2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/kernel/rcutree.c

1904 lines
55 KiB
C
Raw Normal View History

"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2008
*
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
* Manfred Spraul <manfred@colorfullife.com>
* Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
debug lockups: Improve lockup detection When debugging a recent lockup bug i found various deficiencies in how our current lockup detection helpers work: - SysRq-L is not very efficient as it uses a workqueue, hence it cannot punch through hard lockups and cannot see through most soft lockups either. - The SysRq-L code depends on the NMI watchdog - which is off by default. - We dont print backtraces from the RCU code's built-in 'RCU state machine is stuck' debug code. This debug code tends to be one of the first (and only) mechanisms that show that a lockup has occured. This patch changes the code so taht we: - Trigger the NMI backtrace code from SysRq-L instead of using a workqueue (which cannot punch through hard lockups) - Trigger print-all-CPU-backtraces from the RCU lockup detection code Also decouple the backtrace printing code from the NMI watchdog: - Dont use variable size cpumasks (it might not be initialized and they are a bit more fragile anyway) - Trigger an NMI immediately via an IPI, instead of waiting for the NMI tick to occur. This is a lot faster and can produce more relevant backtraces. It will also work if the NMI watchdog is disabled. - Dont print the 'dazed and confused' message when we print a backtrace from the NMI - Do a show_regs() plus a dump_stack() to get maximum info out of the dump. Worst-case we get two stacktraces - which is not a big deal. Sometimes, if register content is corrupted, the precise stack walker in show_regs() wont give us a full backtrace - in this case dump_stack() will do it. Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-02 17:28:21 +08:00
#include <linux/nmi.h>
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
#include <linux/kernel_stat.h>
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
#include "rcutree.h"
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Data structures. */
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
#define RCU_STATE_INITIALIZER(name) { \
.level = { &name.node[0] }, \
.levelcnt = { \
NUM_RCU_LVL_0, /* root of hierarchy. */ \
NUM_RCU_LVL_1, \
NUM_RCU_LVL_2, \
NUM_RCU_LVL_3, \
NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}, \
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
.signaled = RCU_GP_IDLE, \
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
.gpnum = -300, \
.completed = -300, \
.onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
.orphan_cbs_list = NULL, \
.orphan_cbs_tail = &name.orphan_cbs_list, \
.orphan_qlen = 0, \
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
.fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
.n_force_qs = 0, \
.n_force_qs_ngp = 0, \
}
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
static int rcu_scheduler_active __read_mostly;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
/*
* Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
* permit this function to be invoked without holding the root rcu_node
* structure's ->lock, but of course results can be subject to change.
*/
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}
/*
* Note a quiescent state. Because we do not need to know
* how many quiescent states passed, just if there was at least
* one since the start of the grace period, this just sets a flag.
*/
void rcu_sched_qs(int cpu)
{
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
struct rcu_data *rdp;
rdp = &per_cpu(rcu_sched_data, cpu);
rcu: Simplify association of quiescent states with grace periods The rdp->passed_quiesc_completed fields are used to properly associate the recorded quiescent state with a grace period. It is OK to wrongly associate a given quiescent state with a preceding grace period, but it is fatal to associate a given quiescent state with a grace period that begins after the quiescent state occurred. Grace periods are numbered, and the following fields track them: o ->gpnum is the number of the grace period currently in progress, or the number of the last grace period to complete if no grace period is currently in progress. o ->completed is the number of the last grace period to have completed. These two fields are equal if there is no grace period in progress, otherwise ->gpnum is one greater than ->completed. But the rdp->passed_quiesc_completed field compared against ->completed, and if equal, the quiescent state is presumed to count against the current grace period. The earlier code copied rdp->completed to rdp->passed_quiesc_completed, which has been made to work, but is error-prone. In contrast, copying one less than rdp->gpnum is guaranteed safe, because rdp->gpnum is not incremented until after the start of the corresponding grace period. At the end of the grace period, when ->completed has incremented, then any quiescent periods recorded previously will be discarded. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12578890421011-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-11 05:37:22 +08:00
rdp->passed_quiesc_completed = rdp->gpnum - 1;
barrier();
rdp->passed_quiesc = 1;
rcu_preempt_note_context_switch(cpu);
}
void rcu_bh_qs(int cpu)
{
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
struct rcu_data *rdp;
rdp = &per_cpu(rcu_bh_data, cpu);
rcu: Simplify association of quiescent states with grace periods The rdp->passed_quiesc_completed fields are used to properly associate the recorded quiescent state with a grace period. It is OK to wrongly associate a given quiescent state with a preceding grace period, but it is fatal to associate a given quiescent state with a grace period that begins after the quiescent state occurred. Grace periods are numbered, and the following fields track them: o ->gpnum is the number of the grace period currently in progress, or the number of the last grace period to complete if no grace period is currently in progress. o ->completed is the number of the last grace period to have completed. These two fields are equal if there is no grace period in progress, otherwise ->gpnum is one greater than ->completed. But the rdp->passed_quiesc_completed field compared against ->completed, and if equal, the quiescent state is presumed to count against the current grace period. The earlier code copied rdp->completed to rdp->passed_quiesc_completed, which has been made to work, but is error-prone. In contrast, copying one less than rdp->gpnum is guaranteed safe, because rdp->gpnum is not incremented until after the start of the corresponding grace period. At the end of the grace period, when ->completed has incremented, then any quiescent periods recorded previously will be discarded. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12578890421011-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-11 05:37:22 +08:00
rdp->passed_quiesc_completed = rdp->gpnum - 1;
barrier();
rdp->passed_quiesc = 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
#ifdef CONFIG_NO_HZ
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
.dynticks_nesting = 1,
.dynticks = 1,
};
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
#endif /* #ifdef CONFIG_NO_HZ */
static int blimit = 10; /* Maximum callbacks per softirq. */
static int qhimark = 10000; /* If this many pending, ignore blimit. */
static int qlowmark = 100; /* Once only this many pending, use blimit. */
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
static int rcu_pending(int cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Return the number of RCU-sched batches processed thus far for debug & stats.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
long rcu_batches_completed_sched(void)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
return rcu_sched_state.completed;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Return the number of RCU BH batches processed thus far for debug & stats.
*/
long rcu_batches_completed_bh(void)
{
return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
/*
* Does the CPU have callbacks ready to be invoked?
*/
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}
/*
* Does the current CPU require a yet-as-unscheduled grace period?
*/
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* Return the root node of the specified rcu_state structure.
*/
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
return &rsp->node[0];
}
#ifdef CONFIG_SMP
/*
* If the specified CPU is offline, tell the caller that it is in
* a quiescent state. Otherwise, whack it with a reschedule IPI.
* Grace periods can end up waiting on an offline CPU when that
* CPU is in the process of coming online -- it will be added to the
* rcu_node bitmasks before it actually makes it online. The same thing
* can happen while a CPU is in the process of coming online. Because this
* race is quite rare, we check for it after detecting that the grace
* period has been delayed rather than checking each and every CPU
* each and every time we start a new grace period.
*/
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
/*
* If the CPU is offline, it is in a quiescent state. We can
* trust its state not to change because interrupts are disabled.
*/
if (cpu_is_offline(rdp->cpu)) {
rdp->offline_fqs++;
return 1;
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
/* If preemptable RCU, no point in sending reschedule IPI. */
if (rdp->preemptable)
return 0;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* The CPU is online, so send it a reschedule IPI. */
if (rdp->cpu != smp_processor_id())
smp_send_reschedule(rdp->cpu);
else
set_need_resched();
rdp->resched_ipi++;
return 0;
}
#endif /* #ifdef CONFIG_SMP */
#ifdef CONFIG_NO_HZ
/**
* rcu_enter_nohz - inform RCU that current CPU is entering nohz
*
* Enter nohz mode, in other words, -leave- the mode in which RCU
* read-side critical sections can occur. (Though RCU read-side
* critical sections can occur in irq handlers in nohz mode, a possibility
* handled by rcu_irq_enter() and rcu_irq_exit()).
*/
void rcu_enter_nohz(void)
{
unsigned long flags;
struct rcu_dynticks *rdtp;
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks);
rdtp->dynticks++;
rdtp->dynticks_nesting--;
WARN_ON_ONCE(rdtp->dynticks & 0x1);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
local_irq_restore(flags);
}
/*
* rcu_exit_nohz - inform RCU that current CPU is leaving nohz
*
* Exit nohz mode, in other words, -enter- the mode in which RCU
* read-side critical sections normally occur.
*/
void rcu_exit_nohz(void)
{
unsigned long flags;
struct rcu_dynticks *rdtp;
local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks);
rdtp->dynticks++;
rdtp->dynticks_nesting++;
WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
local_irq_restore(flags);
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}
/**
* rcu_nmi_enter - inform RCU of entry to NMI context
*
* If the CPU was idle with dynamic ticks active, and there is no
* irq handler running, this updates rdtp->dynticks_nmi to let the
* RCU grace-period handling know that the CPU is active.
*/
void rcu_nmi_enter(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks & 0x1)
return;
rdtp->dynticks_nmi++;
WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}
/**
* rcu_nmi_exit - inform RCU of exit from NMI context
*
* If the CPU was idle with dynamic ticks active, and there is no
* irq handler running, this updates rdtp->dynticks_nmi to let the
* RCU grace-period handling know that the CPU is no longer active.
*/
void rcu_nmi_exit(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks & 0x1)
return;
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
rdtp->dynticks_nmi++;
WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/**
* rcu_irq_enter - inform RCU of entry to hard irq context
*
* If the CPU was idle with dynamic ticks active, this updates the
* rdtp->dynticks to let the RCU handling know that the CPU is active.
*/
void rcu_irq_enter(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks_nesting++)
return;
rdtp->dynticks++;
WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}
/**
* rcu_irq_exit - inform RCU of exit from hard irq context
*
* If the CPU was idle with dynamic ticks active, update the rdp->dynticks
* to put let the RCU handling be aware that the CPU is going back to idle
* with no ticks.
*/
void rcu_irq_exit(void)
{
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (--rdtp->dynticks_nesting)
return;
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
rdtp->dynticks++;
WARN_ON_ONCE(rdtp->dynticks & 0x1);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* If the interrupt queued a callback, get out of dyntick mode. */
if (__get_cpu_var(rcu_sched_data).nxtlist ||
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
__get_cpu_var(rcu_bh_data).nxtlist)
set_need_resched();
}
#ifdef CONFIG_SMP
/*
* Snapshot the specified CPU's dynticks counter so that we can later
* credit them with an implicit quiescent state. Return 1 if this CPU
* is in dynticks idle mode, which is an extended quiescent state.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
int ret;
int snap;
int snap_nmi;
snap = rdp->dynticks->dynticks;
snap_nmi = rdp->dynticks->dynticks_nmi;
smp_mb(); /* Order sampling of snap with end of grace period. */
rdp->dynticks_snap = snap;
rdp->dynticks_nmi_snap = snap_nmi;
ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
if (ret)
rdp->dynticks_fqs++;
return ret;
}
/*
* Return true if the specified CPU has passed through a quiescent
* state by virtue of being in or having passed through an dynticks
* idle state since the last call to dyntick_save_progress_counter()
* for this same CPU.
*/
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
long curr;
long curr_nmi;
long snap;
long snap_nmi;
curr = rdp->dynticks->dynticks;
snap = rdp->dynticks_snap;
curr_nmi = rdp->dynticks->dynticks_nmi;
snap_nmi = rdp->dynticks_nmi_snap;
smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
/*
* If the CPU passed through or entered a dynticks idle phase with
* no active irq/NMI handlers, then we can safely pretend that the CPU
* already acknowledged the request to pass through a quiescent
* state. Either way, that CPU cannot possibly be in an RCU
* read-side critical section that started before the beginning
* of the current RCU grace period.
*/
if ((curr != snap || (curr & 0x1) == 0) &&
(curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
rdp->dynticks_fqs++;
return 1;
}
/* Go check for the CPU being offline. */
return rcu_implicit_offline_qs(rdp);
}
#endif /* #ifdef CONFIG_SMP */
#else /* #ifdef CONFIG_NO_HZ */
#ifdef CONFIG_SMP
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
return 0;
}
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
return rcu_implicit_offline_qs(rdp);
}
#endif /* #ifdef CONFIG_SMP */
#endif /* #else #ifdef CONFIG_NO_HZ */
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
rsp->gp_start = jiffies;
rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}
static void print_other_cpu_stall(struct rcu_state *rsp)
{
int cpu;
long delta;
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
/* Only let one CPU complain about others per time interval. */
spin_lock_irqsave(&rnp->lock, flags);
delta = jiffies - rsp->jiffies_stall;
if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
/*
* Now rat on any tasks that got kicked up to the root rcu_node
* due to CPU offlining.
*/
rcu_print_task_stall(rnp);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_unlock_irqrestore(&rnp->lock, flags);
/* OK, time to rat on our buddy... */
printk(KERN_ERR "INFO: RCU detected CPU stalls:");
rcu_for_each_leaf_node(rsp, rnp) {
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_print_task_stall(rnp);
if (rnp->qsmask == 0)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
continue;
for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
if (rnp->qsmask & (1UL << cpu))
printk(" %d", rnp->grplo + cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
printk(" (detected by %d, t=%ld jiffies)\n",
smp_processor_id(), (long)(jiffies - rsp->gp_start));
debug lockups: Improve lockup detection When debugging a recent lockup bug i found various deficiencies in how our current lockup detection helpers work: - SysRq-L is not very efficient as it uses a workqueue, hence it cannot punch through hard lockups and cannot see through most soft lockups either. - The SysRq-L code depends on the NMI watchdog - which is off by default. - We dont print backtraces from the RCU code's built-in 'RCU state machine is stuck' debug code. This debug code tends to be one of the first (and only) mechanisms that show that a lockup has occured. This patch changes the code so taht we: - Trigger the NMI backtrace code from SysRq-L instead of using a workqueue (which cannot punch through hard lockups) - Trigger print-all-CPU-backtraces from the RCU lockup detection code Also decouple the backtrace printing code from the NMI watchdog: - Dont use variable size cpumasks (it might not be initialized and they are a bit more fragile anyway) - Trigger an NMI immediately via an IPI, instead of waiting for the NMI tick to occur. This is a lot faster and can produce more relevant backtraces. It will also work if the NMI watchdog is disabled. - Dont print the 'dazed and confused' message when we print a backtrace from the NMI - Do a show_regs() plus a dump_stack() to get maximum info out of the dump. Worst-case we get two stacktraces - which is not a big deal. Sometimes, if register content is corrupted, the precise stack walker in show_regs() wont give us a full backtrace - in this case dump_stack() will do it. Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-02 17:28:21 +08:00
trigger_all_cpu_backtrace();
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
force_quiescent_state(rsp, 0); /* Kick them all. */
}
static void print_cpu_stall(struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
smp_processor_id(), jiffies - rsp->gp_start);
debug lockups: Improve lockup detection When debugging a recent lockup bug i found various deficiencies in how our current lockup detection helpers work: - SysRq-L is not very efficient as it uses a workqueue, hence it cannot punch through hard lockups and cannot see through most soft lockups either. - The SysRq-L code depends on the NMI watchdog - which is off by default. - We dont print backtraces from the RCU code's built-in 'RCU state machine is stuck' debug code. This debug code tends to be one of the first (and only) mechanisms that show that a lockup has occured. This patch changes the code so taht we: - Trigger the NMI backtrace code from SysRq-L instead of using a workqueue (which cannot punch through hard lockups) - Trigger print-all-CPU-backtraces from the RCU lockup detection code Also decouple the backtrace printing code from the NMI watchdog: - Dont use variable size cpumasks (it might not be initialized and they are a bit more fragile anyway) - Trigger an NMI immediately via an IPI, instead of waiting for the NMI tick to occur. This is a lot faster and can produce more relevant backtraces. It will also work if the NMI watchdog is disabled. - Dont print the 'dazed and confused' message when we print a backtrace from the NMI - Do a show_regs() plus a dump_stack() to get maximum info out of the dump. Worst-case we get two stacktraces - which is not a big deal. Sometimes, if register content is corrupted, the precise stack walker in show_regs() wont give us a full backtrace - in this case dump_stack() will do it. Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-02 17:28:21 +08:00
trigger_all_cpu_backtrace();
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_lock_irqsave(&rnp->lock, flags);
if ((long)(jiffies - rsp->jiffies_stall) >= 0)
rsp->jiffies_stall =
jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
spin_unlock_irqrestore(&rnp->lock, flags);
debug lockups: Improve lockup detection When debugging a recent lockup bug i found various deficiencies in how our current lockup detection helpers work: - SysRq-L is not very efficient as it uses a workqueue, hence it cannot punch through hard lockups and cannot see through most soft lockups either. - The SysRq-L code depends on the NMI watchdog - which is off by default. - We dont print backtraces from the RCU code's built-in 'RCU state machine is stuck' debug code. This debug code tends to be one of the first (and only) mechanisms that show that a lockup has occured. This patch changes the code so taht we: - Trigger the NMI backtrace code from SysRq-L instead of using a workqueue (which cannot punch through hard lockups) - Trigger print-all-CPU-backtraces from the RCU lockup detection code Also decouple the backtrace printing code from the NMI watchdog: - Dont use variable size cpumasks (it might not be initialized and they are a bit more fragile anyway) - Trigger an NMI immediately via an IPI, instead of waiting for the NMI tick to occur. This is a lot faster and can produce more relevant backtraces. It will also work if the NMI watchdog is disabled. - Dont print the 'dazed and confused' message when we print a backtrace from the NMI - Do a show_regs() plus a dump_stack() to get maximum info out of the dump. Worst-case we get two stacktraces - which is not a big deal. Sometimes, if register content is corrupted, the precise stack walker in show_regs() wont give us a full backtrace - in this case dump_stack() will do it. Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-02 17:28:21 +08:00
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
set_need_resched(); /* kick ourselves to get things going. */
}
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
long delta;
struct rcu_node *rnp;
delta = jiffies - rsp->jiffies_stall;
rnp = rdp->mynode;
if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
/* We haven't checked in, so go dump stack. */
print_cpu_stall(rsp);
} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* They had two time units to dump stack, so complain. */
print_other_cpu_stall(rsp);
}
}
#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
}
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
}
#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
* Update CPU-local rcu_data state to record the newly noticed grace period.
* This is used both when we started the grace period and when we notice
* that someone else started the grace period. The caller must hold the
* ->lock of the leaf rcu_node structure corresponding to the current CPU,
* and must have irqs disabled.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
if (rdp->gpnum != rnp->gpnum) {
rdp->qs_pending = 1;
rdp->passed_quiesc = 0;
rdp->gpnum = rnp->gpnum;
}
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
struct rcu_node *rnp;
local_irq_save(flags);
rnp = rdp->mynode;
if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
!spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
local_irq_restore(flags);
return;
}
__note_new_gpnum(rsp, rnp, rdp);
spin_unlock_irqrestore(&rnp->lock, flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* Did someone else start a new RCU grace period start since we last
* checked? Update local state appropriately if so. Must be called
* on the CPU corresponding to rdp.
*/
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
int ret = 0;
local_irq_save(flags);
if (rdp->gpnum != rsp->gpnum) {
note_new_gpnum(rsp, rdp);
ret = 1;
}
local_irq_restore(flags);
return ret;
}
/*
* Advance this CPU's callbacks, but only if the current grace period
* has ended. This may be called only from the CPU to whom the rdp
* belongs. In addition, the corresponding leaf rcu_node structure's
* ->lock must be held by the caller, with irqs disabled.
*/
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
/* Did another grace period end? */
if (rdp->completed != rnp->completed) {
/* Advance callbacks. No harm if list empty. */
rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
/* Remember that we saw this grace-period completion. */
rdp->completed = rnp->completed;
}
}
/*
* Advance this CPU's callbacks, but only if the current grace period
* has ended. This may be called only from the CPU to whom the rdp
* belongs.
*/
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
struct rcu_node *rnp;
local_irq_save(flags);
rnp = rdp->mynode;
if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
!spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
local_irq_restore(flags);
return;
}
__rcu_process_gp_end(rsp, rnp, rdp);
spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Do per-CPU grace-period initialization for running CPU. The caller
* must hold the lock of the leaf rcu_node structure corresponding to
* this CPU.
*/
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
/* Prior grace period ended, so advance callbacks for current CPU. */
__rcu_process_gp_end(rsp, rnp, rdp);
/*
* Because this CPU just now started the new grace period, we know
* that all of its callbacks will be covered by this upcoming grace
* period, even the ones that were registered arbitrarily recently.
* Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
*
* Other CPUs cannot be sure exactly when the grace period started.
* Therefore, their recently registered callbacks must pass through
* an additional RCU_NEXT_READY stage, so that they will be handled
* by the next RCU grace period.
*/
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
/* Set state so that this CPU will detect the next quiescent state. */
__note_new_gpnum(rsp, rnp, rdp);
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Start a new RCU grace period if warranted, re-initializing the hierarchy
* in preparation for detecting the next grace period. The caller must hold
* the root node's ->lock, which is released before return. Hard irqs must
* be disabled.
*/
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
__releases(rcu_get_root(rsp)->lock)
{
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
struct rcu_node *rnp = rcu_get_root(rsp);
if (!cpu_needs_another_gp(rsp, rdp)) {
if (rnp->completed == rsp->completed) {
spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
spin_unlock(&rnp->lock); /* irqs remain disabled. */
/*
* Propagate new ->completed value to rcu_node structures
* so that other CPUs don't have to wait until the start
* of the next grace period to process their callbacks.
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->completed = rsp->completed;
spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
local_irq_restore(flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return;
}
/* Advance to a new grace period and initialize state. */
rsp->gpnum++;
WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
record_gp_stall_check_time(rsp);
/* Special-case the common single-level case. */
if (NUM_RCU_NODES == 1) {
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
rnp->gpnum = rsp->gpnum;
rnp->completed = rsp->completed;
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
rcu_start_gp_per_cpu(rsp, rnp, rdp);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
spin_unlock(&rnp->lock); /* leave irqs disabled. */
/* Exclude any concurrent CPU-hotplug operations. */
spin_lock(&rsp->onofflock); /* irqs already disabled. */
/*
* Set the quiescent-state-needed bits in all the rcu_node
* structures for all currently online CPUs in breadth-first
* order, starting from the root rcu_node structure. This
* operation relies on the layout of the hierarchy within the
* rsp->node[] array. Note that other CPUs will access only
* the leaves of the hierarchy, which still indicate that no
* grace period is in progress, at least until the corresponding
* leaf node has been initialized. In addition, we have excluded
* CPU-hotplug operations.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*
* Note that the grace period cannot complete until we finish
* the initialization process, as there will be at least one
* qsmask bit set in the root node until that time, namely the
* one corresponding to this CPU, due to the fact that we have
* irqs disabled.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
spin_lock(&rnp->lock); /* irqs already disabled. */
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
rnp->gpnum = rsp->gpnum;
rnp->completed = rsp->completed;
if (rnp == rdp->mynode)
rcu_start_gp_per_cpu(rsp, rnp, rdp);
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
spin_unlock(&rnp->lock); /* irqs remain disabled. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
rnp = rcu_get_root(rsp);
spin_lock(&rnp->lock); /* irqs already disabled. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
spin_unlock(&rnp->lock); /* irqs remain disabled. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_unlock_irqrestore(&rsp->onofflock, flags);
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
/*
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
* Report a full set of quiescent states to the specified rcu_state
* data structure. This involves cleaning up after the prior grace
* period and letting rcu_start_gp() start up the next grace period
* if one is needed. Note that the caller must hold rnp->lock, as
* required by rcu_start_gp(), which will release it.
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
*/
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
__releases(rcu_get_root(rsp)->lock)
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
{
WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rsp->completed = rsp->gpnum;
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
rsp->signaled = RCU_GP_IDLE;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
* Similar to rcu_report_qs_rdp(), for which it is a helper function.
* Allows quiescent states for a group of CPUs to be reported at one go
* to the specified rcu_node structure, though all the CPUs in the group
* must be represented by the same rcu_node structure (which need not be
* a leaf rcu_node structure, though it often will be). That structure's
* lock must be held upon entry, and it is released before return.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static void
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
struct rcu_node *rnp, unsigned long flags)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
__releases(rnp->lock)
{
struct rcu_node *rnp_c;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Walk up the rcu_node hierarchy. */
for (;;) {
if (!(rnp->qsmask & mask)) {
/* Our bit has already been cleared, so done. */
spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
rnp->qsmask &= ~mask;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Other bits still set at this level, so done. */
spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
mask = rnp->grpmask;
if (rnp->parent == NULL) {
/* No more levels. Exit loop holding root lock. */
break;
}
spin_unlock_irqrestore(&rnp->lock, flags);
rnp_c = rnp;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rnp = rnp->parent;
spin_lock_irqsave(&rnp->lock, flags);
WARN_ON_ONCE(rnp_c->qsmask);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* Get here if we are the last CPU to pass through a quiescent
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
* state for this grace period. Invoke rcu_report_qs_rsp()
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
* to clean up and start the next grace period if one is needed.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
* Record a quiescent state for the specified CPU to that CPU's rcu_data
* structure. This must be either called from the specified CPU, or
* called when the specified CPU is known to be offline (and when it is
* also known that no other CPU is concurrently trying to help the offline
* CPU). The lastcomp argument is used to make sure we are still in the
* grace period of interest. We don't want to end the current grace period
* based on quiescent states detected in an earlier grace period!
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static void
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp;
rnp = rdp->mynode;
spin_lock_irqsave(&rnp->lock, flags);
if (lastcomp != rnp->completed) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Someone beat us to it for this grace period, so leave.
* The race with GP start is resolved by the fact that we
* hold the leaf rcu_node lock, so that the per-CPU bits
* cannot yet be initialized -- so we would simply find our
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
* CPU's bit already cleared in rcu_report_qs_rnp() if this
* race occurred.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
rdp->passed_quiesc = 0; /* try again later! */
spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
mask = rdp->grpmask;
if ((rnp->qsmask & mask) == 0) {
spin_unlock_irqrestore(&rnp->lock, flags);
} else {
rdp->qs_pending = 0;
/*
* This GP can't end until cpu checks in, so all of our
* callbacks can be processed during the next GP.
*/
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
}
/*
* Check to see if there is a new grace period of which this CPU
* is not yet aware, and if so, set up local rcu_data state for it.
* Otherwise, see if this CPU has just passed through its first
* quiescent state for this grace period, and record that fact if so.
*/
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
/* If there is now a new grace period, record and return. */
if (check_for_new_grace_period(rsp, rdp))
return;
/*
* Does this CPU still need to do its part for current grace period?
* If no, return and let the other CPUs do their part as well.
*/
if (!rdp->qs_pending)
return;
/*
* Was there a quiescent state since the beginning of the grace
* period? If no, then exit and wait for the next call.
*/
if (!rdp->passed_quiesc)
return;
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
/*
* Tell RCU we are done (but rcu_report_qs_rdp() will be the
* judge of that).
*/
rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
* specified flavor of RCU. The callbacks will be adopted by the next
* _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
* comes first. Because this is invoked from the CPU_DYING notifier,
* irqs are already disabled.
*/
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
{
int i;
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
if (rdp->nxtlist == NULL)
return; /* irqs disabled, so comparison is stable. */
spin_lock(&rsp->onofflock); /* irqs already disabled. */
*rsp->orphan_cbs_tail = rdp->nxtlist;
rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
rdp->nxtlist = NULL;
for (i = 0; i < RCU_NEXT_SIZE; i++)
rdp->nxttail[i] = &rdp->nxtlist;
rsp->orphan_qlen += rdp->qlen;
rdp->qlen = 0;
spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
}
/*
* Adopt previously orphaned RCU callbacks.
*/
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_data *rdp;
spin_lock_irqsave(&rsp->onofflock, flags);
rdp = rsp->rda[smp_processor_id()];
if (rsp->orphan_cbs_list == NULL) {
spin_unlock_irqrestore(&rsp->onofflock, flags);
return;
}
*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
rdp->qlen += rsp->orphan_qlen;
rsp->orphan_cbs_list = NULL;
rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
rsp->orphan_qlen = 0;
spin_unlock_irqrestore(&rsp->onofflock, flags);
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
* and move all callbacks from the outgoing CPU to the current one.
*/
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
unsigned long flags;
unsigned long mask;
int need_report = 0;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
struct rcu_data *rdp = rsp->rda[cpu];
struct rcu_node *rnp;
/* Exclude any attempts to start a new grace period. */
spin_lock_irqsave(&rsp->onofflock, flags);
/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
mask = rdp->grpmask; /* rnp->grplo is constant. */
do {
spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->qsmaskinit &= ~mask;
if (rnp->qsmaskinit != 0) {
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
if (rnp != rdp->mynode)
spin_unlock(&rnp->lock); /* irqs remain disabled. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
break;
}
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
if (rnp == rdp->mynode)
need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
else
spin_unlock(&rnp->lock); /* irqs remain disabled. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
mask = rnp->grpmask;
rnp = rnp->parent;
} while (rnp != NULL);
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
/*
* We still hold the leaf rcu_node structure lock here, and
* irqs are still disabled. The reason for this subterfuge is
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
* because invoking rcu_report_unblock_qs_rnp() with ->onofflock
* held leads to deadlock.
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
*/
spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
rnp = rdp->mynode;
if (need_report & RCU_OFL_TASKS_NORM_GP)
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
rcu_report_unblock_qs_rnp(rnp, flags);
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
else
spin_unlock_irqrestore(&rnp->lock, flags);
if (need_report & RCU_OFL_TASKS_EXP_GP)
rcu_report_exp_rnp(rsp, rnp);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rcu_adopt_orphan_cbs(rsp);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* Remove the specified CPU from the RCU hierarchy and move any pending
* callbacks that it might have to the current CPU. This code assumes
* that at least one CPU in the system will remain running at all times.
* Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
*/
static void rcu_offline_cpu(int cpu)
{
__rcu_offline_cpu(cpu, &rcu_sched_state);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
__rcu_offline_cpu(cpu, &rcu_bh_state);
rcu_preempt_offline_cpu(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
#else /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
{
}
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
static void rcu_offline_cpu(int cpu)
{
}
#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
/*
* Invoke any RCU callbacks that have made it to the end of their grace
* period. Thottle as specified by rdp->blimit.
*/
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
unsigned long flags;
struct rcu_head *next, *list, **tail;
int count;
/* If no callbacks are ready, just return.*/
if (!cpu_has_callbacks_ready_to_invoke(rdp))
return;
/*
* Extract the list of ready callbacks, disabling to prevent
* races with call_rcu() from interrupt handlers.
*/
local_irq_save(flags);
list = rdp->nxtlist;
rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
*rdp->nxttail[RCU_DONE_TAIL] = NULL;
tail = rdp->nxttail[RCU_DONE_TAIL];
for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
rdp->nxttail[count] = &rdp->nxtlist;
local_irq_restore(flags);
/* Invoke callbacks. */
count = 0;
while (list) {
next = list->next;
prefetch(next);
list->func(list);
list = next;
if (++count >= rdp->blimit)
break;
}
local_irq_save(flags);
/* Update count, and requeue any remaining callbacks. */
rdp->qlen -= count;
if (list != NULL) {
*tail = rdp->nxtlist;
rdp->nxtlist = list;
for (count = 0; count < RCU_NEXT_SIZE; count++)
if (&rdp->nxtlist == rdp->nxttail[count])
rdp->nxttail[count] = tail;
else
break;
}
/* Reinstate batch limit if we have worked down the excess. */
if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
rdp->blimit = blimit;
/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
rdp->qlen_last_fqs_check = 0;
rdp->n_force_qs_snap = rsp->n_force_qs;
} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
rdp->qlen_last_fqs_check = rdp->qlen;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
local_irq_restore(flags);
/* Re-raise the RCU softirq if there are callbacks remaining. */
if (cpu_has_callbacks_ready_to_invoke(rdp))
raise_softirq(RCU_SOFTIRQ);
}
/*
* Check to see if this CPU is in a non-context-switch quiescent state
* (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
* Also schedule the RCU softirq handler.
*
* This function must be called with hardirqs disabled. It is normally
* invoked from the scheduling-clock interrupt. If rcu_pending returns
* false, there is no point in invoking rcu_check_callbacks().
*/
void rcu_check_callbacks(int cpu, int user)
{
if (!rcu_pending(cpu))
return; /* if nothing for RCU to do. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
if (user ||
rcu: Teach RCU that idle task is not quiscent state at boot This patch fixes a bug located by Vegard Nossum with the aid of kmemcheck, updated based on review comments from Nick Piggin, Ingo Molnar, and Andrew Morton. And cleans up the variable-name and function-name language. ;-) The boot CPU runs in the context of its idle thread during boot-up. During this time, idle_cpu(0) will always return nonzero, which will fool Classic and Hierarchical RCU into deciding that a large chunk of the boot-up sequence is a big long quiescent state. This in turn causes RCU to prematurely end grace periods during this time. This patch changes the rcutree.c and rcuclassic.c rcu_check_callbacks() function to ignore the idle task as a quiescent state until the system has started up the scheduler in rest_init(), introducing a new non-API function rcu_idle_now_means_idle() to inform RCU of this transition. RCU maintains an internal rcu_idle_cpu_truthful variable to track this state, which is then used by rcu_check_callback() to determine if it should believe idle_cpu(). Because this patch has the effect of disallowing RCU grace periods during long stretches of the boot-up sequence, this patch also introduces Josh Triplett's UP-only optimization that makes synchronize_rcu() be a no-op if num_online_cpus() returns 1. This allows boot-time code that calls synchronize_rcu() to proceed normally. Note, however, that RCU callbacks registered by call_rcu() will likely queue up until later in the boot sequence. Although rcuclassic and rcutree can also use this same optimization after boot completes, rcupreempt must restrict its use of this optimization to the portion of the boot sequence before the scheduler starts up, given that an rcupreempt RCU read-side critical section may be preeempted. In addition, this patch takes Nick Piggin's suggestion to make the system_state global variable be __read_mostly. Changes since v4: o Changes the name of the introduced function and variable to be less emotional. ;-) Changes since v3: o WARN_ON(nr_context_switches() > 0) to verify that RCU switches out of boot-time mode before the first context switch, as suggested by Nick Piggin. Changes since v2: o Created rcu_blocking_is_gp() internal-to-RCU API that determines whether a call to synchronize_rcu() is itself a grace period. o The definition of rcu_blocking_is_gp() for rcuclassic and rcutree checks to see if but a single CPU is online. o The definition of rcu_blocking_is_gp() for rcupreempt checks to see both if but a single CPU is online and if the system is still in early boot. This allows rcupreempt to again work correctly if running on a single CPU after booting is complete. o Added check to rcupreempt's synchronize_sched() for there being but one online CPU. Tested all three variants both SMP and !SMP, booted fine, passed a short rcutorture test on both x86 and Power. Located-by: Vegard Nossum <vegard.nossum@gmail.com> Tested-by: Vegard Nossum <vegard.nossum@gmail.com> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-26 10:03:42 +08:00
(idle_cpu(cpu) && rcu_scheduler_active &&
!in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Get here if this CPU took its interrupt from user
* mode or from the idle loop, and if this is not a
* nested interrupt. In this case, the CPU is in
* a quiescent state, so note it.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*
* No memory barrier is required here because both
* rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
* variables that other CPUs neither access nor modify,
* at least not while the corresponding CPU is online.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
rcu_sched_qs(cpu);
rcu_bh_qs(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
} else if (!in_softirq()) {
/*
* Get here if this CPU did not take its interrupt from
* softirq, in other words, if it is not interrupting
* a rcu_bh read-side critical section. This is an _bh
* critical section, so note it.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
rcu_bh_qs(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_preempt_check_callbacks(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
raise_softirq(RCU_SOFTIRQ);
}
#ifdef CONFIG_SMP
/*
* Scan the leaf rcu_node structures, processing dyntick state for any that
* have not yet encountered a quiescent state, using the function specified.
* Returns 1 if the current grace period ends while scanning (possibly
* because we made it end).
*/
static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
int (*f)(struct rcu_data *))
{
unsigned long bit;
int cpu;
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rcu_for_each_leaf_node(rsp, rnp) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
mask = 0;
spin_lock_irqsave(&rnp->lock, flags);
if (rnp->completed != lastcomp) {
spin_unlock_irqrestore(&rnp->lock, flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
if (rnp->qsmask == 0) {
spin_unlock_irqrestore(&rnp->lock, flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
continue;
}
cpu = rnp->grplo;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
bit = 1;
for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
mask |= bit;
}
if (mask != 0 && rnp->completed == lastcomp) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rcu: Rename "quiet" functions The number of "quiet" functions has grown recently, and the names are no longer very descriptive. The point of all of these functions is to do some portion of the task of reporting a quiescent state, so rename them accordingly: o cpu_quiet() becomes rcu_report_qs_rdp(), which reports a quiescent state to the per-CPU rcu_data structure. If this turns out to be a new quiescent state for this grace period, then rcu_report_qs_rnp() will be invoked to propagate the quiescent state up the rcu_node hierarchy. o cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports a quiescent state for a given CPU (or possibly a set of CPUs) up the rcu_node hierarchy. o cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which reports a full set of quiescent states to the global rcu_state structure. o task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports a quiescent state due to a task exiting an RCU read-side critical section that had previously blocked in that same critical section. As indicated by the new name, this type of quiescent state is reported up the rcu_node hierarchy (using rcu_report_qs_rnp() to do so). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12597846163698-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 04:10:13 +08:00
/* rcu_report_qs_rnp() releases rnp->lock. */
rcu_report_qs_rnp(mask, rsp, rnp, flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
continue;
}
spin_unlock_irqrestore(&rnp->lock, flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
return 0;
}
/*
* Force quiescent states on reluctant CPUs, and also detect which
* CPUs are in dyntick-idle mode.
*/
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
unsigned long flags;
long lastcomp;
struct rcu_node *rnp = rcu_get_root(rsp);
u8 signaled;
u8 forcenow;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
if (!rcu_gp_in_progress(rsp))
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return; /* No grace period in progress, nothing to force. */
if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
return; /* Someone else is already on the job. */
}
if (relaxed &&
rcu: Make hierarchical RCU less IPI-happy This patch fixes a hierarchical-RCU performance bug located by Anton Blanchard. The problem stems from a misguided attempt to provide a work-around for jiffies-counter failure. This work-around uses a per-CPU n_rcu_pending counter, which is incremented on each call to rcu_pending(), which in turn is called from each scheduling-clock interrupt. Each CPU then treats this counter as a surrogate for the jiffies counter, so that if the jiffies counter fails to advance, the per-CPU n_rcu_pending counter will cause RCU to invoke force_quiescent_state(), which in turn will (among other things) send resched IPIs to CPUs that have thus far failed to pass through an RCU quiescent state. Unfortunately, each CPU resets only its own counter after sending a batch of IPIs. This means that the other CPUs will also (needlessly) send -another- round of IPIs, for a full N-squared set of IPIs in the worst case every three scheduler-clock ticks until the grace period finally ends. It is not reasonable for a given CPU to reset each and every n_rcu_pending for all the other CPUs, so this patch instead simply disables the jiffies-counter "training wheels", thus eliminating the excessive IPIs. Note that the jiffies-counter IPIs do not have this problem due to the fact that the jiffies counter is global, so that the CPU sending the IPIs can easily reset things, thus preventing the other CPUs from sending redundant IPIs. Note also that the n_rcu_pending counter remains, as it will continue to be used for tracing. It may also see use to update the jiffies counter, should an appropriate kick-the-jiffies-counter API appear. Located-by: Anton Blanchard <anton@au1.ibm.com> Tested-by: Anton Blanchard <anton@au1.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: anton@samba.org Cc: akpm@linux-foundation.org Cc: dipankar@in.ibm.com Cc: manfred@colorfullife.com Cc: cl@linux-foundation.org Cc: josht@linux.vnet.ibm.com Cc: schamp@sgi.com Cc: niv@us.ibm.com Cc: dvhltc@us.ibm.com Cc: ego@in.ibm.com Cc: laijs@cn.fujitsu.com Cc: rostedt@goodmis.org Cc: peterz@infradead.org Cc: penberg@cs.helsinki.fi Cc: andi@firstfloor.org Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> LKML-Reference: <12396834793575-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-14 12:31:16 +08:00
(long)(rsp->jiffies_force_qs - jiffies) >= 0)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
goto unlock_ret; /* no emergency and done recently. */
rsp->n_force_qs++;
spin_lock(&rnp->lock);
lastcomp = rsp->gpnum - 1;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
signaled = rsp->signaled;
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
if(!rcu_gp_in_progress(rsp)) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rsp->n_force_qs_ngp++;
spin_unlock(&rnp->lock);
goto unlock_ret; /* no GP in progress, time updated. */
}
spin_unlock(&rnp->lock);
switch (signaled) {
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
case RCU_GP_IDLE:
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
case RCU_GP_INIT:
rcu: Fix long-grace-period race between forcing and initialization Very long RCU read-side critical sections (50 milliseconds or so) can cause a race between force_quiescent_state() and rcu_start_gp() as follows on kernel builds with multi-level rcu_node hierarchies: 1. CPU 0 calls force_quiescent_state(), sees that there is a grace period in progress, and acquires ->fsqlock. 2. CPU 1 detects the end of the grace period, and so cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum. This operation is carried out under the root rnp->lock, but CPU 0 has not yet acquired that lock. Note that rsp->signaled is still RCU_SAVE_DYNTICK from the last grace period. 3. CPU 1 calls rcu_start_gp(), but no one wants a new grace period, so it drops the root rnp->lock and returns. 4. CPU 0 acquires the root rnp->lock and picks up rsp->completed and rsp->signaled, then drops rnp->lock. It then enters the RCU_SAVE_DYNTICK leg of the switch statement. 5. CPU 2 invokes call_rcu(), and now needs a new grace period. It calls rcu_start_gp(), which acquires the root rnp->lock, sets rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in the RCU_SAVE_DYNTICK leg of the switch statement!) and starts initializing the rcu_node hierarchy. If there are multiple levels to the hierarchy, it will drop the root rnp->lock and initialize the lower levels of the hierarchy. 6. CPU 0 notes that rsp->completed has not changed, which permits both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's update prevails, later calls to force_quiescent_state() can count old quiescent states against the new grace period, which can in turn result in premature ending of grace periods. Not good. This patch adds an RCU_GP_IDLE state for rsp->signaled that is set initially at boot time and any time a grace period ends. This prevents CPU 0 from getting into the workings of force_quiescent_state() in step 4. Additional locking and checks prevent the concurrent update of rsp->signaled in step 6. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1256742889199-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-28 23:14:49 +08:00
break; /* grace period idle or initializing, ignore. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
case RCU_SAVE_DYNTICK:
if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
break; /* So gcc recognizes the dead code. */
/* Record dyntick-idle state. */
if (rcu_process_dyntick(rsp, lastcomp,
dyntick_save_progress_counter))
goto unlock_ret;
/* fall into next case. */
case RCU_SAVE_COMPLETED:
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Update state, record completion counter. */
forcenow = 0;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_lock(&rnp->lock);
if (lastcomp + 1 == rsp->gpnum &&
lastcomp == rsp->completed &&
rsp->signaled == signaled) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rsp->signaled = RCU_FORCE_QS;
rsp->completed_fqs = lastcomp;
forcenow = signaled == RCU_SAVE_COMPLETED;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
spin_unlock(&rnp->lock);
if (!forcenow)
break;
/* fall into next case. */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
case RCU_FORCE_QS:
/* Check dyntick-idle state, send IPI to laggarts. */
if (rcu_process_dyntick(rsp, rsp->completed_fqs,
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rcu_implicit_dynticks_qs))
goto unlock_ret;
/* Leave state in case more forcing is required. */
break;
}
unlock_ret:
spin_unlock_irqrestore(&rsp->fqslock, flags);
}
#else /* #ifdef CONFIG_SMP */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
set_need_resched();
}
#endif /* #else #ifdef CONFIG_SMP */
/*
* This does the RCU processing work from softirq context for the
* specified rcu_state and rcu_data structures. This may be called
* only from the CPU to whom the rdp belongs.
*/
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long flags;
WARN_ON_ONCE(rdp->beenonline == 0);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* If an RCU GP has gone long enough, go check for dyntick
* idle CPUs and, if needed, send resched IPIs.
*/
rcu: Make hierarchical RCU less IPI-happy This patch fixes a hierarchical-RCU performance bug located by Anton Blanchard. The problem stems from a misguided attempt to provide a work-around for jiffies-counter failure. This work-around uses a per-CPU n_rcu_pending counter, which is incremented on each call to rcu_pending(), which in turn is called from each scheduling-clock interrupt. Each CPU then treats this counter as a surrogate for the jiffies counter, so that if the jiffies counter fails to advance, the per-CPU n_rcu_pending counter will cause RCU to invoke force_quiescent_state(), which in turn will (among other things) send resched IPIs to CPUs that have thus far failed to pass through an RCU quiescent state. Unfortunately, each CPU resets only its own counter after sending a batch of IPIs. This means that the other CPUs will also (needlessly) send -another- round of IPIs, for a full N-squared set of IPIs in the worst case every three scheduler-clock ticks until the grace period finally ends. It is not reasonable for a given CPU to reset each and every n_rcu_pending for all the other CPUs, so this patch instead simply disables the jiffies-counter "training wheels", thus eliminating the excessive IPIs. Note that the jiffies-counter IPIs do not have this problem due to the fact that the jiffies counter is global, so that the CPU sending the IPIs can easily reset things, thus preventing the other CPUs from sending redundant IPIs. Note also that the n_rcu_pending counter remains, as it will continue to be used for tracing. It may also see use to update the jiffies counter, should an appropriate kick-the-jiffies-counter API appear. Located-by: Anton Blanchard <anton@au1.ibm.com> Tested-by: Anton Blanchard <anton@au1.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: anton@samba.org Cc: akpm@linux-foundation.org Cc: dipankar@in.ibm.com Cc: manfred@colorfullife.com Cc: cl@linux-foundation.org Cc: josht@linux.vnet.ibm.com Cc: schamp@sgi.com Cc: niv@us.ibm.com Cc: dvhltc@us.ibm.com Cc: ego@in.ibm.com Cc: laijs@cn.fujitsu.com Cc: rostedt@goodmis.org Cc: peterz@infradead.org Cc: penberg@cs.helsinki.fi Cc: andi@firstfloor.org Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> LKML-Reference: <12396834793575-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-14 12:31:16 +08:00
if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
force_quiescent_state(rsp, 1);
/*
* Advance callbacks in response to end of earlier grace
* period that some other CPU ended.
*/
rcu_process_gp_end(rsp, rdp);
/* Update RCU state based on any recent quiescent states. */
rcu_check_quiescent_state(rsp, rdp);
/* Does this CPU require a not-yet-started grace period? */
if (cpu_needs_another_gp(rsp, rdp)) {
spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
rcu_start_gp(rsp, flags); /* releases above lock */
}
/* If there are callbacks ready, invoke them. */
rcu_do_batch(rsp, rdp);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* Do softirq processing for the current CPU.
*/
static void rcu_process_callbacks(struct softirq_action *unused)
{
/*
* Memory references from any prior RCU read-side critical sections
* executed by the interrupted code must be seen before any RCU
* grace-period manipulations below.
*/
smp_mb(); /* See above block comment. */
__rcu_process_callbacks(&rcu_sched_state,
&__get_cpu_var(rcu_sched_data));
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_preempt_process_callbacks();
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Memory references from any later RCU read-side critical sections
* executed by the interrupted code must be seen after any RCU
* grace-period manipulations above.
*/
smp_mb(); /* See above block comment. */
}
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_data *rdp;
head->func = func;
head->next = NULL;
smp_mb(); /* Ensure RCU update seen before callback registry. */
/*
* Opportunistically note grace-period endings and beginnings.
* Note that we might see a beginning right after we see an
* end, but never vice versa, since this CPU has to pass through
* a quiescent state betweentimes.
*/
local_irq_save(flags);
rdp = rsp->rda[smp_processor_id()];
rcu_process_gp_end(rsp, rdp);
check_for_new_grace_period(rsp, rdp);
/* Add the callback to our list. */
*rdp->nxttail[RCU_NEXT_TAIL] = head;
rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
/* Start a new grace period if one not already started. */
if (!rcu_gp_in_progress(rsp)) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
unsigned long nestflag;
struct rcu_node *rnp_root = rcu_get_root(rsp);
spin_lock_irqsave(&rnp_root->lock, nestflag);
rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
}
/*
* Force the grace period if too many callbacks or too long waiting.
* Enforce hysteresis, and don't invoke force_quiescent_state()
* if some other CPU has recently done so. Also, don't bother
* invoking force_quiescent_state() if the newly enqueued callback
* is the only one waiting for a grace period to complete.
*/
if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rdp->blimit = LONG_MAX;
if (rsp->n_force_qs == rdp->n_force_qs_snap &&
*rdp->nxttail[RCU_DONE_TAIL] != head)
force_quiescent_state(rsp, 0);
rdp->n_force_qs_snap = rsp->n_force_qs;
rdp->qlen_last_fqs_check = rdp->qlen;
rcu: Make hierarchical RCU less IPI-happy This patch fixes a hierarchical-RCU performance bug located by Anton Blanchard. The problem stems from a misguided attempt to provide a work-around for jiffies-counter failure. This work-around uses a per-CPU n_rcu_pending counter, which is incremented on each call to rcu_pending(), which in turn is called from each scheduling-clock interrupt. Each CPU then treats this counter as a surrogate for the jiffies counter, so that if the jiffies counter fails to advance, the per-CPU n_rcu_pending counter will cause RCU to invoke force_quiescent_state(), which in turn will (among other things) send resched IPIs to CPUs that have thus far failed to pass through an RCU quiescent state. Unfortunately, each CPU resets only its own counter after sending a batch of IPIs. This means that the other CPUs will also (needlessly) send -another- round of IPIs, for a full N-squared set of IPIs in the worst case every three scheduler-clock ticks until the grace period finally ends. It is not reasonable for a given CPU to reset each and every n_rcu_pending for all the other CPUs, so this patch instead simply disables the jiffies-counter "training wheels", thus eliminating the excessive IPIs. Note that the jiffies-counter IPIs do not have this problem due to the fact that the jiffies counter is global, so that the CPU sending the IPIs can easily reset things, thus preventing the other CPUs from sending redundant IPIs. Note also that the n_rcu_pending counter remains, as it will continue to be used for tracing. It may also see use to update the jiffies counter, should an appropriate kick-the-jiffies-counter API appear. Located-by: Anton Blanchard <anton@au1.ibm.com> Tested-by: Anton Blanchard <anton@au1.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: anton@samba.org Cc: akpm@linux-foundation.org Cc: dipankar@in.ibm.com Cc: manfred@colorfullife.com Cc: cl@linux-foundation.org Cc: josht@linux.vnet.ibm.com Cc: schamp@sgi.com Cc: niv@us.ibm.com Cc: dvhltc@us.ibm.com Cc: ego@in.ibm.com Cc: laijs@cn.fujitsu.com Cc: rostedt@goodmis.org Cc: peterz@infradead.org Cc: penberg@cs.helsinki.fi Cc: andi@firstfloor.org Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> LKML-Reference: <12396834793575-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-14 12:31:16 +08:00
} else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
force_quiescent_state(rsp, 1);
local_irq_restore(flags);
}
/*
* Queue an RCU-sched callback for invocation after a grace period.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
__call_rcu(head, func, &rcu_sched_state);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
EXPORT_SYMBOL_GPL(call_rcu_sched);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Queue an RCU for invocation after a quicker grace period.
*/
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);
/**
* synchronize_sched - wait until an rcu-sched grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-sched
* grace period has elapsed, in other words after all currently executing
* rcu-sched read-side critical sections have completed. These read-side
* critical sections are delimited by rcu_read_lock_sched() and
* rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
* local_irq_disable(), and so on may be used in place of
* rcu_read_lock_sched().
*
* This means that all preempt_disable code sequences, including NMI and
* hardware-interrupt handlers, in progress on entry will have completed
* before this primitive returns. However, this does not guarantee that
* softirq handlers will have completed, since in some kernels, these
* handlers can run in process context, and can block.
*
* This primitive provides the guarantees made by the (now removed)
* synchronize_kernel() API. In contrast, synchronize_rcu() only
* guarantees that rcu_read_lock() sections will have completed.
* In "classic RCU", these two guarantees happen to be one and
* the same, but can differ in realtime RCU implementations.
*/
void synchronize_sched(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_sched(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_sched);
/**
* synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
*
* Control will return to the caller some time after a full rcu_bh grace
* period has elapsed, in other words after all currently executing rcu_bh
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
* and may be nested.
*/
void synchronize_rcu_bh(void)
{
struct rcu_synchronize rcu;
if (rcu_blocking_is_gp())
return;
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_bh(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Check to see if there is any immediate RCU-related work to be done
* by the current CPU, for the specified type of RCU, returning 1 if so.
* The checks are in order of increasing expense: checks that can be
* carried out against CPU-local state are performed first. However,
* we must check for CPU stalls first, else we might not get a chance.
*/
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
struct rcu_node *rnp = rdp->mynode;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rdp->n_rcu_pending++;
/* Check for CPU stalls, if enabled. */
check_cpu_stall(rsp, rdp);
/* Is the RCU core waiting for a quiescent state from this CPU? */
if (rdp->qs_pending) {
rdp->n_rp_qs_pending++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Does this CPU have callbacks ready to invoke? */
if (cpu_has_callbacks_ready_to_invoke(rdp)) {
rdp->n_rp_cb_ready++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Has RCU gone idle with this CPU needing another grace period? */
if (cpu_needs_another_gp(rsp, rdp)) {
rdp->n_rp_cpu_needs_gp++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Has another RCU grace period completed? */
if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
rdp->n_rp_gp_completed++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Has a new RCU grace period started? */
if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
rdp->n_rp_gp_started++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* Has an RCU GP gone long enough to send resched IPIs &c? */
if (rcu_gp_in_progress(rsp) &&
((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
rdp->n_rp_need_fqs++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/* nothing to do */
rdp->n_rp_need_nothing++;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
return 0;
}
/*
* Check to see if there is any immediate RCU-related work to be done
* by the current CPU, returning 1 if so. This function is part of the
* RCU implementation; it is -not- an exported member of the RCU API.
*/
static int rcu_pending(int cpu)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
__rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
rcu_preempt_pending(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* Check to see if any future RCU-related work will need to be done
* by the current CPU, even if none need be done immediately, returning
* 1 if so. This function is part of the RCU implementation; it is -not-
* an exported member of the RCU API.
*/
int rcu_needs_cpu(int cpu)
{
/* RCU callbacks either ready or pending? */
return per_cpu(rcu_sched_data, cpu).nxtlist ||
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
per_cpu(rcu_bh_data, cpu).nxtlist ||
rcu_preempt_needs_cpu(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
* This function is invoked towards the end of the scheduler's initialization
* process. Before this is called, the idle task might contain
* RCU read-side critical sections (during which time, this idle
* task is booting the system). After this function is called, the
* idle tasks are prohibited from containing RCU read-side critical
* sections.
*/
void rcu_scheduler_starting(void)
{
WARN_ON(num_online_cpus() != 1);
WARN_ON(nr_context_switches() > 0);
rcu_scheduler_active = 1;
}
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;
static void rcu_barrier_callback(struct rcu_head *notused)
{
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
complete(&rcu_barrier_completion);
}
/*
* Called with preemption disabled, and from cross-cpu IRQ context.
*/
static void rcu_barrier_func(void *type)
{
int cpu = smp_processor_id();
struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
void (*call_rcu_func)(struct rcu_head *head,
void (*func)(struct rcu_head *head));
atomic_inc(&rcu_barrier_cpu_count);
call_rcu_func = type;
call_rcu_func(head, rcu_barrier_callback);
}
/*
* Orchestrate the specified type of RCU barrier, waiting for all
* RCU callbacks of the specified type to complete.
*/
static void _rcu_barrier(struct rcu_state *rsp,
void (*call_rcu_func)(struct rcu_head *head,
void (*func)(struct rcu_head *head)))
{
BUG_ON(in_interrupt());
/* Take mutex to serialize concurrent rcu_barrier() requests. */
mutex_lock(&rcu_barrier_mutex);
init_completion(&rcu_barrier_completion);
/*
* Initialize rcu_barrier_cpu_count to 1, then invoke
* rcu_barrier_func() on each CPU, so that each CPU also has
* incremented rcu_barrier_cpu_count. Only then is it safe to
* decrement rcu_barrier_cpu_count -- otherwise the first CPU
* might complete its grace period before all of the other CPUs
* did their increment, causing this function to return too
* early.
*/
atomic_set(&rcu_barrier_cpu_count, 1);
preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
rcu_adopt_orphan_cbs(rsp);
on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
complete(&rcu_barrier_completion);
wait_for_completion(&rcu_barrier_completion);
mutex_unlock(&rcu_barrier_mutex);
}
/**
* rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
*/
void rcu_barrier_bh(void)
{
_rcu_barrier(&rcu_bh_state, call_rcu_bh);
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);
/**
* rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
*/
void rcu_barrier_sched(void)
{
_rcu_barrier(&rcu_sched_state, call_rcu_sched);
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
/*
* Do boot-time initialization of a CPU's per-CPU RCU data.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
unsigned long flags;
int i;
struct rcu_data *rdp = rsp->rda[cpu];
struct rcu_node *rnp = rcu_get_root(rsp);
/* Set up local state, ensuring consistent view of global state. */
spin_lock_irqsave(&rnp->lock, flags);
rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
rdp->nxtlist = NULL;
for (i = 0; i < RCU_NEXT_SIZE; i++)
rdp->nxttail[i] = &rdp->nxtlist;
rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
rdp->cpu = cpu;
spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Initialize a CPU's per-CPU RCU data. Note that only one online or
* offline event can be happening at a given time. Note also that we
* can accept some slop in the rsp->completed access due to the fact
* that this CPU cannot possibly have any RCU callbacks in flight yet.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static void __cpuinit
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
unsigned long flags;
unsigned long mask;
struct rcu_data *rdp = rsp->rda[cpu];
struct rcu_node *rnp = rcu_get_root(rsp);
/* Set up local state, ensuring consistent view of global state. */
spin_lock_irqsave(&rnp->lock, flags);
rdp->passed_quiesc = 0; /* We could be racing with new GP, */
rdp->qs_pending = 1; /* so set up to respond to current GP. */
rdp->beenonline = 1; /* We have now been online. */
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rdp->preemptable = preemptable;
rdp->qlen_last_fqs_check = 0;
rdp->n_force_qs_snap = rsp->n_force_qs;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rdp->blimit = blimit;
spin_unlock(&rnp->lock); /* irqs remain disabled. */
/*
* A new grace period might start here. If so, we won't be part
* of it, but that is OK, as we are currently in a quiescent state.
*/
/* Exclude any attempts to start a new GP on large systems. */
spin_lock(&rsp->onofflock); /* irqs already disabled. */
/* Add CPU to rcu_node bitmasks. */
rnp = rdp->mynode;
mask = rdp->grpmask;
do {
/* Exclude any attempts to start a new GP on small systems. */
spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->qsmaskinit |= mask;
mask = rnp->grpmask;
if (rnp == rdp->mynode) {
rdp->gpnum = rnp->completed; /* if GP in progress... */
rdp->completed = rnp->completed;
rdp->passed_quiesc_completed = rnp->completed - 1;
}
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
spin_unlock(&rnp->lock); /* irqs already disabled. */
rnp = rnp->parent;
} while (rnp != NULL && !(rnp->qsmaskinit & mask));
spin_unlock_irqrestore(&rsp->onofflock, flags);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
static void __cpuinit rcu_online_cpu(int cpu)
{
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
rcu_preempt_init_percpu_data(cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
/*
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
* Handle CPU online/offline notification events.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
long cpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
rcu_online_cpu(cpu);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
/*
* preempt_disable() in _rcu_barrier() prevents stop_machine(),
* so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
* returns, all online cpus have queued rcu_barrier_func().
* The dying CPU clears its cpu_online_mask bit and
* moves all of its RCU callbacks to ->orphan_cbs_list
* in the context of stop_machine(), so subsequent calls
* to _rcu_barrier() will adopt these callbacks and only
* then queue rcu_barrier_func() on all remaining CPUs.
*/
rcu_send_cbs_to_orphanage(&rcu_bh_state);
rcu_send_cbs_to_orphanage(&rcu_sched_state);
rcu_preempt_send_cbs_to_orphanage();
break;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
case CPU_DEAD:
case CPU_DEAD_FROZEN:
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
rcu_offline_cpu(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}
/*
* Compute the per-level fanout, either using the exact fanout specified
* or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
*/
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
int i;
for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
int ccur;
int cprv;
int i;
cprv = NR_CPUS;
for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
ccur = rsp->levelcnt[i];
rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
cprv = ccur;
}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
/*
* Helper function for rcu_init() that initializes one rcu_state structure.
*/
static void __init rcu_init_one(struct rcu_state *rsp)
{
int cpustride = 1;
int i;
int j;
struct rcu_node *rnp;
/* Initialize the level-tracking arrays. */
for (i = 1; i < NUM_RCU_LVLS; i++)
rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
rcu_init_levelspread(rsp);
/* Initialize the elements themselves, starting from the leaves. */
for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
cpustride *= rsp->levelspread[i];
rnp = rsp->level[i];
for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
spin_lock_init(&rnp->lock);
rcu: Fix grace-period-stall bug on large systems with CPU hotplug When the last CPU of a given leaf rcu_node structure goes offline, all of the tasks queued on that leaf rcu_node structure (due to having blocked in their current RCU read-side critical sections) are requeued onto the root rcu_node structure. This requeuing is carried out by rcu_preempt_offline_tasks(). However, it is possible that these queued tasks are the only thing preventing the leaf rcu_node structure from reporting a quiescent state up the rcu_node hierarchy. Unfortunately, the old code would fail to do this reporting, resulting in a grace-period stall given the following sequence of events: 1. Kernel built for more than 32 CPUs on 32-bit systems or for more than 64 CPUs on 64-bit systems, so that there is more than one rcu_node structure. (Or CONFIG_RCU_FANOUT is artificially set to a number smaller than CONFIG_NR_CPUS.) 2. The kernel is built with CONFIG_TREE_PREEMPT_RCU. 3. A task running on a CPU associated with a given leaf rcu_node structure blocks while in an RCU read-side critical section -and- that CPU has not yet passed through a quiescent state for the current RCU grace period. This will cause the task to be queued on the leaf rcu_node's blocked_tasks[] array, in particular, on the element of this array corresponding to the current grace period. 4. Each of the remaining CPUs corresponding to this same leaf rcu_node structure pass through a quiescent state. However, the task is still in its RCU read-side critical section, so these quiescent states cannot be reported further up the rcu_node hierarchy. Nevertheless, all bits in the leaf rcu_node structure's ->qsmask field are now zero. 5. Each of the remaining CPUs go offline. (The events in step #4 and #5 can happen in any order as long as each CPU passes through a quiescent state before going offline.) 6. When the last CPU goes offline, __rcu_offline_cpu() will invoke rcu_preempt_offline_tasks(), which will move the task to the root rcu_node structure, but without reporting a quiescent state up the rcu_node hierarchy (and this failure to report a quiescent state is the bug). But because this leaf rcu_node structure's ->qsmask field is already zero and its ->block_tasks[] entries are all empty, force_quiescent_state() will skip this rcu_node structure. Therefore, grace periods are now hung. This patch abstracts some code out of rcu_read_unlock_special(), calling the result task_quiet() by analogy with cpu_quiet(), and invokes task_quiet() from both rcu_read_lock_special() and __rcu_offline_cpu(). Invoking task_quiet() from __rcu_offline_cpu() reports the quiescent state up the rcu_node hierarchy, fixing the bug. This ends up requiring a separate lock_class_key per level of the rcu_node hierarchy, which this patch also provides. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12589088301770-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-23 00:53:48 +08:00
lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rnp->gpnum = 0;
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rnp->qsmask = 0;
rnp->qsmaskinit = 0;
rnp->grplo = j * cpustride;
rnp->grphi = (j + 1) * cpustride - 1;
if (rnp->grphi >= NR_CPUS)
rnp->grphi = NR_CPUS - 1;
if (i == 0) {
rnp->grpnum = 0;
rnp->grpmask = 0;
rnp->parent = NULL;
} else {
rnp->grpnum = j % rsp->levelspread[i - 1];
rnp->grpmask = 1UL << rnp->grpnum;
rnp->parent = rsp->level[i - 1] +
j / rsp->levelspread[i - 1];
}
rnp->level = i;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
}
}
/*
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
* Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
* nowhere else! Assigns leaf node pointers into each CPU's rcu_data
* structure.
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
*/
#define RCU_INIT_FLAVOR(rsp, rcu_data) \
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
do { \
int i; \
int j; \
struct rcu_node *rnp; \
\
rcu_init_one(rsp); \
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
j = 0; \
for_each_possible_cpu(i) { \
if (i > rnp[j].grphi) \
j++; \
per_cpu(rcu_data, i).mynode = &rnp[j]; \
(rsp)->rda[i] = &per_cpu(rcu_data, i); \
rcu_boot_init_percpu_data(i, rsp); \
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
} \
} while (0)
void __init rcu_init(void)
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
{
int i;
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
rcu_bootup_announce();
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
#if NUM_RCU_LVL_4 != 0
printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
#endif /* #if NUM_RCU_LVL_4 != 0 */
RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
__rcu_init_preempt();
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
/*
* We don't need protection against CPU-hotplug here because
* this is called early in boot, before either interrupts
* or the scheduler are operational.
*/
cpu_notifier(rcu_cpu_notify, 0);
for_each_online_cpu(i)
rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
}
#include "rcutree_plugin.h"