2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/drivers/scsi/raid_class.c

318 lines
7.7 KiB
C
Raw Normal View History

[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
/*
* raid_class.c - implementation of a simple raid visualisation class
*
* Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
*
* This file is licensed under GPLv2
*
* This class is designed to allow raid attributes to be visualised and
* manipulated in a form independent of the underlying raid. Ultimately this
* should work for both hardware and software raids.
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
#include <linux/raid_class.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#define RAID_NUM_ATTRS 3
struct raid_internal {
struct raid_template r;
struct raid_function_template *f;
/* The actual attributes */
struct device_attribute private_attrs[RAID_NUM_ATTRS];
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
/* The array of null terminated pointers to attributes
* needed by scsi_sysfs.c */
struct device_attribute *attrs[RAID_NUM_ATTRS + 1];
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
};
struct raid_component {
struct list_head node;
struct device dev;
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
int num;
};
#define to_raid_internal(tmpl) container_of(tmpl, struct raid_internal, r)
#define tc_to_raid_internal(tcont) ({ \
struct raid_template *r = \
container_of(tcont, struct raid_template, raid_attrs); \
to_raid_internal(r); \
})
#define ac_to_raid_internal(acont) ({ \
struct transport_container *tc = \
container_of(acont, struct transport_container, ac); \
tc_to_raid_internal(tc); \
})
#define device_to_raid_internal(dev) ({ \
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
struct attribute_container *ac = \
attribute_container_classdev_to_container(dev); \
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
ac_to_raid_internal(ac); \
})
static int raid_match(struct attribute_container *cont, struct device *dev)
{
/* We have to look for every subsystem that could house
* emulated RAID devices, so start with SCSI */
struct raid_internal *i = ac_to_raid_internal(cont);
#if defined(CONFIG_SCSI) || defined(CONFIG_SCSI_MODULE)
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
if (scsi_is_sdev_device(dev)) {
struct scsi_device *sdev = to_scsi_device(dev);
if (i->f->cookie != sdev->host->hostt)
return 0;
return i->f->is_raid(dev);
}
#endif
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
/* FIXME: look at other subsystems too */
return 0;
}
static int raid_setup(struct transport_container *tc, struct device *dev,
struct device *cdev)
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
{
struct raid_data *rd;
BUG_ON(dev_get_drvdata(cdev));
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
rd = kzalloc(sizeof(*rd), GFP_KERNEL);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
if (!rd)
return -ENOMEM;
INIT_LIST_HEAD(&rd->component_list);
dev_set_drvdata(cdev, rd);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
return 0;
}
static int raid_remove(struct transport_container *tc, struct device *dev,
struct device *cdev)
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
{
struct raid_data *rd = dev_get_drvdata(cdev);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
struct raid_component *rc, *next;
dev_printk(KERN_ERR, dev, "RAID REMOVE\n");
dev_set_drvdata(cdev, NULL);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
list_for_each_entry_safe(rc, next, &rd->component_list, node) {
list_del(&rc->node);
dev_printk(KERN_ERR, rc->dev.parent, "RAID COMPONENT REMOVE\n");
device_unregister(&rc->dev);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
}
dev_printk(KERN_ERR, dev, "RAID REMOVE DONE\n");
kfree(rd);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
return 0;
}
static DECLARE_TRANSPORT_CLASS(raid_class,
"raid_devices",
raid_setup,
raid_remove,
NULL);
static const struct {
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
enum raid_state value;
char *name;
} raid_states[] = {
{ RAID_STATE_UNKNOWN, "unknown" },
{ RAID_STATE_ACTIVE, "active" },
{ RAID_STATE_DEGRADED, "degraded" },
{ RAID_STATE_RESYNCING, "resyncing" },
{ RAID_STATE_OFFLINE, "offline" },
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
};
static const char *raid_state_name(enum raid_state state)
{
int i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(raid_states); i++) {
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
if (raid_states[i].value == state) {
name = raid_states[i].name;
break;
}
}
return name;
}
static struct {
enum raid_level value;
char *name;
} raid_levels[] = {
{ RAID_LEVEL_UNKNOWN, "unknown" },
{ RAID_LEVEL_LINEAR, "linear" },
{ RAID_LEVEL_0, "raid0" },
{ RAID_LEVEL_1, "raid1" },
{ RAID_LEVEL_10, "raid10" },
{ RAID_LEVEL_1E, "raid1e" },
{ RAID_LEVEL_3, "raid3" },
{ RAID_LEVEL_4, "raid4" },
{ RAID_LEVEL_5, "raid5" },
{ RAID_LEVEL_50, "raid50" },
{ RAID_LEVEL_6, "raid6" },
};
static const char *raid_level_name(enum raid_level level)
{
int i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(raid_levels); i++) {
if (raid_levels[i].value == level) {
name = raid_levels[i].name;
break;
}
}
return name;
}
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
#define raid_attr_show_internal(attr, fmt, var, code) \
static ssize_t raid_show_##attr(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
{ \
struct raid_data *rd = dev_get_drvdata(dev); \
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
code \
return snprintf(buf, 20, #fmt "\n", var); \
}
#define raid_attr_ro_states(attr, states, code) \
raid_attr_show_internal(attr, %s, name, \
const char *name; \
code \
name = raid_##states##_name(rd->attr); \
) \
static DEVICE_ATTR(attr, S_IRUGO, raid_show_##attr, NULL)
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
#define raid_attr_ro_internal(attr, code) \
raid_attr_show_internal(attr, %d, rd->attr, code) \
static DEVICE_ATTR(attr, S_IRUGO, raid_show_##attr, NULL)
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
#define ATTR_CODE(attr) \
struct raid_internal *i = device_to_raid_internal(dev); \
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
if (i->f->get_##attr) \
i->f->get_##attr(dev->parent);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
#define raid_attr_ro(attr) raid_attr_ro_internal(attr, )
#define raid_attr_ro_fn(attr) raid_attr_ro_internal(attr, ATTR_CODE(attr))
#define raid_attr_ro_state(attr) raid_attr_ro_states(attr, attr, )
#define raid_attr_ro_state_fn(attr) raid_attr_ro_states(attr, attr, ATTR_CODE(attr))
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
raid_attr_ro_state(level);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
raid_attr_ro_fn(resync);
raid_attr_ro_state_fn(state);
static void raid_component_release(struct device *dev)
{
struct raid_component *rc =
container_of(dev, struct raid_component, dev);
dev_printk(KERN_ERR, rc->dev.parent, "COMPONENT RELEASE\n");
put_device(rc->dev.parent);
kfree(rc);
}
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
int raid_component_add(struct raid_template *r,struct device *raid_dev,
struct device *component_dev)
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
{
struct device *cdev =
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
attribute_container_find_class_device(&r->raid_attrs.ac,
raid_dev);
struct raid_component *rc;
struct raid_data *rd = dev_get_drvdata(cdev);
int err;
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
rc = kzalloc(sizeof(*rc), GFP_KERNEL);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
if (!rc)
return -ENOMEM;
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
INIT_LIST_HEAD(&rc->node);
device_initialize(&rc->dev);
rc->dev.release = raid_component_release;
rc->dev.parent = get_device(component_dev);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
rc->num = rd->component_count++;
dev_set_name(&rc->dev, "component-%d", rc->num);
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
list_add_tail(&rc->node, &rd->component_list);
rc->dev.class = &raid_class.class;
err = device_add(&rc->dev);
if (err)
goto err_out;
return 0;
err_out:
list_del(&rc->node);
rd->component_count--;
put_device(component_dev);
kfree(rc);
return err;
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
}
EXPORT_SYMBOL(raid_component_add);
struct raid_template *
raid_class_attach(struct raid_function_template *ft)
{
struct raid_internal *i = kzalloc(sizeof(struct raid_internal),
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
GFP_KERNEL);
int count = 0;
if (unlikely(!i))
return NULL;
i->f = ft;
i->r.raid_attrs.ac.class = &raid_class.class;
i->r.raid_attrs.ac.match = raid_match;
i->r.raid_attrs.ac.attrs = &i->attrs[0];
attribute_container_register(&i->r.raid_attrs.ac);
i->attrs[count++] = &dev_attr_level;
i->attrs[count++] = &dev_attr_resync;
i->attrs[count++] = &dev_attr_state;
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
i->attrs[count] = NULL;
BUG_ON(count > RAID_NUM_ATTRS);
return &i->r;
}
EXPORT_SYMBOL(raid_class_attach);
void
raid_class_release(struct raid_template *r)
{
struct raid_internal *i = to_raid_internal(r);
BUG_ON(attribute_container_unregister(&i->r.raid_attrs.ac));
[SCSI] embryonic RAID class The idea behind a RAID class is to provide a uniform interface to all RAID subsystems (both hardware and software) in the kernel. To do that, I've made this class a transport class that's entirely subsystem independent (although the matching routines have to match per subsystem, as you'll see looking at the code). I put it in the scsi subdirectory purely because I needed somewhere to play with it, but it's not a scsi specific module. I used a fusion raid card as the test bed for this; with that kind of card, this is the type of class output you get: jejb@titanic> ls -l /sys/class/raid_devices/20\:0\:0\:0/ total 0 lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-0 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:0/20:1:0:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 component-1 -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:1:1/20:1:1:0/ lrwxrwxrwx 1 root root 0 Aug 16 17:21 device -> ../../../devices/pci0000:80/0000:80:04.0/host20/target20:0:0/20:0:0:0/ -r--r--r-- 1 root root 16384 Aug 16 17:21 level -r--r--r-- 1 root root 16384 Aug 16 17:21 resync -r--r--r-- 1 root root 16384 Aug 16 17:21 state So it's really simple: for a SCSI device representing a hardware raid, it shows the raid level, the array state, the resync % complete (if the state is resyncing) and the underlying components of the RAID (these are exposed in fusion on the virtual channel 1). As you can see, this type of information can be exported by almost anything, including software raid. The more difficult trick, of course, is going to be getting it to perform configuration type actions with writable attributes. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-08-17 07:27:34 +08:00
kfree(i);
}
EXPORT_SYMBOL(raid_class_release);
static __init int raid_init(void)
{
return transport_class_register(&raid_class);
}
static __exit void raid_exit(void)
{
transport_class_unregister(&raid_class);
}
MODULE_AUTHOR("James Bottomley");
MODULE_DESCRIPTION("RAID device class");
MODULE_LICENSE("GPL");
module_init(raid_init);
module_exit(raid_exit);