struct of_platform_driver *drv = to_of_platform_driver(dev->driver);
if (dev->driver && drv->shutdown)
drv->shutdown(of_dev);
}
/*
* ibmebus_bus_device_attrs
*/
static ssize_t devspec_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *ofdev;
ofdev = to_platform_device(dev);
return sprintf(buf, "%s\n", ofdev->dev.of_node->full_name);
}
static ssize_t name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *ofdev;
ofdev = to_platform_device(dev);
return sprintf(buf, "%s\n", ofdev->dev.of_node->name);
}
static ssize_t modalias_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t len = of_device_get_modalias(dev, buf, PAGE_SIZE - 2);
buf[len] = '\n';
buf[len+1] = 0;
return len+1;
}
struct device_attribute ibmebus_bus_device_attrs[] = {
__ATTR_RO(devspec),
__ATTR_RO(name),
__ATTR_RO(modalias),
__ATTR_NULL
};
#ifdef CONFIG_PM_SLEEP
static int ibmebus_bus_legacy_suspend(struct device *dev, pm_message_t mesg)
{
struct platform_device *of_dev = to_platform_device(dev);
struct of_platform_driver *drv = to_of_platform_driver(dev->driver);
int ret = 0;
if (dev->driver && drv->suspend)
ret = drv->suspend(of_dev, mesg);
return ret;
}
static int ibmebus_bus_legacy_resume(struct device *dev)
{
struct platform_device *of_dev = to_platform_device(dev);
struct of_platform_driver *drv = to_of_platform_driver(dev->driver);
int ret = 0;
if (dev->driver && drv->resume)
ret = drv->resume(of_dev);
return ret;
}
static int ibmebus_bus_pm_prepare(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (drv && drv->pm && drv->pm->prepare)
ret = drv->pm->prepare(dev);
return ret;
}
static void ibmebus_bus_pm_complete(struct device *dev)
{
struct device_driver *drv = dev->driver;
if (drv && drv->pm && drv->pm->complete)
drv->pm->complete(dev);
}
#ifdef CONFIG_SUSPEND
static int ibmebus_bus_pm_suspend(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->suspend)
ret = drv->pm->suspend(dev);
} else {
ret = ibmebus_bus_legacy_suspend(dev, PMSG_SUSPEND);
}
return ret;
}
static int ibmebus_bus_pm_suspend_noirq(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->suspend_noirq)
ret = drv->pm->suspend_noirq(dev);
}
return ret;
}
static int ibmebus_bus_pm_resume(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->resume)
ret = drv->pm->resume(dev);
} else {
ret = ibmebus_bus_legacy_resume(dev);
}
return ret;
}
static int ibmebus_bus_pm_resume_noirq(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->resume_noirq)
ret = drv->pm->resume_noirq(dev);
}
return ret;
}
#else /* !CONFIG_SUSPEND */
#define ibmebus_bus_pm_suspend NULL
#define ibmebus_bus_pm_resume NULL
#define ibmebus_bus_pm_suspend_noirq NULL
#define ibmebus_bus_pm_resume_noirq NULL
#endif /* !CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
static int ibmebus_bus_pm_freeze(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->freeze)
ret = drv->pm->freeze(dev);
} else {
ret = ibmebus_bus_legacy_suspend(dev, PMSG_FREEZE);
}
return ret;
}
static int ibmebus_bus_pm_freeze_noirq(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->freeze_noirq)
ret = drv->pm->freeze_noirq(dev);
}
return ret;
}
static int ibmebus_bus_pm_thaw(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->thaw)
ret = drv->pm->thaw(dev);
} else {
ret = ibmebus_bus_legacy_resume(dev);
}
return ret;
}
static int ibmebus_bus_pm_thaw_noirq(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->thaw_noirq)
ret = drv->pm->thaw_noirq(dev);
}
return ret;
}
static int ibmebus_bus_pm_poweroff(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->poweroff)
ret = drv->pm->poweroff(dev);
} else {
ret = ibmebus_bus_legacy_suspend(dev, PMSG_HIBERNATE);
}
return ret;
}
static int ibmebus_bus_pm_poweroff_noirq(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->poweroff_noirq)
ret = drv->pm->poweroff_noirq(dev);
}
return ret;
}
static int ibmebus_bus_pm_restore(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->restore)
ret = drv->pm->restore(dev);
} else {
ret = ibmebus_bus_legacy_resume(dev);
}
return ret;
}
static int ibmebus_bus_pm_restore_noirq(struct device *dev)
{
struct device_driver *drv = dev->driver;
int ret = 0;
if (!drv)
return 0;
if (drv->pm) {
if (drv->pm->restore_noirq)
ret = drv->pm->restore_noirq(dev);
}
return ret;
}
#else /* !CONFIG_HIBERNATE_CALLBACKS */
#define ibmebus_bus_pm_freeze NULL
#define ibmebus_bus_pm_thaw NULL
#define ibmebus_bus_pm_poweroff NULL
#define ibmebus_bus_pm_restore NULL
#define ibmebus_bus_pm_freeze_noirq NULL
#define ibmebus_bus_pm_thaw_noirq NULL
#define ibmebus_bus_pm_poweroff_noirq NULL
#define ibmebus_bus_pm_restore_noirq NULL
#endif /* !CONFIG_HIBERNATE_CALLBACKS */
static struct dev_pm_ops ibmebus_bus_dev_pm_ops = {
.prepare = ibmebus_bus_pm_prepare,
.complete = ibmebus_bus_pm_complete,
.suspend = ibmebus_bus_pm_suspend,
.resume = ibmebus_bus_pm_resume,
.freeze = ibmebus_bus_pm_freeze,
.thaw = ibmebus_bus_pm_thaw,
.poweroff = ibmebus_bus_pm_poweroff,
.restore = ibmebus_bus_pm_restore,
.suspend_noirq = ibmebus_bus_pm_suspend_noirq,
.resume_noirq = ibmebus_bus_pm_resume_noirq,
.freeze_noirq = ibmebus_bus_pm_freeze_noirq,
.thaw_noirq = ibmebus_bus_pm_thaw_noirq,
.poweroff_noirq = ibmebus_bus_pm_poweroff_noirq,
.restore_noirq = ibmebus_bus_pm_restore_noirq,
};
#define IBMEBUS_BUS_PM_OPS_PTR (&ibmebus_bus_dev_pm_ops)
#else /* !CONFIG_PM_SLEEP */
#define IBMEBUS_BUS_PM_OPS_PTR NULL
#endif /* !CONFIG_PM_SLEEP */
struct bus_type ibmebus_bus_type = {
.name = "ibmebus",
.uevent = of_device_uevent,
.bus_attrs = ibmebus_bus_attrs,
.match = ibmebus_bus_bus_match,
.probe = ibmebus_bus_device_probe,
.remove = ibmebus_bus_device_remove,
.shutdown = ibmebus_bus_device_shutdown,
.dev_attrs = ibmebus_bus_device_attrs,
.pm = IBMEBUS_BUS_PM_OPS_PTR,
};
EXPORT_SYMBOL(ibmebus_bus_type);
static int __init ibmebus_bus_init(void)
{
int err;
printk(KERN_INFO "IBM eBus Device Driver\n");
err = bus_register(&ibmebus_bus_type);
if (err) {
printk(KERN_ERR "%s: failed to register IBM eBus.\n",
__func__);
return err;
}
err = device_register(&ibmebus_bus_device);
if (err) {
printk(KERN_WARNING "%s: device_register returned %i\n",
__func__, err);
bus_unregister(&ibmebus_bus_type);
return err;
}
err = ibmebus_create_devices(ibmebus_matches);
if (err) {
device_unregister(&ibmebus_bus_device);
bus_unregister(&ibmebus_bus_type);
return err;
}
return 0;
}
postcore_initcall(ibmebus_bus_init);