2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/security/tomoyo/common.c

2008 lines
54 KiB
C
Raw Normal View History

Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/*
* security/tomoyo/common.c
*
* Common functions for TOMOYO.
*
* Copyright (C) 2005-2010 NTT DATA CORPORATION
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
#include <linux/uaccess.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
#include <linux/security.h>
#include "common.h"
static struct tomoyo_profile tomoyo_default_profile = {
.learning = &tomoyo_default_profile.preference,
.permissive = &tomoyo_default_profile.preference,
.enforcing = &tomoyo_default_profile.preference,
.preference.enforcing_verbose = true,
.preference.learning_max_entry = 2048,
.preference.learning_verbose = false,
.preference.permissive_verbose = true
};
/* Profile version. Currently only 20090903 is defined. */
static unsigned int tomoyo_profile_version;
/* Profile table. Memory is allocated as needed. */
static struct tomoyo_profile *tomoyo_profile_ptr[TOMOYO_MAX_PROFILES];
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/* String table for functionality that takes 4 modes. */
static const char *tomoyo_mode_4[4] = {
"disabled", "learning", "permissive", "enforcing"
};
/* String table for /sys/kernel/security/tomoyo/profile */
static const char *tomoyo_mac_keywords[TOMOYO_MAX_MAC_INDEX
+ TOMOYO_MAX_MAC_CATEGORY_INDEX] = {
[TOMOYO_MAC_FILE_EXECUTE] = "file::execute",
[TOMOYO_MAC_FILE_OPEN] = "file::open",
[TOMOYO_MAC_FILE_CREATE] = "file::create",
[TOMOYO_MAC_FILE_UNLINK] = "file::unlink",
[TOMOYO_MAC_FILE_MKDIR] = "file::mkdir",
[TOMOYO_MAC_FILE_RMDIR] = "file::rmdir",
[TOMOYO_MAC_FILE_MKFIFO] = "file::mkfifo",
[TOMOYO_MAC_FILE_MKSOCK] = "file::mksock",
[TOMOYO_MAC_FILE_TRUNCATE] = "file::truncate",
[TOMOYO_MAC_FILE_SYMLINK] = "file::symlink",
[TOMOYO_MAC_FILE_REWRITE] = "file::rewrite",
[TOMOYO_MAC_FILE_MKBLOCK] = "file::mkblock",
[TOMOYO_MAC_FILE_MKCHAR] = "file::mkchar",
[TOMOYO_MAC_FILE_LINK] = "file::link",
[TOMOYO_MAC_FILE_RENAME] = "file::rename",
[TOMOYO_MAC_FILE_CHMOD] = "file::chmod",
[TOMOYO_MAC_FILE_CHOWN] = "file::chown",
[TOMOYO_MAC_FILE_CHGRP] = "file::chgrp",
[TOMOYO_MAC_FILE_IOCTL] = "file::ioctl",
[TOMOYO_MAC_FILE_CHROOT] = "file::chroot",
[TOMOYO_MAC_FILE_MOUNT] = "file::mount",
[TOMOYO_MAC_FILE_UMOUNT] = "file::umount",
[TOMOYO_MAC_FILE_PIVOT_ROOT] = "file::pivot_root",
[TOMOYO_MAX_MAC_INDEX + TOMOYO_MAC_CATEGORY_FILE] = "file",
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
};
/* Permit policy management by non-root user? */
static bool tomoyo_manage_by_non_root;
/* Utility functions. */
/**
* tomoyo_yesno - Return "yes" or "no".
*
* @value: Bool value.
*/
static const char *tomoyo_yesno(const unsigned int value)
{
return value ? "yes" : "no";
}
/**
* tomoyo_print_name_union - Print a tomoyo_name_union.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_name_union".
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_name_union(struct tomoyo_io_buffer *head,
const struct tomoyo_name_union *ptr)
{
int pos = head->read_avail;
if (pos && head->read_buf[pos - 1] == ' ')
head->read_avail--;
if (ptr->is_group)
return tomoyo_io_printf(head, " @%s",
ptr->group->group_name->name);
return tomoyo_io_printf(head, " %s", ptr->filename->name);
}
/**
* tomoyo_print_number_union - Print a tomoyo_number_union.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_number_union".
*
* Returns true on success, false otherwise.
*/
bool tomoyo_print_number_union(struct tomoyo_io_buffer *head,
const struct tomoyo_number_union *ptr)
{
unsigned long min;
unsigned long max;
u8 min_type;
u8 max_type;
if (!tomoyo_io_printf(head, " "))
return false;
if (ptr->is_group)
return tomoyo_io_printf(head, "@%s",
ptr->group->group_name->name);
min_type = ptr->min_type;
max_type = ptr->max_type;
min = ptr->values[0];
max = ptr->values[1];
switch (min_type) {
case TOMOYO_VALUE_TYPE_HEXADECIMAL:
if (!tomoyo_io_printf(head, "0x%lX", min))
return false;
break;
case TOMOYO_VALUE_TYPE_OCTAL:
if (!tomoyo_io_printf(head, "0%lo", min))
return false;
break;
default:
if (!tomoyo_io_printf(head, "%lu", min))
return false;
break;
}
if (min == max && min_type == max_type)
return true;
switch (max_type) {
case TOMOYO_VALUE_TYPE_HEXADECIMAL:
return tomoyo_io_printf(head, "-0x%lX", max);
case TOMOYO_VALUE_TYPE_OCTAL:
return tomoyo_io_printf(head, "-0%lo", max);
default:
return tomoyo_io_printf(head, "-%lu", max);
}
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/**
* tomoyo_io_printf - Transactional printf() to "struct tomoyo_io_buffer" structure.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @fmt: The printf()'s format string, followed by parameters.
*
* Returns true if output was written, false otherwise.
*
* The snprintf() will truncate, but tomoyo_io_printf() won't.
*/
bool tomoyo_io_printf(struct tomoyo_io_buffer *head, const char *fmt, ...)
{
va_list args;
int len;
int pos = head->read_avail;
int size = head->readbuf_size - pos;
if (size <= 0)
return false;
va_start(args, fmt);
len = vsnprintf(head->read_buf + pos, size, fmt, args);
va_end(args);
if (pos + len >= head->readbuf_size)
return false;
head->read_avail += len;
return true;
}
/**
* tomoyo_find_or_assign_new_profile - Create a new profile.
*
* @profile: Profile number to create.
*
* Returns pointer to "struct tomoyo_profile" on success, NULL otherwise.
*/
static struct tomoyo_profile *tomoyo_find_or_assign_new_profile
(const unsigned int profile)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
struct tomoyo_profile *ptr;
struct tomoyo_profile *entry;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (profile >= TOMOYO_MAX_PROFILES)
return NULL;
ptr = tomoyo_profile_ptr[profile];
if (ptr)
return ptr;
entry = kzalloc(sizeof(*entry), GFP_NOFS);
if (mutex_lock_interruptible(&tomoyo_policy_lock))
goto out;
ptr = tomoyo_profile_ptr[profile];
if (!ptr && tomoyo_memory_ok(entry)) {
ptr = entry;
ptr->learning = &tomoyo_default_profile.preference;
ptr->permissive = &tomoyo_default_profile.preference;
ptr->enforcing = &tomoyo_default_profile.preference;
ptr->default_config = TOMOYO_CONFIG_DISABLED;
memset(ptr->config, TOMOYO_CONFIG_USE_DEFAULT,
sizeof(ptr->config));
mb(); /* Avoid out-of-order execution. */
tomoyo_profile_ptr[profile] = ptr;
entry = NULL;
}
mutex_unlock(&tomoyo_policy_lock);
out:
kfree(entry);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return ptr;
}
/**
* tomoyo_profile - Find a profile.
*
* @profile: Profile number to find.
*
* Returns pointer to "struct tomoyo_profile".
*/
struct tomoyo_profile *tomoyo_profile(const u8 profile)
{
struct tomoyo_profile *ptr = tomoyo_profile_ptr[profile];
if (!tomoyo_policy_loaded)
return &tomoyo_default_profile;
BUG_ON(!ptr);
return ptr;
}
/**
* tomoyo_write_profile - Write profile table.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*/
static int tomoyo_write_profile(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
unsigned int i;
int value;
int mode;
u8 config;
bool use_default = false;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
char *cp;
struct tomoyo_profile *profile;
if (sscanf(data, "PROFILE_VERSION=%u", &tomoyo_profile_version) == 1)
return 0;
i = simple_strtoul(data, &cp, 10);
if (data == cp) {
profile = &tomoyo_default_profile;
} else {
if (*cp != '-')
return -EINVAL;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
data = cp + 1;
profile = tomoyo_find_or_assign_new_profile(i);
if (!profile)
return -EINVAL;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
cp = strchr(data, '=');
if (!cp)
return -EINVAL;
*cp++ = '\0';
if (profile != &tomoyo_default_profile)
use_default = strstr(cp, "use_default") != NULL;
if (strstr(cp, "verbose=yes"))
value = 1;
else if (strstr(cp, "verbose=no"))
value = 0;
else
value = -1;
if (!strcmp(data, "PREFERENCE::enforcing")) {
if (use_default) {
profile->enforcing = &tomoyo_default_profile.preference;
return 0;
}
profile->enforcing = &profile->preference;
if (value >= 0)
profile->preference.enforcing_verbose = value;
return 0;
}
if (!strcmp(data, "PREFERENCE::permissive")) {
if (use_default) {
profile->permissive = &tomoyo_default_profile.preference;
return 0;
}
profile->permissive = &profile->preference;
if (value >= 0)
profile->preference.permissive_verbose = value;
return 0;
}
if (!strcmp(data, "PREFERENCE::learning")) {
char *cp2;
if (use_default) {
profile->learning = &tomoyo_default_profile.preference;
return 0;
}
profile->learning = &profile->preference;
if (value >= 0)
profile->preference.learning_verbose = value;
cp2 = strstr(cp, "max_entry=");
if (cp2)
sscanf(cp2 + 10, "%u",
&profile->preference.learning_max_entry);
return 0;
}
if (profile == &tomoyo_default_profile)
return -EINVAL;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!strcmp(data, "COMMENT")) {
const struct tomoyo_path_info *old_comment = profile->comment;
profile->comment = tomoyo_get_name(cp);
tomoyo_put_name(old_comment);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return 0;
}
if (!strcmp(data, "CONFIG")) {
i = TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX;
config = profile->default_config;
} else if (tomoyo_str_starts(&data, "CONFIG::")) {
config = 0;
for (i = 0; i < TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX; i++) {
if (strcmp(data, tomoyo_mac_keywords[i]))
continue;
config = profile->config[i];
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (i == TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX)
return -EINVAL;
} else {
return -EINVAL;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (use_default) {
config = TOMOYO_CONFIG_USE_DEFAULT;
} else {
for (mode = 3; mode >= 0; mode--)
if (strstr(cp, tomoyo_mode_4[mode]))
/*
* Update lower 3 bits in order to distinguish
* 'config' from 'TOMOYO_CONFIG_USE_DEAFULT'.
*/
config = (config & ~7) | mode;
}
if (i < TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX)
profile->config[i] = config;
else if (config != TOMOYO_CONFIG_USE_DEFAULT)
profile->default_config = config;
return 0;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
/**
* tomoyo_read_profile - Read profile table.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*/
static int tomoyo_read_profile(struct tomoyo_io_buffer *head)
{
int index;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (head->read_eof)
return 0;
if (head->read_bit)
goto body;
tomoyo_io_printf(head, "PROFILE_VERSION=%s\n", "20090903");
tomoyo_io_printf(head, "PREFERENCE::learning={ verbose=%s "
"max_entry=%u }\n",
tomoyo_yesno(tomoyo_default_profile.preference.
learning_verbose),
tomoyo_default_profile.preference.learning_max_entry);
tomoyo_io_printf(head, "PREFERENCE::permissive={ verbose=%s }\n",
tomoyo_yesno(tomoyo_default_profile.preference.
permissive_verbose));
tomoyo_io_printf(head, "PREFERENCE::enforcing={ verbose=%s }\n",
tomoyo_yesno(tomoyo_default_profile.preference.
enforcing_verbose));
head->read_bit = 1;
body:
for (index = head->read_step; index < TOMOYO_MAX_PROFILES; index++) {
bool done;
u8 config;
int i;
int pos;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
const struct tomoyo_profile *profile
= tomoyo_profile_ptr[index];
const struct tomoyo_path_info *comment;
head->read_step = index;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!profile)
continue;
pos = head->read_avail;
comment = profile->comment;
done = tomoyo_io_printf(head, "%u-COMMENT=%s\n", index,
comment ? comment->name : "");
if (!done)
goto out;
config = profile->default_config;
if (!tomoyo_io_printf(head, "%u-CONFIG={ mode=%s }\n", index,
tomoyo_mode_4[config & 3]))
goto out;
for (i = 0; i < TOMOYO_MAX_MAC_INDEX +
TOMOYO_MAX_MAC_CATEGORY_INDEX; i++) {
config = profile->config[i];
if (config == TOMOYO_CONFIG_USE_DEFAULT)
continue;
if (!tomoyo_io_printf(head,
"%u-CONFIG::%s={ mode=%s }\n",
index, tomoyo_mac_keywords[i],
tomoyo_mode_4[config & 3]))
goto out;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (profile->learning != &tomoyo_default_profile.preference &&
!tomoyo_io_printf(head, "%u-PREFERENCE::learning={ "
"verbose=%s max_entry=%u }\n", index,
tomoyo_yesno(profile->preference.
learning_verbose),
profile->preference.learning_max_entry))
goto out;
if (profile->permissive != &tomoyo_default_profile.preference
&& !tomoyo_io_printf(head, "%u-PREFERENCE::permissive={ "
"verbose=%s }\n", index,
tomoyo_yesno(profile->preference.
permissive_verbose)))
goto out;
if (profile->enforcing != &tomoyo_default_profile.preference &&
!tomoyo_io_printf(head, "%u-PREFERENCE::enforcing={ "
"verbose=%s }\n", index,
tomoyo_yesno(profile->preference.
enforcing_verbose)))
goto out;
continue;
out:
head->read_avail = pos;
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (index == TOMOYO_MAX_PROFILES)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head->read_eof = true;
return 0;
}
/*
* tomoyo_policy_manager_list is used for holding list of domainnames or
* programs which are permitted to modify configuration via
* /sys/kernel/security/tomoyo/ interface.
*
* An entry is added by
*
* # echo '<kernel> /sbin/mingetty /bin/login /bin/bash' > \
* /sys/kernel/security/tomoyo/manager
* (if you want to specify by a domainname)
*
* or
*
* # echo '/usr/sbin/tomoyo-editpolicy' > /sys/kernel/security/tomoyo/manager
* (if you want to specify by a program's location)
*
* and is deleted by
*
* # echo 'delete <kernel> /sbin/mingetty /bin/login /bin/bash' > \
* /sys/kernel/security/tomoyo/manager
*
* or
*
* # echo 'delete /usr/sbin/tomoyo-editpolicy' > \
* /sys/kernel/security/tomoyo/manager
*
* and all entries are retrieved by
*
* # cat /sys/kernel/security/tomoyo/manager
*/
LIST_HEAD(tomoyo_policy_manager_list);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/**
* tomoyo_update_manager_entry - Add a manager entry.
*
* @manager: The path to manager or the domainnamme.
* @is_delete: True if it is a delete request.
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_update_manager_entry(const char *manager,
const bool is_delete)
{
struct tomoyo_policy_manager_entry *ptr;
struct tomoyo_policy_manager_entry e = { };
int error = is_delete ? -ENOENT : -ENOMEM;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (tomoyo_is_domain_def(manager)) {
if (!tomoyo_is_correct_domain(manager))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return -EINVAL;
e.is_domain = true;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
} else {
if (!tomoyo_is_correct_path(manager))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return -EINVAL;
}
e.manager = tomoyo_get_name(manager);
if (!e.manager)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return -ENOMEM;
if (mutex_lock_interruptible(&tomoyo_policy_lock))
goto out;
list_for_each_entry_rcu(ptr, &tomoyo_policy_manager_list, list) {
if (ptr->manager != e.manager)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
continue;
ptr->is_deleted = is_delete;
error = 0;
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (!is_delete && error) {
struct tomoyo_policy_manager_entry *entry =
tomoyo_commit_ok(&e, sizeof(e));
if (entry) {
list_add_tail_rcu(&entry->list,
&tomoyo_policy_manager_list);
error = 0;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
mutex_unlock(&tomoyo_policy_lock);
out:
tomoyo_put_name(e.manager);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return error;
}
/**
* tomoyo_write_manager_policy - Write manager policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_write_manager_policy(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
bool is_delete = tomoyo_str_starts(&data, TOMOYO_KEYWORD_DELETE);
if (!strcmp(data, "manage_by_non_root")) {
tomoyo_manage_by_non_root = !is_delete;
return 0;
}
return tomoyo_update_manager_entry(data, is_delete);
}
/**
* tomoyo_read_manager_policy - Read manager policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_read_manager_policy(struct tomoyo_io_buffer *head)
{
struct list_head *pos;
bool done = true;
if (head->read_eof)
return 0;
list_for_each_cookie(pos, head->read_var2,
&tomoyo_policy_manager_list) {
struct tomoyo_policy_manager_entry *ptr;
ptr = list_entry(pos, struct tomoyo_policy_manager_entry,
list);
if (ptr->is_deleted)
continue;
done = tomoyo_io_printf(head, "%s\n", ptr->manager->name);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
break;
}
head->read_eof = done;
return 0;
}
/**
* tomoyo_is_policy_manager - Check whether the current process is a policy manager.
*
* Returns true if the current process is permitted to modify policy
* via /sys/kernel/security/tomoyo/ interface.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static bool tomoyo_is_policy_manager(void)
{
struct tomoyo_policy_manager_entry *ptr;
const char *exe;
const struct task_struct *task = current;
const struct tomoyo_path_info *domainname = tomoyo_domain()->domainname;
bool found = false;
if (!tomoyo_policy_loaded)
return true;
if (!tomoyo_manage_by_non_root && (task->cred->uid || task->cred->euid))
return false;
list_for_each_entry_rcu(ptr, &tomoyo_policy_manager_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!ptr->is_deleted && ptr->is_domain
&& !tomoyo_pathcmp(domainname, ptr->manager)) {
found = true;
break;
}
}
if (found)
return true;
exe = tomoyo_get_exe();
if (!exe)
return false;
list_for_each_entry_rcu(ptr, &tomoyo_policy_manager_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!ptr->is_deleted && !ptr->is_domain
&& !strcmp(exe, ptr->manager->name)) {
found = true;
break;
}
}
if (!found) { /* Reduce error messages. */
static pid_t last_pid;
const pid_t pid = current->pid;
if (last_pid != pid) {
printk(KERN_WARNING "%s ( %s ) is not permitted to "
"update policies.\n", domainname->name, exe);
last_pid = pid;
}
}
kfree(exe);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return found;
}
/**
* tomoyo_is_select_one - Parse select command.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @data: String to parse.
*
* Returns true on success, false otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static bool tomoyo_is_select_one(struct tomoyo_io_buffer *head,
const char *data)
{
unsigned int pid;
struct tomoyo_domain_info *domain = NULL;
bool global_pid = false;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (sscanf(data, "pid=%u", &pid) == 1 ||
(global_pid = true, sscanf(data, "global-pid=%u", &pid) == 1)) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
struct task_struct *p;
rcu_read_lock();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
read_lock(&tasklist_lock);
if (global_pid)
p = find_task_by_pid_ns(pid, &init_pid_ns);
else
p = find_task_by_vpid(pid);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (p)
domain = tomoyo_real_domain(p);
read_unlock(&tasklist_lock);
rcu_read_unlock();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
} else if (!strncmp(data, "domain=", 7)) {
if (tomoyo_is_domain_def(data + 7))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
domain = tomoyo_find_domain(data + 7);
} else
return false;
head->write_var1 = domain;
/* Accessing read_buf is safe because head->io_sem is held. */
if (!head->read_buf)
return true; /* Do nothing if open(O_WRONLY). */
head->read_avail = 0;
tomoyo_io_printf(head, "# select %s\n", data);
head->read_single_domain = true;
head->read_eof = !domain;
if (domain) {
struct tomoyo_domain_info *d;
head->read_var1 = NULL;
list_for_each_entry_rcu(d, &tomoyo_domain_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (d == domain)
break;
head->read_var1 = &d->list;
}
head->read_var2 = NULL;
head->read_bit = 0;
head->read_step = 0;
if (domain->is_deleted)
tomoyo_io_printf(head, "# This is a deleted domain.\n");
}
return true;
}
/**
* tomoyo_delete_domain - Delete a domain.
*
* @domainname: The name of domain.
*
* Returns 0.
*
* Caller holds tomoyo_read_lock().
*/
static int tomoyo_delete_domain(char *domainname)
{
struct tomoyo_domain_info *domain;
struct tomoyo_path_info name;
name.name = domainname;
tomoyo_fill_path_info(&name);
if (mutex_lock_interruptible(&tomoyo_policy_lock))
return 0;
/* Is there an active domain? */
list_for_each_entry_rcu(domain, &tomoyo_domain_list, list) {
/* Never delete tomoyo_kernel_domain */
if (domain == &tomoyo_kernel_domain)
continue;
if (domain->is_deleted ||
tomoyo_pathcmp(domain->domainname, &name))
continue;
domain->is_deleted = true;
break;
}
mutex_unlock(&tomoyo_policy_lock);
return 0;
}
/**
* tomoyo_write_domain_policy2 - Write domain policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
*/
static int tomoyo_write_domain_policy2(char *data,
struct tomoyo_domain_info *domain,
const bool is_delete)
{
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_ALLOW_MOUNT))
return tomoyo_write_mount_policy(data, domain, is_delete);
return tomoyo_write_file_policy(data, domain, is_delete);
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/**
* tomoyo_write_domain_policy - Write domain policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_write_domain_policy(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
struct tomoyo_domain_info *domain = head->write_var1;
bool is_delete = false;
bool is_select = false;
unsigned int profile;
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_DELETE))
is_delete = true;
else if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_SELECT))
is_select = true;
if (is_select && tomoyo_is_select_one(head, data))
return 0;
/* Don't allow updating policies by non manager programs. */
if (!tomoyo_is_policy_manager())
return -EPERM;
if (tomoyo_is_domain_def(data)) {
domain = NULL;
if (is_delete)
tomoyo_delete_domain(data);
else if (is_select)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
domain = tomoyo_find_domain(data);
else
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
domain = tomoyo_find_or_assign_new_domain(data, 0);
head->write_var1 = domain;
return 0;
}
if (!domain)
return -EINVAL;
if (sscanf(data, TOMOYO_KEYWORD_USE_PROFILE "%u", &profile) == 1
&& profile < TOMOYO_MAX_PROFILES) {
if (tomoyo_profile_ptr[profile] || !tomoyo_policy_loaded)
domain->profile = (u8) profile;
return 0;
}
if (!strcmp(data, TOMOYO_KEYWORD_IGNORE_GLOBAL_ALLOW_READ)) {
domain->ignore_global_allow_read = !is_delete;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return 0;
}
if (!strcmp(data, TOMOYO_KEYWORD_QUOTA_EXCEEDED)) {
domain->quota_warned = !is_delete;
return 0;
}
if (!strcmp(data, TOMOYO_KEYWORD_TRANSITION_FAILED)) {
domain->transition_failed = !is_delete;
return 0;
}
return tomoyo_write_domain_policy2(data, domain, is_delete);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
/**
* tomoyo_print_path_acl - Print a single path ACL entry.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_path_acl".
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_path_acl(struct tomoyo_io_buffer *head,
struct tomoyo_path_acl *ptr)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
int pos;
u8 bit;
const u16 perm = ptr->perm;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
for (bit = head->read_bit; bit < TOMOYO_MAX_PATH_OPERATION; bit++) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!(perm & (1 << bit)))
continue;
/* Print "read/write" instead of "read" and "write". */
if ((bit == TOMOYO_TYPE_READ || bit == TOMOYO_TYPE_WRITE)
&& (perm & (1 << TOMOYO_TYPE_READ_WRITE)))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
continue;
pos = head->read_avail;
if (!tomoyo_io_printf(head, "allow_%s ",
tomoyo_path2keyword(bit)) ||
!tomoyo_print_name_union(head, &ptr->name) ||
!tomoyo_io_printf(head, "\n"))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
goto out;
}
head->read_bit = 0;
return true;
out:
head->read_bit = bit;
head->read_avail = pos;
return false;
}
/**
* tomoyo_print_path2_acl - Print a double path ACL entry.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_path2_acl".
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_path2_acl(struct tomoyo_io_buffer *head,
struct tomoyo_path2_acl *ptr)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
int pos;
const u8 perm = ptr->perm;
u8 bit;
for (bit = head->read_bit; bit < TOMOYO_MAX_PATH2_OPERATION; bit++) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!(perm & (1 << bit)))
continue;
pos = head->read_avail;
if (!tomoyo_io_printf(head, "allow_%s ",
tomoyo_path22keyword(bit)) ||
!tomoyo_print_name_union(head, &ptr->name1) ||
!tomoyo_print_name_union(head, &ptr->name2) ||
!tomoyo_io_printf(head, "\n"))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
goto out;
}
head->read_bit = 0;
return true;
out:
head->read_bit = bit;
head->read_avail = pos;
return false;
}
/**
* tomoyo_print_path_number_acl - Print a path_number ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_path_number_acl".
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_path_number_acl(struct tomoyo_io_buffer *head,
struct tomoyo_path_number_acl *ptr)
{
int pos;
u8 bit;
const u8 perm = ptr->perm;
for (bit = head->read_bit; bit < TOMOYO_MAX_PATH_NUMBER_OPERATION;
bit++) {
if (!(perm & (1 << bit)))
continue;
pos = head->read_avail;
if (!tomoyo_io_printf(head, "allow_%s",
tomoyo_path_number2keyword(bit)) ||
!tomoyo_print_name_union(head, &ptr->name) ||
!tomoyo_print_number_union(head, &ptr->number) ||
!tomoyo_io_printf(head, "\n"))
goto out;
}
head->read_bit = 0;
return true;
out:
head->read_bit = bit;
head->read_avail = pos;
return false;
}
/**
* tomoyo_print_path_number3_acl - Print a path_number3 ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_path_number3_acl".
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_path_number3_acl(struct tomoyo_io_buffer *head,
struct tomoyo_path_number3_acl *ptr)
{
int pos;
u8 bit;
const u16 perm = ptr->perm;
for (bit = head->read_bit; bit < TOMOYO_MAX_PATH_NUMBER3_OPERATION;
bit++) {
if (!(perm & (1 << bit)))
continue;
pos = head->read_avail;
if (!tomoyo_io_printf(head, "allow_%s",
tomoyo_path_number32keyword(bit)) ||
!tomoyo_print_name_union(head, &ptr->name) ||
!tomoyo_print_number_union(head, &ptr->mode) ||
!tomoyo_print_number_union(head, &ptr->major) ||
!tomoyo_print_number_union(head, &ptr->minor) ||
!tomoyo_io_printf(head, "\n"))
goto out;
}
head->read_bit = 0;
return true;
out:
head->read_bit = bit;
head->read_avail = pos;
return false;
}
/**
* tomoyo_print_mount_acl - Print a mount ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_mount_acl".
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_mount_acl(struct tomoyo_io_buffer *head,
struct tomoyo_mount_acl *ptr)
{
const int pos = head->read_avail;
if (!tomoyo_io_printf(head, TOMOYO_KEYWORD_ALLOW_MOUNT) ||
!tomoyo_print_name_union(head, &ptr->dev_name) ||
!tomoyo_print_name_union(head, &ptr->dir_name) ||
!tomoyo_print_name_union(head, &ptr->fs_type) ||
!tomoyo_print_number_union(head, &ptr->flags) ||
!tomoyo_io_printf(head, "\n")) {
head->read_avail = pos;
return false;
}
return true;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/**
* tomoyo_print_entry - Print an ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to an ACL entry.
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_entry(struct tomoyo_io_buffer *head,
struct tomoyo_acl_info *ptr)
{
const u8 acl_type = ptr->type;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (ptr->is_deleted)
return true;
if (acl_type == TOMOYO_TYPE_PATH_ACL) {
struct tomoyo_path_acl *acl
= container_of(ptr, struct tomoyo_path_acl, head);
return tomoyo_print_path_acl(head, acl);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (acl_type == TOMOYO_TYPE_PATH2_ACL) {
struct tomoyo_path2_acl *acl
= container_of(ptr, struct tomoyo_path2_acl, head);
return tomoyo_print_path2_acl(head, acl);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}
if (acl_type == TOMOYO_TYPE_PATH_NUMBER_ACL) {
struct tomoyo_path_number_acl *acl
= container_of(ptr, struct tomoyo_path_number_acl,
head);
return tomoyo_print_path_number_acl(head, acl);
}
if (acl_type == TOMOYO_TYPE_PATH_NUMBER3_ACL) {
struct tomoyo_path_number3_acl *acl
= container_of(ptr, struct tomoyo_path_number3_acl,
head);
return tomoyo_print_path_number3_acl(head, acl);
}
if (acl_type == TOMOYO_TYPE_MOUNT_ACL) {
struct tomoyo_mount_acl *acl
= container_of(ptr, struct tomoyo_mount_acl, head);
return tomoyo_print_mount_acl(head, acl);
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
BUG(); /* This must not happen. */
return false;
}
/**
* tomoyo_read_domain_policy - Read domain policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_read_domain_policy(struct tomoyo_io_buffer *head)
{
struct list_head *dpos;
struct list_head *apos;
bool done = true;
if (head->read_eof)
return 0;
if (head->read_step == 0)
head->read_step = 1;
list_for_each_cookie(dpos, head->read_var1, &tomoyo_domain_list) {
struct tomoyo_domain_info *domain;
const char *quota_exceeded = "";
const char *transition_failed = "";
const char *ignore_global_allow_read = "";
domain = list_entry(dpos, struct tomoyo_domain_info, list);
if (head->read_step != 1)
goto acl_loop;
if (domain->is_deleted && !head->read_single_domain)
continue;
/* Print domainname and flags. */
if (domain->quota_warned)
quota_exceeded = "quota_exceeded\n";
if (domain->transition_failed)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
transition_failed = "transition_failed\n";
if (domain->ignore_global_allow_read)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
ignore_global_allow_read
= TOMOYO_KEYWORD_IGNORE_GLOBAL_ALLOW_READ "\n";
done = tomoyo_io_printf(head, "%s\n" TOMOYO_KEYWORD_USE_PROFILE
"%u\n%s%s%s\n",
domain->domainname->name,
domain->profile, quota_exceeded,
transition_failed,
ignore_global_allow_read);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
break;
head->read_step = 2;
acl_loop:
if (head->read_step == 3)
goto tail_mark;
/* Print ACL entries in the domain. */
list_for_each_cookie(apos, head->read_var2,
&domain->acl_info_list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
struct tomoyo_acl_info *ptr
= list_entry(apos, struct tomoyo_acl_info,
list);
done = tomoyo_print_entry(head, ptr);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
break;
}
if (!done)
break;
head->read_step = 3;
tail_mark:
done = tomoyo_io_printf(head, "\n");
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
break;
head->read_step = 1;
if (head->read_single_domain)
break;
}
head->read_eof = done;
return 0;
}
/**
* tomoyo_write_domain_profile - Assign profile for specified domain.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, -EINVAL otherwise.
*
* This is equivalent to doing
*
* ( echo "select " $domainname; echo "use_profile " $profile ) |
* /usr/sbin/tomoyo-loadpolicy -d
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_write_domain_profile(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
char *cp = strchr(data, ' ');
struct tomoyo_domain_info *domain;
unsigned long profile;
if (!cp)
return -EINVAL;
*cp = '\0';
domain = tomoyo_find_domain(cp + 1);
if (strict_strtoul(data, 10, &profile))
return -EINVAL;
if (domain && profile < TOMOYO_MAX_PROFILES
&& (tomoyo_profile_ptr[profile] || !tomoyo_policy_loaded))
domain->profile = (u8) profile;
return 0;
}
/**
* tomoyo_read_domain_profile - Read only domainname and profile.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns list of profile number and domainname pairs.
*
* This is equivalent to doing
*
* grep -A 1 '^<kernel>' /sys/kernel/security/tomoyo/domain_policy |
* awk ' { if ( domainname == "" ) { if ( $1 == "<kernel>" )
* domainname = $0; } else if ( $1 == "use_profile" ) {
* print $2 " " domainname; domainname = ""; } } ; '
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_read_domain_profile(struct tomoyo_io_buffer *head)
{
struct list_head *pos;
bool done = true;
if (head->read_eof)
return 0;
list_for_each_cookie(pos, head->read_var1, &tomoyo_domain_list) {
struct tomoyo_domain_info *domain;
domain = list_entry(pos, struct tomoyo_domain_info, list);
if (domain->is_deleted)
continue;
done = tomoyo_io_printf(head, "%u %s\n", domain->profile,
domain->domainname->name);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
break;
}
head->read_eof = done;
return 0;
}
/**
* tomoyo_write_pid: Specify PID to obtain domainname.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*/
static int tomoyo_write_pid(struct tomoyo_io_buffer *head)
{
unsigned long pid;
/* No error check. */
strict_strtoul(head->write_buf, 10, &pid);
head->read_step = (int) pid;
head->read_eof = false;
return 0;
}
/**
* tomoyo_read_pid - Get domainname of the specified PID.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns the domainname which the specified PID is in on success,
* empty string otherwise.
* The PID is specified by tomoyo_write_pid() so that the user can obtain
* using read()/write() interface rather than sysctl() interface.
*/
static int tomoyo_read_pid(struct tomoyo_io_buffer *head)
{
if (head->read_avail == 0 && !head->read_eof) {
const int pid = head->read_step;
struct task_struct *p;
struct tomoyo_domain_info *domain = NULL;
rcu_read_lock();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
read_lock(&tasklist_lock);
p = find_task_by_vpid(pid);
if (p)
domain = tomoyo_real_domain(p);
read_unlock(&tasklist_lock);
rcu_read_unlock();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (domain)
tomoyo_io_printf(head, "%d %u %s", pid, domain->profile,
domain->domainname->name);
head->read_eof = true;
}
return 0;
}
/**
* tomoyo_write_exception_policy - Write exception policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_write_exception_policy(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
bool is_delete = tomoyo_str_starts(&data, TOMOYO_KEYWORD_DELETE);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_KEEP_DOMAIN))
return tomoyo_write_domain_keeper_policy(data, false,
is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_NO_KEEP_DOMAIN))
return tomoyo_write_domain_keeper_policy(data, true, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_INITIALIZE_DOMAIN))
return tomoyo_write_domain_initializer_policy(data, false,
is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_NO_INITIALIZE_DOMAIN))
return tomoyo_write_domain_initializer_policy(data, true,
is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_AGGREGATOR))
return tomoyo_write_aggregator_policy(data, is_delete);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_ALIAS))
return tomoyo_write_alias_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_ALLOW_READ))
return tomoyo_write_globally_readable_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_FILE_PATTERN))
return tomoyo_write_pattern_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_DENY_REWRITE))
return tomoyo_write_no_rewrite_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_PATH_GROUP))
return tomoyo_write_path_group_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_NUMBER_GROUP))
return tomoyo_write_number_group_policy(data, is_delete);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return -EINVAL;
}
/**
* tomoyo_read_exception_policy - Read exception policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, -EINVAL otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
static int tomoyo_read_exception_policy(struct tomoyo_io_buffer *head)
{
if (!head->read_eof) {
switch (head->read_step) {
case 0:
head->read_var2 = NULL;
head->read_step = 1;
case 1:
if (!tomoyo_read_domain_keeper_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 2;
case 2:
if (!tomoyo_read_globally_readable_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 3;
case 3:
head->read_var2 = NULL;
head->read_step = 4;
case 4:
if (!tomoyo_read_domain_initializer_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 5;
case 5:
if (!tomoyo_read_alias_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 6;
case 6:
if (!tomoyo_read_aggregator_policy(head))
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head->read_var2 = NULL;
head->read_step = 7;
case 7:
if (!tomoyo_read_file_pattern(head))
break;
head->read_var2 = NULL;
head->read_step = 8;
case 8:
if (!tomoyo_read_no_rewrite_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 9;
case 9:
if (!tomoyo_read_path_group_policy(head))
break;
head->read_var1 = NULL;
head->read_var2 = NULL;
head->read_step = 10;
case 10:
if (!tomoyo_read_number_group_policy(head))
break;
head->read_var1 = NULL;
head->read_var2 = NULL;
head->read_step = 11;
case 11:
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head->read_eof = true;
break;
default:
return -EINVAL;
}
}
return 0;
}
/**
* tomoyo_print_header - Get header line of audit log.
*
* @r: Pointer to "struct tomoyo_request_info".
*
* Returns string representation.
*
* This function uses kmalloc(), so caller must kfree() if this function
* didn't return NULL.
*/
static char *tomoyo_print_header(struct tomoyo_request_info *r)
{
static const char *tomoyo_mode_4[4] = {
"disabled", "learning", "permissive", "enforcing"
};
struct timeval tv;
const pid_t gpid = task_pid_nr(current);
static const int tomoyo_buffer_len = 4096;
char *buffer = kmalloc(tomoyo_buffer_len, GFP_NOFS);
if (!buffer)
return NULL;
do_gettimeofday(&tv);
snprintf(buffer, tomoyo_buffer_len - 1,
"#timestamp=%lu profile=%u mode=%s (global-pid=%u)"
" task={ pid=%u ppid=%u uid=%u gid=%u euid=%u"
" egid=%u suid=%u sgid=%u fsuid=%u fsgid=%u }",
tv.tv_sec, r->profile, tomoyo_mode_4[r->mode], gpid,
(pid_t) sys_getpid(), (pid_t) sys_getppid(),
current_uid(), current_gid(), current_euid(),
current_egid(), current_suid(), current_sgid(),
current_fsuid(), current_fsgid());
return buffer;
}
/**
* tomoyo_init_audit_log - Allocate buffer for audit logs.
*
* @len: Required size.
* @r: Pointer to "struct tomoyo_request_info".
*
* Returns pointer to allocated memory.
*
* The @len is updated to add the header lines' size on success.
*
* This function uses kzalloc(), so caller must kfree() if this function
* didn't return NULL.
*/
static char *tomoyo_init_audit_log(int *len, struct tomoyo_request_info *r)
{
char *buf = NULL;
const char *header;
const char *domainname;
if (!r->domain)
r->domain = tomoyo_domain();
domainname = r->domain->domainname->name;
header = tomoyo_print_header(r);
if (!header)
return NULL;
*len += strlen(domainname) + strlen(header) + 10;
buf = kzalloc(*len, GFP_NOFS);
if (buf)
snprintf(buf, (*len) - 1, "%s\n%s\n", header, domainname);
kfree(header);
return buf;
}
/* Wait queue for tomoyo_query_list. */
static DECLARE_WAIT_QUEUE_HEAD(tomoyo_query_wait);
/* Lock for manipulating tomoyo_query_list. */
static DEFINE_SPINLOCK(tomoyo_query_list_lock);
/* Structure for query. */
struct tomoyo_query_entry {
struct list_head list;
char *query;
int query_len;
unsigned int serial;
int timer;
int answer;
};
/* The list for "struct tomoyo_query_entry". */
static LIST_HEAD(tomoyo_query_list);
/*
* Number of "struct file" referring /sys/kernel/security/tomoyo/query
* interface.
*/
static atomic_t tomoyo_query_observers = ATOMIC_INIT(0);
/**
* tomoyo_supervisor - Ask for the supervisor's decision.
*
* @r: Pointer to "struct tomoyo_request_info".
* @fmt: The printf()'s format string, followed by parameters.
*
* Returns 0 if the supervisor decided to permit the access request which
* violated the policy in enforcing mode, TOMOYO_RETRY_REQUEST if the
* supervisor decided to retry the access request which violated the policy in
* enforcing mode, 0 if it is not in enforcing mode, -EPERM otherwise.
*/
int tomoyo_supervisor(struct tomoyo_request_info *r, const char *fmt, ...)
{
va_list args;
int error = -EPERM;
int pos;
int len;
static unsigned int tomoyo_serial;
struct tomoyo_query_entry *tomoyo_query_entry = NULL;
bool quota_exceeded = false;
char *header;
switch (r->mode) {
char *buffer;
case TOMOYO_CONFIG_LEARNING:
if (!tomoyo_domain_quota_is_ok(r))
return 0;
va_start(args, fmt);
len = vsnprintf((char *) &pos, sizeof(pos) - 1, fmt, args) + 4;
va_end(args);
buffer = kmalloc(len, GFP_NOFS);
if (!buffer)
return 0;
va_start(args, fmt);
vsnprintf(buffer, len - 1, fmt, args);
va_end(args);
tomoyo_normalize_line(buffer);
tomoyo_write_domain_policy2(buffer, r->domain, false);
kfree(buffer);
/* fall through */
case TOMOYO_CONFIG_PERMISSIVE:
return 0;
}
if (!r->domain)
r->domain = tomoyo_domain();
if (!atomic_read(&tomoyo_query_observers))
return -EPERM;
va_start(args, fmt);
len = vsnprintf((char *) &pos, sizeof(pos) - 1, fmt, args) + 32;
va_end(args);
header = tomoyo_init_audit_log(&len, r);
if (!header)
goto out;
tomoyo_query_entry = kzalloc(sizeof(*tomoyo_query_entry), GFP_NOFS);
if (!tomoyo_query_entry)
goto out;
tomoyo_query_entry->query = kzalloc(len, GFP_NOFS);
if (!tomoyo_query_entry->query)
goto out;
len = ksize(tomoyo_query_entry->query);
INIT_LIST_HEAD(&tomoyo_query_entry->list);
spin_lock(&tomoyo_query_list_lock);
if (tomoyo_quota_for_query && tomoyo_query_memory_size + len +
sizeof(*tomoyo_query_entry) >= tomoyo_quota_for_query) {
quota_exceeded = true;
} else {
tomoyo_query_memory_size += len + sizeof(*tomoyo_query_entry);
tomoyo_query_entry->serial = tomoyo_serial++;
}
spin_unlock(&tomoyo_query_list_lock);
if (quota_exceeded)
goto out;
pos = snprintf(tomoyo_query_entry->query, len - 1, "Q%u-%hu\n%s",
tomoyo_query_entry->serial, r->retry, header);
kfree(header);
header = NULL;
va_start(args, fmt);
vsnprintf(tomoyo_query_entry->query + pos, len - 1 - pos, fmt, args);
tomoyo_query_entry->query_len = strlen(tomoyo_query_entry->query) + 1;
va_end(args);
spin_lock(&tomoyo_query_list_lock);
list_add_tail(&tomoyo_query_entry->list, &tomoyo_query_list);
spin_unlock(&tomoyo_query_list_lock);
/* Give 10 seconds for supervisor's opinion. */
for (tomoyo_query_entry->timer = 0;
atomic_read(&tomoyo_query_observers) && tomoyo_query_entry->timer < 100;
tomoyo_query_entry->timer++) {
wake_up(&tomoyo_query_wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(HZ / 10);
if (tomoyo_query_entry->answer)
break;
}
spin_lock(&tomoyo_query_list_lock);
list_del(&tomoyo_query_entry->list);
tomoyo_query_memory_size -= len + sizeof(*tomoyo_query_entry);
spin_unlock(&tomoyo_query_list_lock);
switch (tomoyo_query_entry->answer) {
case 3: /* Asked to retry by administrator. */
error = TOMOYO_RETRY_REQUEST;
r->retry++;
break;
case 1:
/* Granted by administrator. */
error = 0;
break;
case 0:
/* Timed out. */
break;
default:
/* Rejected by administrator. */
break;
}
out:
if (tomoyo_query_entry)
kfree(tomoyo_query_entry->query);
kfree(tomoyo_query_entry);
kfree(header);
return error;
}
/**
* tomoyo_poll_query - poll() for /sys/kernel/security/tomoyo/query.
*
* @file: Pointer to "struct file".
* @wait: Pointer to "poll_table".
*
* Returns POLLIN | POLLRDNORM when ready to read, 0 otherwise.
*
* Waits for access requests which violated policy in enforcing mode.
*/
static int tomoyo_poll_query(struct file *file, poll_table *wait)
{
struct list_head *tmp;
bool found = false;
u8 i;
for (i = 0; i < 2; i++) {
spin_lock(&tomoyo_query_list_lock);
list_for_each(tmp, &tomoyo_query_list) {
struct tomoyo_query_entry *ptr
= list_entry(tmp, struct tomoyo_query_entry,
list);
if (ptr->answer)
continue;
found = true;
break;
}
spin_unlock(&tomoyo_query_list_lock);
if (found)
return POLLIN | POLLRDNORM;
if (i)
break;
poll_wait(file, &tomoyo_query_wait, wait);
}
return 0;
}
/**
* tomoyo_read_query - Read access requests which violated policy in enforcing mode.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*/
static int tomoyo_read_query(struct tomoyo_io_buffer *head)
{
struct list_head *tmp;
int pos = 0;
int len = 0;
char *buf;
if (head->read_avail)
return 0;
if (head->read_buf) {
kfree(head->read_buf);
head->read_buf = NULL;
head->readbuf_size = 0;
}
spin_lock(&tomoyo_query_list_lock);
list_for_each(tmp, &tomoyo_query_list) {
struct tomoyo_query_entry *ptr
= list_entry(tmp, struct tomoyo_query_entry, list);
if (ptr->answer)
continue;
if (pos++ != head->read_step)
continue;
len = ptr->query_len;
break;
}
spin_unlock(&tomoyo_query_list_lock);
if (!len) {
head->read_step = 0;
return 0;
}
buf = kzalloc(len, GFP_NOFS);
if (!buf)
return 0;
pos = 0;
spin_lock(&tomoyo_query_list_lock);
list_for_each(tmp, &tomoyo_query_list) {
struct tomoyo_query_entry *ptr
= list_entry(tmp, struct tomoyo_query_entry, list);
if (ptr->answer)
continue;
if (pos++ != head->read_step)
continue;
/*
* Some query can be skipped because tomoyo_query_list
* can change, but I don't care.
*/
if (len == ptr->query_len)
memmove(buf, ptr->query, len);
break;
}
spin_unlock(&tomoyo_query_list_lock);
if (buf[0]) {
head->read_avail = len;
head->readbuf_size = head->read_avail;
head->read_buf = buf;
head->read_step++;
} else {
kfree(buf);
}
return 0;
}
/**
* tomoyo_write_answer - Write the supervisor's decision.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, -EINVAL otherwise.
*/
static int tomoyo_write_answer(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
struct list_head *tmp;
unsigned int serial;
unsigned int answer;
spin_lock(&tomoyo_query_list_lock);
list_for_each(tmp, &tomoyo_query_list) {
struct tomoyo_query_entry *ptr
= list_entry(tmp, struct tomoyo_query_entry, list);
ptr->timer = 0;
}
spin_unlock(&tomoyo_query_list_lock);
if (sscanf(data, "A%u=%u", &serial, &answer) != 2)
return -EINVAL;
spin_lock(&tomoyo_query_list_lock);
list_for_each(tmp, &tomoyo_query_list) {
struct tomoyo_query_entry *ptr
= list_entry(tmp, struct tomoyo_query_entry, list);
if (ptr->serial != serial)
continue;
if (!ptr->answer)
ptr->answer = answer;
break;
}
spin_unlock(&tomoyo_query_list_lock);
return 0;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/**
* tomoyo_read_version: Get version.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns version information.
*/
static int tomoyo_read_version(struct tomoyo_io_buffer *head)
{
if (!head->read_eof) {
tomoyo_io_printf(head, "2.3.0-pre");
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head->read_eof = true;
}
return 0;
}
/**
* tomoyo_read_self_domain - Get the current process's domainname.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns the current process's domainname.
*/
static int tomoyo_read_self_domain(struct tomoyo_io_buffer *head)
{
if (!head->read_eof) {
/*
* tomoyo_domain()->domainname != NULL
* because every process belongs to a domain and
* the domain's name cannot be NULL.
*/
tomoyo_io_printf(head, "%s", tomoyo_domain()->domainname->name);
head->read_eof = true;
}
return 0;
}
/**
* tomoyo_open_control - open() for /sys/kernel/security/tomoyo/ interface.
*
* @type: Type of interface.
* @file: Pointer to "struct file".
*
* Associates policy handler and returns 0 on success, -ENOMEM otherwise.
*
* Caller acquires tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
int tomoyo_open_control(const u8 type, struct file *file)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
struct tomoyo_io_buffer *head = kzalloc(sizeof(*head), GFP_NOFS);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!head)
return -ENOMEM;
mutex_init(&head->io_sem);
head->type = type;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
switch (type) {
case TOMOYO_DOMAINPOLICY:
/* /sys/kernel/security/tomoyo/domain_policy */
head->write = tomoyo_write_domain_policy;
head->read = tomoyo_read_domain_policy;
break;
case TOMOYO_EXCEPTIONPOLICY:
/* /sys/kernel/security/tomoyo/exception_policy */
head->write = tomoyo_write_exception_policy;
head->read = tomoyo_read_exception_policy;
break;
case TOMOYO_SELFDOMAIN:
/* /sys/kernel/security/tomoyo/self_domain */
head->read = tomoyo_read_self_domain;
break;
case TOMOYO_DOMAIN_STATUS:
/* /sys/kernel/security/tomoyo/.domain_status */
head->write = tomoyo_write_domain_profile;
head->read = tomoyo_read_domain_profile;
break;
case TOMOYO_PROCESS_STATUS:
/* /sys/kernel/security/tomoyo/.process_status */
head->write = tomoyo_write_pid;
head->read = tomoyo_read_pid;
break;
case TOMOYO_VERSION:
/* /sys/kernel/security/tomoyo/version */
head->read = tomoyo_read_version;
head->readbuf_size = 128;
break;
case TOMOYO_MEMINFO:
/* /sys/kernel/security/tomoyo/meminfo */
head->write = tomoyo_write_memory_quota;
head->read = tomoyo_read_memory_counter;
head->readbuf_size = 512;
break;
case TOMOYO_PROFILE:
/* /sys/kernel/security/tomoyo/profile */
head->write = tomoyo_write_profile;
head->read = tomoyo_read_profile;
break;
case TOMOYO_QUERY: /* /sys/kernel/security/tomoyo/query */
head->poll = tomoyo_poll_query;
head->write = tomoyo_write_answer;
head->read = tomoyo_read_query;
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
case TOMOYO_MANAGER:
/* /sys/kernel/security/tomoyo/manager */
head->write = tomoyo_write_manager_policy;
head->read = tomoyo_read_manager_policy;
break;
}
if (!(file->f_mode & FMODE_READ)) {
/*
* No need to allocate read_buf since it is not opened
* for reading.
*/
head->read = NULL;
head->poll = NULL;
} else if (!head->poll) {
/* Don't allocate read_buf for poll() access. */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!head->readbuf_size)
head->readbuf_size = 4096 * 2;
head->read_buf = kzalloc(head->readbuf_size, GFP_NOFS);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!head->read_buf) {
kfree(head);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return -ENOMEM;
}
}
if (!(file->f_mode & FMODE_WRITE)) {
/*
* No need to allocate write_buf since it is not opened
* for writing.
*/
head->write = NULL;
} else if (head->write) {
head->writebuf_size = 4096 * 2;
head->write_buf = kzalloc(head->writebuf_size, GFP_NOFS);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
if (!head->write_buf) {
kfree(head->read_buf);
kfree(head);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return -ENOMEM;
}
}
if (type != TOMOYO_QUERY)
head->reader_idx = tomoyo_read_lock();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
file->private_data = head;
/*
* Call the handler now if the file is
* /sys/kernel/security/tomoyo/self_domain
* so that the user can use
* cat < /sys/kernel/security/tomoyo/self_domain"
* to know the current process's domainname.
*/
if (type == TOMOYO_SELFDOMAIN)
tomoyo_read_control(file, NULL, 0);
/*
* If the file is /sys/kernel/security/tomoyo/query , increment the
* observer counter.
* The obserber counter is used by tomoyo_supervisor() to see if
* there is some process monitoring /sys/kernel/security/tomoyo/query.
*/
else if (type == TOMOYO_QUERY)
atomic_inc(&tomoyo_query_observers);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return 0;
}
/**
* tomoyo_poll_control - poll() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @wait: Pointer to "poll_table".
*
* Waits for read readiness.
* /sys/kernel/security/tomoyo/query is handled by /usr/sbin/tomoyo-queryd .
*/
int tomoyo_poll_control(struct file *file, poll_table *wait)
{
struct tomoyo_io_buffer *head = file->private_data;
if (!head->poll)
return -ENOSYS;
return head->poll(file, wait);
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/**
* tomoyo_read_control - read() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @buffer: Poiner to buffer to write to.
* @buffer_len: Size of @buffer.
*
* Returns bytes read on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
int tomoyo_read_control(struct file *file, char __user *buffer,
const int buffer_len)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
int len = 0;
struct tomoyo_io_buffer *head = file->private_data;
char *cp;
if (!head->read)
return -ENOSYS;
if (mutex_lock_interruptible(&head->io_sem))
return -EINTR;
/* Call the policy handler. */
len = head->read(head);
if (len < 0)
goto out;
/* Write to buffer. */
len = head->read_avail;
if (len > buffer_len)
len = buffer_len;
if (!len)
goto out;
/* head->read_buf changes by some functions. */
cp = head->read_buf;
if (copy_to_user(buffer, cp, len)) {
len = -EFAULT;
goto out;
}
head->read_avail -= len;
memmove(cp, cp + len, head->read_avail);
out:
mutex_unlock(&head->io_sem);
return len;
}
/**
* tomoyo_write_control - write() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @buffer: Pointer to buffer to read from.
* @buffer_len: Size of @buffer.
*
* Returns @buffer_len on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
int tomoyo_write_control(struct file *file, const char __user *buffer,
const int buffer_len)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
struct tomoyo_io_buffer *head = file->private_data;
int error = buffer_len;
int avail_len = buffer_len;
char *cp0 = head->write_buf;
if (!head->write)
return -ENOSYS;
if (!access_ok(VERIFY_READ, buffer, buffer_len))
return -EFAULT;
/* Don't allow updating policies by non manager programs. */
if (head->write != tomoyo_write_pid &&
head->write != tomoyo_write_domain_policy &&
!tomoyo_is_policy_manager())
return -EPERM;
if (mutex_lock_interruptible(&head->io_sem))
return -EINTR;
/* Read a line and dispatch it to the policy handler. */
while (avail_len > 0) {
char c;
if (head->write_avail >= head->writebuf_size - 1) {
error = -ENOMEM;
break;
} else if (get_user(c, buffer)) {
error = -EFAULT;
break;
}
buffer++;
avail_len--;
cp0[head->write_avail++] = c;
if (c != '\n')
continue;
cp0[head->write_avail - 1] = '\0';
head->write_avail = 0;
tomoyo_normalize_line(cp0);
head->write(head);
}
mutex_unlock(&head->io_sem);
return error;
}
/**
* tomoyo_close_control - close() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
*
* Releases memory and returns 0.
*
* Caller looses tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
int tomoyo_close_control(struct file *file)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
struct tomoyo_io_buffer *head = file->private_data;
const bool is_write = !!head->write_buf;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/*
* If the file is /sys/kernel/security/tomoyo/query , decrement the
* observer counter.
*/
if (head->type == TOMOYO_QUERY)
atomic_dec(&tomoyo_query_observers);
else
tomoyo_read_unlock(head->reader_idx);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
/* Release memory used for policy I/O. */
kfree(head->read_buf);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head->read_buf = NULL;
kfree(head->write_buf);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head->write_buf = NULL;
kfree(head);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
head = NULL;
file->private_data = NULL;
if (is_write)
tomoyo_run_gc();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
return 0;
}
/**
* tomoyo_check_profile - Check all profiles currently assigned to domains are defined.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
*/
void tomoyo_check_profile(void)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
{
struct tomoyo_domain_info *domain;
const int idx = tomoyo_read_lock();
tomoyo_policy_loaded = true;
/* Check all profiles currently assigned to domains are defined. */
list_for_each_entry_rcu(domain, &tomoyo_domain_list, list) {
const u8 profile = domain->profile;
if (tomoyo_profile_ptr[profile])
continue;
panic("Profile %u (used by '%s') not defined.\n",
profile, domain->domainname->name);
}
tomoyo_read_unlock(idx);
if (tomoyo_profile_version != 20090903)
panic("Profile version %u is not supported.\n",
tomoyo_profile_version);
printk(KERN_INFO "TOMOYO: 2.3.0-pre 2010/06/03\n");
printk(KERN_INFO "Mandatory Access Control activated.\n");
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 16:18:13 +08:00
}