2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 04:24:02 +08:00
linux-next/drivers/net/dgrs.c

1618 lines
38 KiB
C
Raw Normal View History

/*
* Digi RightSwitch SE-X loadable device driver for Linux
*
* The RightSwitch is a 4 (EISA) or 6 (PCI) port etherswitch and
* a NIC on an internal board.
*
* Author: Rick Richardson, rick@remotepoint.com
* Derived from the SVR4.2 (UnixWare) driver for the same card.
*
* Copyright 1995-1996 Digi International Inc.
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For information on purchasing a RightSwitch SE-4 or SE-6
* board, please contact Digi's sales department at 1-612-912-3444
* or 1-800-DIGIBRD. Outside the U.S., please check our Web page
* at http://www.dgii.com for sales offices worldwide.
*
* OPERATION:
* When compiled as a loadable module, this driver can operate
* the board as either a 4/6 port switch with a 5th or 7th port
* that is a conventional NIC interface as far as the host is
* concerned, OR as 4/6 independent NICs. To select multi-NIC
* mode, add "nicmode=1" on the insmod load line for the driver.
*
* This driver uses the "dev" common ethernet device structure
* and a private "priv" (dev->priv) structure that contains
* mostly DGRS-specific information and statistics. To keep
* the code for both the switch mode and the multi-NIC mode
* as similar as possible, I have introduced the concept of
* "dev0"/"priv0" and "devN"/"privN" pointer pairs in subroutines
* where needed. The first pair of pointers points to the
* "dev" and "priv" structures of the zeroth (0th) device
* interface associated with a board. The second pair of
* pointers points to the current (Nth) device interface
* for the board: the one for which we are processing data.
*
* In switch mode, the pairs of pointers are always the same,
* that is, dev0 == devN and priv0 == privN. This is just
* like previous releases of this driver which did not support
* NIC mode.
*
* In multi-NIC mode, the pairs of pointers may be different.
* We use the devN and privN pointers to reference just the
* name, port number, and statistics for the current interface.
* We use the dev0 and priv0 pointers to access the variables
* that control access to the board, such as board address
* and simulated 82596 variables. This is because there is
* only one "fake" 82596 that serves as the interface to
* the board. We do not want to try to keep the variables
* associated with this 82596 in sync across all devices.
*
* This scheme works well. As you will see, except for
* initialization, there is very little difference between
* the two modes as far as this driver is concerned. On the
* receive side in NIC mode, the interrupt *always* comes in on
* the 0th interface (dev0/priv0). We then figure out which
* real 82596 port it came in on from looking at the "chan"
* member that the board firmware adds at the end of each
* RBD (a.k.a. TBD). We get the channel number like this:
* int chan = ((I596_RBD *) S2H(cbp->xmit.tbdp))->chan;
*
* On the transmit side in multi-NIC mode, we specify the
* output 82596 port by setting the new "dstchan" structure
* member that is at the end of the RFD, like this:
* priv0->rfdp->dstchan = privN->chan;
*
* TODO:
* - Multi-NIC mode is not yet supported when the driver is linked
* into the kernel.
* - Better handling of multicast addresses.
*
* Fixes:
* Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
* - fix dgrs_found_device wrt checking kmalloc return and
* rollbacking the partial steps of the whole process when
* one of the devices can't be allocated. Fix SET_MODULE_OWNER
* on the loop to use devN instead of repeated calls to dev.
*
* davej <davej@suse.de> - 9/2/2001
* - Enable PCI device before reading ioaddr/irq
*
*/
#include <linux/module.h>
#include <linux/eisa.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
static char version[] __initdata =
"$Id: dgrs.c,v 1.13 2000/06/06 04:07:00 rick Exp $";
/*
* DGRS include files
*/
typedef unsigned char uchar;
typedef unsigned int bool;
#define vol volatile
#include "dgrs.h"
#include "dgrs_es4h.h"
#include "dgrs_plx9060.h"
#include "dgrs_i82596.h"
#include "dgrs_ether.h"
#include "dgrs_asstruct.h"
#include "dgrs_bcomm.h"
#ifdef CONFIG_PCI
static struct pci_device_id dgrs_pci_tbl[] = {
{ SE6_PCI_VENDOR_ID, SE6_PCI_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, dgrs_pci_tbl);
#endif
#ifdef CONFIG_EISA
static struct eisa_device_id dgrs_eisa_tbl[] = {
{ "DBI0A01" },
{ }
};
MODULE_DEVICE_TABLE(eisa, dgrs_eisa_tbl);
#endif
MODULE_LICENSE("GPL");
/*
* Firmware. Compiled separately for local compilation,
* but #included for Linux distribution.
*/
#ifndef NOFW
#include "dgrs_firmware.c"
#else
extern int dgrs_firmnum;
extern char dgrs_firmver[];
extern char dgrs_firmdate[];
extern uchar dgrs_code[];
extern int dgrs_ncode;
#endif
/*
* Linux out*() is backwards from all other operating systems
*/
#define OUTB(ADDR, VAL) outb(VAL, ADDR)
#define OUTW(ADDR, VAL) outw(VAL, ADDR)
#define OUTL(ADDR, VAL) outl(VAL, ADDR)
/*
* Macros to convert switch to host and host to switch addresses
* (assumes a local variable priv points to board dependent struct)
*/
#define S2H(A) ( ((unsigned long)(A)&0x00ffffff) + priv0->vmem )
#define S2HN(A) ( ((unsigned long)(A)&0x00ffffff) + privN->vmem )
#define H2S(A) ( ((char *) (A) - priv0->vmem) + 0xA3000000 )
/*
* Convert a switch address to a "safe" address for use with the
* PLX 9060 DMA registers and the associated HW kludge that allows
* for host access of the DMA registers.
*/
#define S2DMA(A) ( (unsigned long)(A) & 0x00ffffff)
/*
* "Space.c" variables, now settable from module interface
* Use the name below, minus the "dgrs_" prefix. See init_module().
*/
static int dgrs_debug = 1;
static int dgrs_dma = 1;
static int dgrs_spantree = -1;
static int dgrs_hashexpire = -1;
static uchar dgrs_ipaddr[4] = { 0xff, 0xff, 0xff, 0xff};
static uchar dgrs_iptrap[4] = { 0xff, 0xff, 0xff, 0xff};
static __u32 dgrs_ipxnet = -1;
static int dgrs_nicmode;
/*
* Private per-board data structure (dev->priv)
*/
typedef struct
{
/*
* Stuff for generic ethercard I/F
*/
struct net_device_stats stats;
/*
* DGRS specific data
*/
char *vmem;
struct bios_comm *bcomm; /* Firmware BIOS comm structure */
PORT *port; /* Ptr to PORT[0] struct in VM */
I596_SCB *scbp; /* Ptr to SCB struct in VM */
I596_RFD *rfdp; /* Current RFD list */
I596_RBD *rbdp; /* Current RBD list */
volatile int intrcnt; /* Count of interrupts */
/*
* SE-4 (EISA) board variables
*/
uchar is_reg; /* EISA: Value for ES4H_IS reg */
/*
* SE-6 (PCI) board variables
*
* The PLX "expansion rom" space is used for DMA register
* access from the host on the SE-6. These are the physical
* and virtual addresses of that space.
*/
ulong plxreg; /* Phys address of PLX chip */
char *vplxreg; /* Virtual address of PLX chip */
ulong plxdma; /* Phys addr of PLX "expansion rom" */
ulong volatile *vplxdma; /* Virtual addr of "expansion rom" */
int use_dma; /* Flag: use DMA */
DMACHAIN *dmadesc_s; /* area for DMA chains (SW addr.) */
DMACHAIN *dmadesc_h; /* area for DMA chains (Host Virtual) */
/*
* Multi-NIC mode variables
*
* All entries of the devtbl[] array are valid for the 0th
* device (i.e. eth0, but not eth1...eth5). devtbl[0] is
* valid for all devices (i.e. eth0, eth1, ..., eth5).
*/
int nports; /* Number of physical ports (4 or 6) */
int chan; /* Channel # (1-6) for this device */
struct net_device *devtbl[6]; /* Ptrs to N device structs */
} DGRS_PRIV;
/*
* reset or un-reset the IDT processor
*/
static void
proc_reset(struct net_device *dev0, int reset)
{
DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
if (priv0->plxreg)
{
ulong val;
val = inl(dev0->base_addr + PLX_MISC_CSR);
if (reset)
val |= SE6_RESET;
else
val &= ~SE6_RESET;
OUTL(dev0->base_addr + PLX_MISC_CSR, val);
}
else
{
OUTB(dev0->base_addr + ES4H_PC, reset ? ES4H_PC_RESET : 0);
}
}
/*
* See if the board supports bus master DMA
*/
static int
check_board_dma(struct net_device *dev0)
{
DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
ulong x;
/*
* If Space.c says not to use DMA, or if it's not a PLX based
* PCI board, or if the expansion ROM space is not PCI
* configured, then return false.
*/
if (!dgrs_dma || !priv0->plxreg || !priv0->plxdma)
return (0);
/*
* Set the local address remap register of the "expansion rom"
* area to 0x80000000 so that we can use it to access the DMA
* registers from the host side.
*/
OUTL(dev0->base_addr + PLX_ROM_BASE_ADDR, 0x80000000);
/*
* Set the PCI region descriptor to:
* Space 0:
* disable read-prefetch
* enable READY
* enable BURST
* 0 internal wait states
* Expansion ROM: (used for host DMA register access)
* disable read-prefetch
* enable READY
* disable BURST
* 0 internal wait states
*/
OUTL(dev0->base_addr + PLX_BUS_REGION, 0x49430343);
/*
* Now map the DMA registers into our virtual space
*/
priv0->vplxdma = (ulong *) ioremap (priv0->plxdma, 256);
if (!priv0->vplxdma)
{
printk("%s: can't *remap() the DMA regs\n", dev0->name);
return (0);
}
/*
* Now test to see if we can access the DMA registers
* If we write -1 and get back 1FFF, then we accessed the
* DMA register. Otherwise, we probably have an old board
* and wrote into regular RAM.
*/
priv0->vplxdma[PLX_DMA0_MODE/4] = 0xFFFFFFFF;
x = priv0->vplxdma[PLX_DMA0_MODE/4];
if (x != 0x00001FFF) {
iounmap((void *)priv0->vplxdma);
return (0);
}
return (1);
}
/*
* Initiate DMA using PLX part on PCI board. Spin the
* processor until completed. All addresses are physical!
*
* If pciaddr is NULL, then it's a chaining DMA, and lcladdr is
* the address of the first DMA descriptor in the chain.
*
* If pciaddr is not NULL, then it's a single DMA.
*
* In either case, "lcladdr" must have been fixed up to make
* sure the MSB isn't set using the S2DMA macro before passing
* the address to this routine.
*/
static int
do_plx_dma(
struct net_device *dev,
ulong pciaddr,
ulong lcladdr,
int len,
int to_host
)
{
int i;
ulong csr = 0;
DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
if (pciaddr)
{
/*
* Do a single, non-chain DMA
*/
priv->vplxdma[PLX_DMA0_PCI_ADDR/4] = pciaddr;
priv->vplxdma[PLX_DMA0_LCL_ADDR/4] = lcladdr;
priv->vplxdma[PLX_DMA0_SIZE/4] = len;
priv->vplxdma[PLX_DMA0_DESCRIPTOR/4] = to_host
? PLX_DMA_DESC_TO_HOST
: PLX_DMA_DESC_TO_BOARD;
priv->vplxdma[PLX_DMA0_MODE/4] =
PLX_DMA_MODE_WIDTH32
| PLX_DMA_MODE_WAITSTATES(0)
| PLX_DMA_MODE_READY
| PLX_DMA_MODE_NOBTERM
| PLX_DMA_MODE_BURST
| PLX_DMA_MODE_NOCHAIN;
}
else
{
/*
* Do a chaining DMA
*/
priv->vplxdma[PLX_DMA0_MODE/4] =
PLX_DMA_MODE_WIDTH32
| PLX_DMA_MODE_WAITSTATES(0)
| PLX_DMA_MODE_READY
| PLX_DMA_MODE_NOBTERM
| PLX_DMA_MODE_BURST
| PLX_DMA_MODE_CHAIN;
priv->vplxdma[PLX_DMA0_DESCRIPTOR/4] = lcladdr;
}
priv->vplxdma[PLX_DMA_CSR/4] =
PLX_DMA_CSR_0_ENABLE | PLX_DMA_CSR_0_START;
/*
* Wait for DMA to complete
*/
for (i = 0; i < 1000000; ++i)
{
/*
* Spin the host CPU for 1 usec, so we don't thrash
* the PCI bus while the PLX 9060 is doing DMA.
*/
udelay(1);
csr = (volatile unsigned long) priv->vplxdma[PLX_DMA_CSR/4];
if (csr & PLX_DMA_CSR_0_DONE)
break;
}
if ( ! (csr & PLX_DMA_CSR_0_DONE) )
{
printk("%s: DMA done never occurred. DMA disabled.\n",
dev->name);
priv->use_dma = 0;
return 1;
}
return 0;
}
/*
* dgrs_rcv_frame()
*
* Process a received frame. This is called from the interrupt
* routine, and works for both switch mode and multi-NIC mode.
*
* Note that when in multi-NIC mode, we want to always access the
* hardware using the dev and priv structures of the first port,
* so that we are using only one set of variables to maintain
* the board interface status, but we want to use the Nth port
* dev and priv structures to maintain statistics and to pass
* the packet up.
*
* Only the first device structure is attached to the interrupt.
* We use the special "chan" variable at the end of the first RBD
* to select the Nth device in multi-NIC mode.
*
* We currently do chained DMA on a per-packet basis when the
* packet is "long", and we spin the CPU a short time polling
* for DMA completion. This avoids a second interrupt overhead,
* and gives the best performance for light traffic to the host.
*
* However, a better scheme that could be implemented would be
* to see how many packets are outstanding for the host, and if
* the number is "large", create a long chain to DMA several
* packets into the host in one go. In this case, we would set
* up some state variables to let the host CPU continue doing
* other things until a DMA completion interrupt comes along.
*/
static void
dgrs_rcv_frame(
struct net_device *dev0,
DGRS_PRIV *priv0,
I596_CB *cbp
)
{
int len;
I596_TBD *tbdp;
struct sk_buff *skb;
uchar *putp;
uchar *p;
struct net_device *devN;
DGRS_PRIV *privN;
/*
* Determine Nth priv and dev structure pointers
*/
if (dgrs_nicmode)
{ /* Multi-NIC mode */
int chan = ((I596_RBD *) S2H(cbp->xmit.tbdp))->chan;
devN = priv0->devtbl[chan-1];
/*
* If devN is null, we got an interrupt before the I/F
* has been initialized. Pitch the packet.
*/
if (devN == NULL)
goto out;
privN = (DGRS_PRIV *) devN->priv;
}
else
{ /* Switch mode */
devN = dev0;
privN = priv0;
}
if (0) printk("%s: rcv len=%ld\n", devN->name, cbp->xmit.count);
/*
* Allocate a message block big enough to hold the whole frame
*/
len = cbp->xmit.count;
if ((skb = dev_alloc_skb(len+5)) == NULL)
{
printk("%s: dev_alloc_skb failed for rcv buffer\n", devN->name);
++privN->stats.rx_dropped;
/* discarding the frame */
goto out;
}
skb->dev = devN;
skb_reserve(skb, 2); /* Align IP header */
again:
putp = p = skb_put(skb, len);
/*
* There are three modes here for doing the packet copy.
* If we have DMA, and the packet is "long", we use the
* chaining mode of DMA. If it's shorter, we use single
* DMA's. Otherwise, we use memcpy().
*/
if (priv0->use_dma && priv0->dmadesc_h && len > 64)
{
/*
* If we can use DMA and it's a long frame, copy it using
* DMA chaining.
*/
DMACHAIN *ddp_h; /* Host virtual DMA desc. pointer */
DMACHAIN *ddp_s; /* Switch physical DMA desc. pointer */
uchar *phys_p;
/*
* Get the physical address of the STREAMS buffer.
* NOTE: allocb() guarantees that the whole buffer
* is in a single page if the length < 4096.
*/
phys_p = (uchar *) virt_to_phys(putp);
ddp_h = priv0->dmadesc_h;
ddp_s = priv0->dmadesc_s;
tbdp = (I596_TBD *) S2H(cbp->xmit.tbdp);
for (;;)
{
int count;
int amt;
count = tbdp->count;
amt = count & 0x3fff;
if (amt == 0)
break; /* For safety */
if ( (p-putp) >= len)
{
printk("%s: cbp = %lx\n", devN->name, (long) H2S(cbp));
proc_reset(dev0, 1); /* Freeze IDT */
break; /* For Safety */
}
ddp_h->pciaddr = (ulong) phys_p;
ddp_h->lcladdr = S2DMA(tbdp->buf);
ddp_h->len = amt;
phys_p += amt;
p += amt;
if (count & I596_TBD_EOF)
{
ddp_h->next = PLX_DMA_DESC_TO_HOST
| PLX_DMA_DESC_EOC;
++ddp_h;
break;
}
else
{
++ddp_s;
ddp_h->next = PLX_DMA_DESC_TO_HOST
| (ulong) ddp_s;
tbdp = (I596_TBD *) S2H(tbdp->next);
++ddp_h;
}
}
if (ddp_h - priv0->dmadesc_h)
{
int rc;
rc = do_plx_dma(dev0,
0, (ulong) priv0->dmadesc_s, len, 0);
if (rc)
{
printk("%s: Chained DMA failure\n", devN->name);
goto again;
}
}
}
else if (priv0->use_dma)
{
/*
* If we can use DMA and it's a shorter frame, copy it
* using single DMA transfers.
*/
uchar *phys_p;
/*
* Get the physical address of the STREAMS buffer.
* NOTE: allocb() guarantees that the whole buffer
* is in a single page if the length < 4096.
*/
phys_p = (uchar *) virt_to_phys(putp);
tbdp = (I596_TBD *) S2H(cbp->xmit.tbdp);
for (;;)
{
int count;
int amt;
int rc;
count = tbdp->count;
amt = count & 0x3fff;
if (amt == 0)
break; /* For safety */
if ( (p-putp) >= len)
{
printk("%s: cbp = %lx\n", devN->name, (long) H2S(cbp));
proc_reset(dev0, 1); /* Freeze IDT */
break; /* For Safety */
}
rc = do_plx_dma(dev0, (ulong) phys_p,
S2DMA(tbdp->buf), amt, 1);
if (rc)
{
memcpy(p, S2H(tbdp->buf), amt);
printk("%s: Single DMA failed\n", devN->name);
}
phys_p += amt;
p += amt;
if (count & I596_TBD_EOF)
break;
tbdp = (I596_TBD *) S2H(tbdp->next);
}
}
else
{
/*
* Otherwise, copy it piece by piece using memcpy()
*/
tbdp = (I596_TBD *) S2H(cbp->xmit.tbdp);
for (;;)
{
int count;
int amt;
count = tbdp->count;
amt = count & 0x3fff;
if (amt == 0)
break; /* For safety */
if ( (p-putp) >= len)
{
printk("%s: cbp = %lx\n", devN->name, (long) H2S(cbp));
proc_reset(dev0, 1); /* Freeze IDT */
break; /* For Safety */
}
memcpy(p, S2H(tbdp->buf), amt);
p += amt;
if (count & I596_TBD_EOF)
break;
tbdp = (I596_TBD *) S2H(tbdp->next);
}
}
/*
* Pass the frame to upper half
*/
skb->protocol = eth_type_trans(skb, devN);
netif_rx(skb);
devN->last_rx = jiffies;
++privN->stats.rx_packets;
privN->stats.rx_bytes += len;
out:
cbp->xmit.status = I596_CB_STATUS_C | I596_CB_STATUS_OK;
}
/*
* Start transmission of a frame
*
* The interface to the board is simple: we pretend that we are
* a fifth 82596 ethernet controller 'receiving' data, and copy the
* data into the same structures that a real 82596 would. This way,
* the board firmware handles the host 'port' the same as any other.
*
* NOTE: we do not use Bus master DMA for this routine. Turns out
* that it is not needed. Slave writes over the PCI bus are about
* as fast as DMA, due to the fact that the PLX part can do burst
* writes. The same is not true for data being read from the board.
*
* For multi-NIC mode, we tell the firmware the desired 82596
* output port by setting the special "dstchan" member at the
* end of the traditional 82596 RFD structure.
*/
static int dgrs_start_xmit(struct sk_buff *skb, struct net_device *devN)
{
DGRS_PRIV *privN = (DGRS_PRIV *) devN->priv;
struct net_device *dev0;
DGRS_PRIV *priv0;
I596_RBD *rbdp;
int count;
int i, len, amt;
/*
* Determine 0th priv and dev structure pointers
*/
if (dgrs_nicmode)
{
dev0 = privN->devtbl[0];
priv0 = (DGRS_PRIV *) dev0->priv;
}
else
{
dev0 = devN;
priv0 = privN;
}
if (dgrs_debug > 1)
printk("%s: xmit len=%d\n", devN->name, (int) skb->len);
devN->trans_start = jiffies;
netif_start_queue(devN);
if (priv0->rfdp->cmd & I596_RFD_EL)
{ /* Out of RFD's */
if (0) printk("%s: NO RFD's\n", devN->name);
goto no_resources;
}
rbdp = priv0->rbdp;
count = 0;
priv0->rfdp->rbdp = (I596_RBD *) H2S(rbdp);
i = 0; len = skb->len;
for (;;)
{
if (rbdp->size & I596_RBD_EL)
{ /* Out of RBD's */
if (0) printk("%s: NO RBD's\n", devN->name);
goto no_resources;
}
amt = min_t(unsigned int, len, rbdp->size - count);
memcpy( (char *) S2H(rbdp->buf) + count, skb->data + i, amt);
i += amt;
count += amt;
len -= amt;
if (len == 0)
{
if (skb->len < 60)
rbdp->count = 60 | I596_RBD_EOF;
else
rbdp->count = count | I596_RBD_EOF;
rbdp = (I596_RBD *) S2H(rbdp->next);
goto frame_done;
}
else if (count < 32)
{
/* More data to come, but we used less than 32
* bytes of this RBD. Keep filling this RBD.
*/
{} /* Yes, we do nothing here */
}
else
{
rbdp->count = count;
rbdp = (I596_RBD *) S2H(rbdp->next);
count = 0;
}
}
frame_done:
priv0->rbdp = rbdp;
if (dgrs_nicmode)
priv0->rfdp->dstchan = privN->chan;
priv0->rfdp->status = I596_RFD_C | I596_RFD_OK;
priv0->rfdp = (I596_RFD *) S2H(priv0->rfdp->next);
++privN->stats.tx_packets;
dev_kfree_skb (skb);
return (0);
no_resources:
priv0->scbp->status |= I596_SCB_RNR; /* simulate I82596 */
return (-EAGAIN);
}
/*
* Open the interface
*/
static int
dgrs_open( struct net_device *dev )
{
netif_start_queue(dev);
return (0);
}
/*
* Close the interface
*/
static int dgrs_close( struct net_device *dev )
{
netif_stop_queue(dev);
return (0);
}
/*
* Get statistics
*/
static struct net_device_stats *dgrs_get_stats( struct net_device *dev )
{
DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
return (&priv->stats);
}
/*
* Set multicast list and/or promiscuous mode
*/
static void dgrs_set_multicast_list( struct net_device *dev)
{
DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
priv->port->is_promisc = (dev->flags & IFF_PROMISC) ? 1 : 0;
}
/*
* Unique ioctl's
*/
static int dgrs_ioctl(struct net_device *devN, struct ifreq *ifr, int cmd)
{
DGRS_PRIV *privN = (DGRS_PRIV *) devN->priv;
DGRS_IOCTL ioc;
int i;
if (cmd != DGRSIOCTL)
return -EINVAL;
if(copy_from_user(&ioc, ifr->ifr_data, sizeof(DGRS_IOCTL)))
return -EFAULT;
switch (ioc.cmd)
{
case DGRS_GETMEM:
if (ioc.len != sizeof(ulong))
return -EINVAL;
if(copy_to_user(ioc.data, &devN->mem_start, ioc.len))
return -EFAULT;
return (0);
case DGRS_SETFILTER:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (ioc.port > privN->bcomm->bc_nports)
return -EINVAL;
if (ioc.filter >= NFILTERS)
return -EINVAL;
if (ioc.len > privN->bcomm->bc_filter_area_len)
return -EINVAL;
/* Wait for old command to finish */
for (i = 0; i < 1000; ++i)
{
if ( (volatile long) privN->bcomm->bc_filter_cmd <= 0 )
break;
udelay(1);
}
if (i >= 1000)
return -EIO;
privN->bcomm->bc_filter_port = ioc.port;
privN->bcomm->bc_filter_num = ioc.filter;
privN->bcomm->bc_filter_len = ioc.len;
if (ioc.len)
{
if(copy_from_user(S2HN(privN->bcomm->bc_filter_area),
ioc.data, ioc.len))
return -EFAULT;
privN->bcomm->bc_filter_cmd = BC_FILTER_SET;
}
else
privN->bcomm->bc_filter_cmd = BC_FILTER_CLR;
return(0);
default:
return -EOPNOTSUPP;
}
}
/*
* Process interrupts
*
* dev, priv will always refer to the 0th device in Multi-NIC mode.
*/
static irqreturn_t dgrs_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev0 = (struct net_device *) dev_id;
DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
I596_CB *cbp;
int cmd;
int i;
++priv0->intrcnt;
if (1) ++priv0->bcomm->bc_cnt[4];
if (0)
{
static int cnt = 100;
if (--cnt > 0)
printk("%s: interrupt: irq %d\n", dev0->name, irq);
}
/*
* Get 596 command
*/
cmd = priv0->scbp->cmd;
/*
* See if RU has been restarted
*/
if ( (cmd & I596_SCB_RUC) == I596_SCB_RUC_START)
{
if (0) printk("%s: RUC start\n", dev0->name);
priv0->rfdp = (I596_RFD *) S2H(priv0->scbp->rfdp);
priv0->rbdp = (I596_RBD *) S2H(priv0->rfdp->rbdp);
priv0->scbp->status &= ~(I596_SCB_RNR|I596_SCB_RUS);
/*
* Tell upper half (halves)
*/
if (dgrs_nicmode)
{
for (i = 0; i < priv0->nports; ++i)
netif_wake_queue (priv0->devtbl[i]);
}
else
netif_wake_queue (dev0);
/* if (bd->flags & TX_QUEUED)
DL_sched(bd, bdd); */
}
/*
* See if any CU commands to process
*/
if ( (cmd & I596_SCB_CUC) != I596_SCB_CUC_START)
{
priv0->scbp->cmd = 0; /* Ignore all other commands */
goto ack_intr;
}
priv0->scbp->status &= ~(I596_SCB_CNA|I596_SCB_CUS);
/*
* Process a command
*/
cbp = (I596_CB *) S2H(priv0->scbp->cbp);
priv0->scbp->cmd = 0; /* Safe to clear the command */
for (;;)
{
switch (cbp->nop.cmd & I596_CB_CMD)
{
case I596_CB_CMD_XMIT:
dgrs_rcv_frame(dev0, priv0, cbp);
break;
default:
cbp->nop.status = I596_CB_STATUS_C | I596_CB_STATUS_OK;
break;
}
if (cbp->nop.cmd & I596_CB_CMD_EL)
break;
cbp = (I596_CB *) S2H(cbp->nop.next);
}
priv0->scbp->status |= I596_SCB_CNA;
/*
* Ack the interrupt
*/
ack_intr:
if (priv0->plxreg)
OUTL(dev0->base_addr + PLX_LCL2PCI_DOORBELL, 1);
return IRQ_HANDLED;
}
/*
* Download the board firmware
*/
static int __init
dgrs_download(struct net_device *dev0)
{
DGRS_PRIV *priv0 = (DGRS_PRIV *) dev0->priv;
int is;
unsigned long i;
static int iv2is[16] = {
0, 0, 0, ES4H_IS_INT3,
0, ES4H_IS_INT5, 0, ES4H_IS_INT7,
0, 0, ES4H_IS_INT10, ES4H_IS_INT11,
ES4H_IS_INT12, 0, 0, ES4H_IS_INT15 };
/*
* Map in the dual port memory
*/
priv0->vmem = ioremap(dev0->mem_start, 2048*1024);
if (!priv0->vmem)
{
printk("%s: cannot map in board memory\n", dev0->name);
return -ENXIO;
}
/*
* Hold the processor and configure the board addresses
*/
if (priv0->plxreg)
{ /* PCI bus */
proc_reset(dev0, 1);
}
else
{ /* EISA bus */
is = iv2is[dev0->irq & 0x0f];
if (!is)
{
printk("%s: Illegal IRQ %d\n", dev0->name, dev0->irq);
iounmap(priv0->vmem);
priv0->vmem = NULL;
return -ENXIO;
}
OUTB(dev0->base_addr + ES4H_AS_31_24,
(uchar) (dev0->mem_start >> 24) );
OUTB(dev0->base_addr + ES4H_AS_23_16,
(uchar) (dev0->mem_start >> 16) );
priv0->is_reg = ES4H_IS_LINEAR | is |
((uchar) (dev0->mem_start >> 8) & ES4H_IS_AS15);
OUTB(dev0->base_addr + ES4H_IS, priv0->is_reg);
OUTB(dev0->base_addr + ES4H_EC, ES4H_EC_ENABLE);
OUTB(dev0->base_addr + ES4H_PC, ES4H_PC_RESET);
OUTB(dev0->base_addr + ES4H_MW, ES4H_MW_ENABLE | 0x00);
}
/*
* See if we can do DMA on the SE-6
*/
priv0->use_dma = check_board_dma(dev0);
if (priv0->use_dma)
printk("%s: Bus Master DMA is enabled.\n", dev0->name);
/*
* Load and verify the code at the desired address
*/
memcpy(priv0->vmem, dgrs_code, dgrs_ncode); /* Load code */
if (memcmp(priv0->vmem, dgrs_code, dgrs_ncode))
{
iounmap(priv0->vmem);
priv0->vmem = NULL;
printk("%s: download compare failed\n", dev0->name);
return -ENXIO;
}
/*
* Configurables
*/
priv0->bcomm = (struct bios_comm *) (priv0->vmem + 0x0100);
priv0->bcomm->bc_nowait = 1; /* Tell board to make printf not wait */
priv0->bcomm->bc_squelch = 0; /* Flag from Space.c */
priv0->bcomm->bc_150ohm = 0; /* Flag from Space.c */
priv0->bcomm->bc_spew = 0; /* Debug flag from Space.c */
priv0->bcomm->bc_maxrfd = 0; /* Debug flag from Space.c */
priv0->bcomm->bc_maxrbd = 0; /* Debug flag from Space.c */
/*
* Tell board we are operating in switch mode (1) or in
* multi-NIC mode (2).
*/
priv0->bcomm->bc_host = dgrs_nicmode ? BC_MULTINIC : BC_SWITCH;
/*
* Request memory space on board for DMA chains
*/
if (priv0->use_dma)
priv0->bcomm->bc_hostarea_len = (2048/64) * 16;
/*
* NVRAM configurables from Space.c
*/
priv0->bcomm->bc_spantree = dgrs_spantree;
priv0->bcomm->bc_hashexpire = dgrs_hashexpire;
memcpy(priv0->bcomm->bc_ipaddr, dgrs_ipaddr, 4);
memcpy(priv0->bcomm->bc_iptrap, dgrs_iptrap, 4);
memcpy(priv0->bcomm->bc_ipxnet, &dgrs_ipxnet, 4);
/*
* Release processor, wait 8 seconds for board to initialize
*/
proc_reset(dev0, 0);
for (i = jiffies + 8 * HZ; time_after(i, jiffies); )
{
barrier(); /* Gcc 2.95 needs this */
if (priv0->bcomm->bc_status >= BC_RUN)
break;
}
if (priv0->bcomm->bc_status < BC_RUN)
{
printk("%s: board not operating\n", dev0->name);
iounmap(priv0->vmem);
priv0->vmem = NULL;
return -ENXIO;
}
priv0->port = (PORT *) S2H(priv0->bcomm->bc_port);
priv0->scbp = (I596_SCB *) S2H(priv0->port->scbp);
priv0->rfdp = (I596_RFD *) S2H(priv0->scbp->rfdp);
priv0->rbdp = (I596_RBD *) S2H(priv0->rfdp->rbdp);
priv0->scbp->status = I596_SCB_CNA; /* CU is idle */
/*
* Get switch physical and host virtual pointers to DMA
* chaining area. NOTE: the MSB of the switch physical
* address *must* be turned off. Otherwise, the HW kludge
* that allows host access of the PLX DMA registers will
* erroneously select the PLX registers.
*/
priv0->dmadesc_s = (DMACHAIN *) S2DMA(priv0->bcomm->bc_hostarea);
if (priv0->dmadesc_s)
priv0->dmadesc_h = (DMACHAIN *) S2H(priv0->dmadesc_s);
else
priv0->dmadesc_h = NULL;
/*
* Enable board interrupts
*/
if (priv0->plxreg)
{ /* PCI bus */
OUTL(dev0->base_addr + PLX_INT_CSR,
inl(dev0->base_addr + PLX_INT_CSR)
| PLX_PCI_DOORBELL_IE); /* Enable intr to host */
OUTL(dev0->base_addr + PLX_LCL2PCI_DOORBELL, 1);
}
else
{ /* EISA bus */
}
return (0);
}
/*
* Probe (init) a board
*/
static int __init
dgrs_probe1(struct net_device *dev)
{
DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
unsigned long i;
int rc;
printk("%s: Digi RightSwitch io=%lx mem=%lx irq=%d plx=%lx dma=%lx\n",
dev->name, dev->base_addr, dev->mem_start, dev->irq,
priv->plxreg, priv->plxdma);
/*
* Download the firmware and light the processor
*/
rc = dgrs_download(dev);
if (rc)
goto err_out;
/*
* Get ether address of board
*/
printk("%s: Ethernet address", dev->name);
memcpy(dev->dev_addr, priv->port->ethaddr, 6);
for (i = 0; i < 6; ++i)
printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
printk("\n");
if (dev->dev_addr[0] & 1)
{
printk("%s: Illegal Ethernet Address\n", dev->name);
rc = -ENXIO;
goto err_out;
}
/*
* ACK outstanding interrupts, hook the interrupt,
* and verify that we are getting interrupts from the board.
*/
if (priv->plxreg)
OUTL(dev->base_addr + PLX_LCL2PCI_DOORBELL, 1);
rc = request_irq(dev->irq, &dgrs_intr, SA_SHIRQ, "RightSwitch", dev);
if (rc)
goto err_out;
priv->intrcnt = 0;
for (i = jiffies + 2*HZ + HZ/2; time_after(i, jiffies); )
{
cpu_relax();
if (priv->intrcnt >= 2)
break;
}
if (priv->intrcnt < 2)
{
printk(KERN_ERR "%s: Not interrupting on IRQ %d (%d)\n",
dev->name, dev->irq, priv->intrcnt);
rc = -ENXIO;
goto err_free_irq;
}
/*
* Entry points...
*/
dev->open = &dgrs_open;
dev->stop = &dgrs_close;
dev->get_stats = &dgrs_get_stats;
dev->hard_start_xmit = &dgrs_start_xmit;
dev->set_multicast_list = &dgrs_set_multicast_list;
dev->do_ioctl = &dgrs_ioctl;
return rc;
err_free_irq:
free_irq(dev->irq, dev);
err_out:
return rc;
}
static int __init
dgrs_initclone(struct net_device *dev)
{
DGRS_PRIV *priv = (DGRS_PRIV *) dev->priv;
int i;
printk("%s: Digi RightSwitch port %d ",
dev->name, priv->chan);
for (i = 0; i < 6; ++i)
printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
printk("\n");
return (0);
}
static struct net_device * __init
dgrs_found_device(
int io,
ulong mem,
int irq,
ulong plxreg,
ulong plxdma,
struct device *pdev
)
{
DGRS_PRIV *priv;
struct net_device *dev;
int i, ret = -ENOMEM;
dev = alloc_etherdev(sizeof(DGRS_PRIV));
if (!dev)
goto err0;
priv = (DGRS_PRIV *)dev->priv;
dev->base_addr = io;
dev->mem_start = mem;
dev->mem_end = mem + 2048 * 1024 - 1;
dev->irq = irq;
priv->plxreg = plxreg;
priv->plxdma = plxdma;
priv->vplxdma = NULL;
priv->chan = 1;
priv->devtbl[0] = dev;
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, pdev);
ret = dgrs_probe1(dev);
if (ret)
goto err1;
ret = register_netdev(dev);
if (ret)
goto err2;
if ( !dgrs_nicmode )
return dev; /* Switch mode, we are done */
/*
* Operating card as N separate NICs
*/
priv->nports = priv->bcomm->bc_nports;
for (i = 1; i < priv->nports; ++i)
{
struct net_device *devN;
DGRS_PRIV *privN;
/* Allocate new dev and priv structures */
devN = alloc_etherdev(sizeof(DGRS_PRIV));
ret = -ENOMEM;
if (!devN)
goto fail;
/* Don't copy the network device structure! */
/* copy the priv structure of dev[0] */
privN = (DGRS_PRIV *)devN->priv;
*privN = *priv;
/* ... and zero out VM areas */
privN->vmem = NULL;
privN->vplxdma = NULL;
/* ... and zero out IRQ */
devN->irq = 0;
/* ... and base MAC address off address of 1st port */
devN->dev_addr[5] += i;
ret = dgrs_initclone(devN);
if (ret)
goto fail;
SET_MODULE_OWNER(devN);
SET_NETDEV_DEV(dev, pdev);
ret = register_netdev(devN);
if (ret) {
free_netdev(devN);
goto fail;
}
privN->chan = i+1;
priv->devtbl[i] = devN;
}
return dev;
fail:
while (i >= 0) {
struct net_device *d = priv->devtbl[i--];
unregister_netdev(d);
free_netdev(d);
}
err2:
free_irq(dev->irq, dev);
err1:
free_netdev(dev);
err0:
return ERR_PTR(ret);
}
static void __devexit dgrs_remove(struct net_device *dev)
{
DGRS_PRIV *priv = dev->priv;
int i;
unregister_netdev(dev);
for (i = 1; i < priv->nports; ++i) {
struct net_device *d = priv->devtbl[i];
if (d) {
unregister_netdev(d);
free_netdev(d);
}
}
proc_reset(priv->devtbl[0], 1);
if (priv->vmem)
iounmap(priv->vmem);
if (priv->vplxdma)
iounmap((uchar *) priv->vplxdma);
if (dev->irq)
free_irq(dev->irq, dev);
for (i = 1; i < priv->nports; ++i) {
if (priv->devtbl[i])
unregister_netdev(priv->devtbl[i]);
}
}
#ifdef CONFIG_PCI
static int __init dgrs_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
int err;
uint io;
uint mem;
uint irq;
uint plxreg;
uint plxdma;
/*
* Get and check the bus-master and latency values.
* Some PCI BIOSes fail to set the master-enable bit,
* and the latency timer must be set to the maximum
* value to avoid data corruption that occurs when the
* timer expires during a transfer. Yes, it's a bug.
*/
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, "RightSwitch");
if (err)
return err;
pci_set_master(pdev);
plxreg = pci_resource_start (pdev, 0);
io = pci_resource_start (pdev, 1);
mem = pci_resource_start (pdev, 2);
pci_read_config_dword(pdev, 0x30, &plxdma);
irq = pdev->irq;
plxdma &= ~15;
/*
* On some BIOSES, the PLX "expansion rom" (used for DMA)
* address comes up as "0". This is probably because
* the BIOS doesn't see a valid 55 AA ROM signature at
* the "ROM" start and zeroes the address. To get
* around this problem the SE-6 is configured to ask
* for 4 MB of space for the dual port memory. We then
* must set its range back to 2 MB, and use the upper
* half for DMA register access
*/
OUTL(io + PLX_SPACE0_RANGE, 0xFFE00000L);
if (plxdma == 0)
plxdma = mem + (2048L * 1024L);
pci_write_config_dword(pdev, 0x30, plxdma + 1);
pci_read_config_dword(pdev, 0x30, &plxdma);
plxdma &= ~15;
dev = dgrs_found_device(io, mem, irq, plxreg, plxdma, &pdev->dev);
if (IS_ERR(dev)) {
pci_release_regions(pdev);
return PTR_ERR(dev);
}
pci_set_drvdata(pdev, dev);
return 0;
}
static void __devexit dgrs_pci_remove(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
dgrs_remove(dev);
pci_release_regions(pdev);
free_netdev(dev);
}
static struct pci_driver dgrs_pci_driver = {
.name = "dgrs",
.id_table = dgrs_pci_tbl,
.probe = dgrs_pci_probe,
.remove = __devexit_p(dgrs_pci_remove),
};
#endif
#ifdef CONFIG_EISA
static int is2iv[8] __initdata = { 0, 3, 5, 7, 10, 11, 12, 15 };
static int __init dgrs_eisa_probe (struct device *gendev)
{
struct net_device *dev;
struct eisa_device *edev = to_eisa_device(gendev);
uint io = edev->base_addr;
uint mem;
uint irq;
int rc = -ENODEV; /* Not EISA configured */
if (!request_region(io, 256, "RightSwitch")) {
printk(KERN_ERR "dgrs: eisa io 0x%x, which is busy.\n", io);
return -EBUSY;
}
if ( ! (inb(io+ES4H_EC) & ES4H_EC_ENABLE) )
goto err_out;
mem = (inb(io+ES4H_AS_31_24) << 24)
+ (inb(io+ES4H_AS_23_16) << 16);
irq = is2iv[ inb(io+ES4H_IS) & ES4H_IS_INTMASK ];
dev = dgrs_found_device(io, mem, irq, 0L, 0L, gendev);
if (IS_ERR(dev)) {
rc = PTR_ERR(dev);
goto err_out;
}
gendev->driver_data = dev;
return 0;
err_out:
release_region(io, 256);
return rc;
}
static int __devexit dgrs_eisa_remove(struct device *gendev)
{
struct net_device *dev = gendev->driver_data;
dgrs_remove(dev);
release_region(dev->base_addr, 256);
free_netdev(dev);
return 0;
}
static struct eisa_driver dgrs_eisa_driver = {
.id_table = dgrs_eisa_tbl,
.driver = {
.name = "dgrs",
.probe = dgrs_eisa_probe,
.remove = __devexit_p(dgrs_eisa_remove),
}
};
#endif
/*
* Variables that can be overriden from module command line
*/
static int debug = -1;
static int dma = -1;
static int hashexpire = -1;
static int spantree = -1;
static int ipaddr[4] = { -1 };
static int iptrap[4] = { -1 };
static __u32 ipxnet = -1;
static int nicmode = -1;
module_param(debug, int, 0);
module_param(dma, int, 0);
module_param(hashexpire, int, 0);
module_param(spantree, int, 0);
module_param_array(ipaddr, int, NULL, 0);
module_param_array(iptrap, int, NULL, 0);
module_param(ipxnet, int, 0);
module_param(nicmode, int, 0);
MODULE_PARM_DESC(debug, "Digi RightSwitch enable debugging (0-1)");
MODULE_PARM_DESC(dma, "Digi RightSwitch enable BM DMA (0-1)");
MODULE_PARM_DESC(nicmode, "Digi RightSwitch operating mode (1: switch, 2: multi-NIC)");
static int __init dgrs_init_module (void)
{
int i;
int eisacount = 0, pcicount = 0;
/*
* Command line variable overrides
* debug=NNN
* dma=0/1
* spantree=0/1
* hashexpire=NNN
* ipaddr=A,B,C,D
* iptrap=A,B,C,D
* ipxnet=NNN
* nicmode=NNN
*/
if (debug >= 0)
dgrs_debug = debug;
if (dma >= 0)
dgrs_dma = dma;
if (nicmode >= 0)
dgrs_nicmode = nicmode;
if (hashexpire >= 0)
dgrs_hashexpire = hashexpire;
if (spantree >= 0)
dgrs_spantree = spantree;
if (ipaddr[0] != -1)
for (i = 0; i < 4; ++i)
dgrs_ipaddr[i] = ipaddr[i];
if (iptrap[0] != -1)
for (i = 0; i < 4; ++i)
dgrs_iptrap[i] = iptrap[i];
if (ipxnet != -1)
dgrs_ipxnet = htonl( ipxnet );
if (dgrs_debug)
{
printk(KERN_INFO "dgrs: SW=%s FW=Build %d %s\nFW Version=%s\n",
version, dgrs_firmnum, dgrs_firmdate, dgrs_firmver);
}
/*
* Find and configure all the cards
*/
#ifdef CONFIG_EISA
eisacount = eisa_driver_register(&dgrs_eisa_driver);
if (eisacount < 0)
return eisacount;
#endif
#ifdef CONFIG_PCI
pcicount = pci_register_driver(&dgrs_pci_driver);
if (pcicount)
return pcicount;
#endif
return 0;
}
static void __exit dgrs_cleanup_module (void)
{
#ifdef CONFIG_EISA
eisa_driver_unregister (&dgrs_eisa_driver);
#endif
#ifdef CONFIG_PCI
pci_unregister_driver (&dgrs_pci_driver);
#endif
}
module_init(dgrs_init_module);
module_exit(dgrs_cleanup_module);