2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/net/openvswitch/actions.c

899 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007-2014 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/openvswitch.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in6.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/checksum.h>
#include <net/dsfield.h>
#include <net/mpls.h>
#include <net/sctp/checksum.h>
#include "datapath.h"
#include "flow.h"
#include "vport.h"
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key,
2014-07-22 06:12:34 +08:00
const struct nlattr *attr, int len);
struct deferred_action {
struct sk_buff *skb;
const struct nlattr *actions;
/* Store pkt_key clone when creating deferred action. */
struct sw_flow_key pkt_key;
};
#define DEFERRED_ACTION_FIFO_SIZE 10
struct action_fifo {
int head;
int tail;
/* Deferred action fifo queue storage. */
struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
};
static struct action_fifo __percpu *action_fifos;
static DEFINE_PER_CPU(int, exec_actions_level);
static void action_fifo_init(struct action_fifo *fifo)
{
fifo->head = 0;
fifo->tail = 0;
}
static bool action_fifo_is_empty(const struct action_fifo *fifo)
{
return (fifo->head == fifo->tail);
}
static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
{
if (action_fifo_is_empty(fifo))
return NULL;
return &fifo->fifo[fifo->tail++];
}
static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
{
if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
return NULL;
return &fifo->fifo[fifo->head++];
}
/* Return true if fifo is not full */
static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
const struct sw_flow_key *key,
const struct nlattr *attr)
{
struct action_fifo *fifo;
struct deferred_action *da;
fifo = this_cpu_ptr(action_fifos);
da = action_fifo_put(fifo);
if (da) {
da->skb = skb;
da->actions = attr;
da->pkt_key = *key;
}
return da;
}
static void invalidate_flow_key(struct sw_flow_key *key)
{
key->eth.type = htons(0);
}
static bool is_flow_key_valid(const struct sw_flow_key *key)
{
return !!key->eth.type;
}
static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_action_push_mpls *mpls)
{
__be32 *new_mpls_lse;
struct ethhdr *hdr;
/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
if (skb->encapsulation)
return -ENOTSUPP;
if (skb_cow_head(skb, MPLS_HLEN) < 0)
return -ENOMEM;
skb_push(skb, MPLS_HLEN);
memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
skb->mac_len);
skb_reset_mac_header(skb);
new_mpls_lse = (__be32 *)skb_mpls_header(skb);
*new_mpls_lse = mpls->mpls_lse;
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
MPLS_HLEN, 0));
hdr = eth_hdr(skb);
hdr->h_proto = mpls->mpls_ethertype;
if (!skb->inner_protocol)
skb_set_inner_protocol(skb, skb->protocol);
skb->protocol = mpls->mpls_ethertype;
invalidate_flow_key(key);
return 0;
}
static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
const __be16 ethertype)
{
struct ethhdr *hdr;
int err;
err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
if (unlikely(err))
return err;
skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
skb->mac_len);
__skb_pull(skb, MPLS_HLEN);
skb_reset_mac_header(skb);
/* skb_mpls_header() is used to locate the ethertype
* field correctly in the presence of VLAN tags.
*/
hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
hdr->h_proto = ethertype;
if (eth_p_mpls(skb->protocol))
skb->protocol = ethertype;
invalidate_flow_key(key);
return 0;
}
static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
const __be32 *mpls_lse)
{
__be32 *stack;
int err;
err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
if (unlikely(err))
return err;
stack = (__be32 *)skb_mpls_header(skb);
if (skb->ip_summed == CHECKSUM_COMPLETE) {
__be32 diff[] = { ~(*stack), *mpls_lse };
skb->csum = ~csum_partial((char *)diff, sizeof(diff),
~skb->csum);
}
*stack = *mpls_lse;
key->mpls.top_lse = *mpls_lse;
return 0;
}
static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
int err;
err = skb_vlan_pop(skb);
if (skb_vlan_tag_present(skb))
invalidate_flow_key(key);
else
key->eth.tci = 0;
return err;
}
static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_action_push_vlan *vlan)
{
if (skb_vlan_tag_present(skb))
invalidate_flow_key(key);
else
key->eth.tci = vlan->vlan_tci;
return skb_vlan_push(skb, vlan->vlan_tpid,
ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
}
static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_key_ethernet *eth_key)
{
int err;
err = skb_ensure_writable(skb, ETH_HLEN);
if (unlikely(err))
return err;
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
ether_addr_copy(key->eth.src, eth_key->eth_src);
ether_addr_copy(key->eth.dst, eth_key->eth_dst);
return 0;
}
static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
__be32 *addr, __be32 new_addr)
{
int transport_len = skb->len - skb_transport_offset(skb);
if (nh->protocol == IPPROTO_TCP) {
if (likely(transport_len >= sizeof(struct tcphdr)))
inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
*addr, new_addr, 1);
} else if (nh->protocol == IPPROTO_UDP) {
if (likely(transport_len >= sizeof(struct udphdr))) {
struct udphdr *uh = udp_hdr(skb);
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace4(&uh->check, skb,
*addr, new_addr, 1);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
}
}
}
csum_replace4(&nh->check, *addr, new_addr);
skb_clear_hash(skb);
*addr = new_addr;
}
static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
__be32 addr[4], const __be32 new_addr[4])
{
int transport_len = skb->len - skb_transport_offset(skb);
if (l4_proto == NEXTHDR_TCP) {
if (likely(transport_len >= sizeof(struct tcphdr)))
inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
addr, new_addr, 1);
} else if (l4_proto == NEXTHDR_UDP) {
if (likely(transport_len >= sizeof(struct udphdr))) {
struct udphdr *uh = udp_hdr(skb);
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace16(&uh->check, skb,
addr, new_addr, 1);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
}
}
} else if (l4_proto == NEXTHDR_ICMP) {
if (likely(transport_len >= sizeof(struct icmp6hdr)))
inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
skb, addr, new_addr, 1);
}
}
static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
__be32 addr[4], const __be32 new_addr[4],
bool recalculate_csum)
{
if (recalculate_csum)
update_ipv6_checksum(skb, l4_proto, addr, new_addr);
skb_clear_hash(skb);
memcpy(addr, new_addr, sizeof(__be32[4]));
}
static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
{
nh->priority = tc >> 4;
nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
}
static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
{
nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
nh->flow_lbl[2] = fl & 0x000000FF;
}
static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
{
csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
nh->ttl = new_ttl;
}
static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_key_ipv4 *ipv4_key)
{
struct iphdr *nh;
int err;
err = skb_ensure_writable(skb, skb_network_offset(skb) +
sizeof(struct iphdr));
if (unlikely(err))
return err;
nh = ip_hdr(skb);
if (ipv4_key->ipv4_src != nh->saddr) {
set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
key->ipv4.addr.src = ipv4_key->ipv4_src;
}
if (ipv4_key->ipv4_dst != nh->daddr) {
set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
key->ipv4.addr.dst = ipv4_key->ipv4_dst;
}
if (ipv4_key->ipv4_tos != nh->tos) {
ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
key->ip.tos = nh->tos;
}
if (ipv4_key->ipv4_ttl != nh->ttl) {
set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
key->ip.ttl = ipv4_key->ipv4_ttl;
}
return 0;
}
static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_key_ipv6 *ipv6_key)
{
struct ipv6hdr *nh;
int err;
__be32 *saddr;
__be32 *daddr;
err = skb_ensure_writable(skb, skb_network_offset(skb) +
sizeof(struct ipv6hdr));
if (unlikely(err))
return err;
nh = ipv6_hdr(skb);
saddr = (__be32 *)&nh->saddr;
daddr = (__be32 *)&nh->daddr;
if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
ipv6_key->ipv6_src, true);
memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
sizeof(ipv6_key->ipv6_src));
}
if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
unsigned int offset = 0;
int flags = IP6_FH_F_SKIP_RH;
bool recalc_csum = true;
if (ipv6_ext_hdr(nh->nexthdr))
recalc_csum = ipv6_find_hdr(skb, &offset,
NEXTHDR_ROUTING, NULL,
&flags) != NEXTHDR_ROUTING;
set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
ipv6_key->ipv6_dst, recalc_csum);
memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
sizeof(ipv6_key->ipv6_dst));
}
set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
key->ip.tos = ipv6_get_dsfield(nh);
set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
nh->hop_limit = ipv6_key->ipv6_hlimit;
key->ip.ttl = ipv6_key->ipv6_hlimit;
return 0;
}
/* Must follow skb_ensure_writable() since that can move the skb data. */
static void set_tp_port(struct sk_buff *skb, __be16 *port,
__be16 new_port, __sum16 *check)
{
inet_proto_csum_replace2(check, skb, *port, new_port, 0);
*port = new_port;
skb_clear_hash(skb);
}
static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
{
struct udphdr *uh = udp_hdr(skb);
if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
set_tp_port(skb, port, new_port, &uh->check);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
} else {
*port = new_port;
skb_clear_hash(skb);
}
}
static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_key_udp *udp_port_key)
{
struct udphdr *uh;
int err;
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
sizeof(struct udphdr));
if (unlikely(err))
return err;
uh = udp_hdr(skb);
if (udp_port_key->udp_src != uh->source) {
set_udp_port(skb, &uh->source, udp_port_key->udp_src);
key->tp.src = udp_port_key->udp_src;
}
if (udp_port_key->udp_dst != uh->dest) {
set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
key->tp.dst = udp_port_key->udp_dst;
}
return 0;
}
static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_key_tcp *tcp_port_key)
{
struct tcphdr *th;
int err;
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
sizeof(struct tcphdr));
if (unlikely(err))
return err;
th = tcp_hdr(skb);
if (tcp_port_key->tcp_src != th->source) {
set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
key->tp.src = tcp_port_key->tcp_src;
}
if (tcp_port_key->tcp_dst != th->dest) {
set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
key->tp.dst = tcp_port_key->tcp_dst;
}
return 0;
}
static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_key_sctp *sctp_port_key)
{
struct sctphdr *sh;
int err;
unsigned int sctphoff = skb_transport_offset(skb);
err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
if (unlikely(err))
return err;
sh = sctp_hdr(skb);
if (sctp_port_key->sctp_src != sh->source ||
sctp_port_key->sctp_dst != sh->dest) {
__le32 old_correct_csum, new_csum, old_csum;
old_csum = sh->checksum;
old_correct_csum = sctp_compute_cksum(skb, sctphoff);
sh->source = sctp_port_key->sctp_src;
sh->dest = sctp_port_key->sctp_dst;
new_csum = sctp_compute_cksum(skb, sctphoff);
/* Carry any checksum errors through. */
sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
skb_clear_hash(skb);
key->tp.src = sctp_port_key->sctp_src;
key->tp.dst = sctp_port_key->sctp_dst;
}
return 0;
}
static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
{
struct vport *vport = ovs_vport_rcu(dp, out_port);
if (likely(vport))
ovs_vport_send(vport, skb);
else
kfree_skb(skb);
}
static int output_userspace(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key, const struct nlattr *attr)
{
struct ovs_tunnel_info info;
struct dp_upcall_info upcall;
const struct nlattr *a;
int rem;
upcall.cmd = OVS_PACKET_CMD_ACTION;
upcall.userdata = NULL;
upcall.portid = 0;
upcall.egress_tun_info = NULL;
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
a = nla_next(a, &rem)) {
switch (nla_type(a)) {
case OVS_USERSPACE_ATTR_USERDATA:
upcall.userdata = a;
break;
case OVS_USERSPACE_ATTR_PID:
upcall.portid = nla_get_u32(a);
break;
case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
/* Get out tunnel info. */
struct vport *vport;
vport = ovs_vport_rcu(dp, nla_get_u32(a));
if (vport) {
int err;
err = ovs_vport_get_egress_tun_info(vport, skb,
&info);
if (!err)
upcall.egress_tun_info = &info;
}
break;
}
} /* End of switch. */
}
return ovs_dp_upcall(dp, skb, key, &upcall);
}
static int sample(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key, const struct nlattr *attr)
{
const struct nlattr *acts_list = NULL;
const struct nlattr *a;
int rem;
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
a = nla_next(a, &rem)) {
switch (nla_type(a)) {
case OVS_SAMPLE_ATTR_PROBABILITY:
if (prandom_u32() >= nla_get_u32(a))
return 0;
break;
case OVS_SAMPLE_ATTR_ACTIONS:
acts_list = a;
break;
}
}
2014-07-22 06:12:34 +08:00
rem = nla_len(acts_list);
a = nla_data(acts_list);
/* Actions list is empty, do nothing */
if (unlikely(!rem))
return 0;
2014-07-22 06:12:34 +08:00
/* The only known usage of sample action is having a single user-space
* action. Treat this usage as a special case.
* The output_userspace() should clone the skb to be sent to the
* user space. This skb will be consumed by its caller.
2014-07-22 06:12:34 +08:00
*/
if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
nla_is_last(a, rem)))
return output_userspace(dp, skb, key, a);
skb = skb_clone(skb, GFP_ATOMIC);
if (!skb)
/* Skip the sample action when out of memory. */
return 0;
if (!add_deferred_actions(skb, key, a)) {
if (net_ratelimit())
pr_warn("%s: deferred actions limit reached, dropping sample action\n",
ovs_dp_name(dp));
kfree_skb(skb);
}
return 0;
}
static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
const struct nlattr *attr)
{
struct ovs_action_hash *hash_act = nla_data(attr);
u32 hash = 0;
/* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
hash = skb_get_hash(skb);
hash = jhash_1word(hash, hash_act->hash_basis);
if (!hash)
hash = 0x1;
key->ovs_flow_hash = hash;
}
static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
const struct nlattr *nested_attr)
{
int err = 0;
switch (nla_type(nested_attr)) {
case OVS_KEY_ATTR_PRIORITY:
skb->priority = nla_get_u32(nested_attr);
key->phy.priority = skb->priority;
break;
case OVS_KEY_ATTR_SKB_MARK:
skb->mark = nla_get_u32(nested_attr);
key->phy.skb_mark = skb->mark;
break;
case OVS_KEY_ATTR_TUNNEL_INFO:
OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
break;
case OVS_KEY_ATTR_ETHERNET:
err = set_eth_addr(skb, key, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_IPV4:
err = set_ipv4(skb, key, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_IPV6:
err = set_ipv6(skb, key, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_TCP:
err = set_tcp(skb, key, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_UDP:
err = set_udp(skb, key, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_SCTP:
err = set_sctp(skb, key, nla_data(nested_attr));
break;
case OVS_KEY_ATTR_MPLS:
err = set_mpls(skb, key, nla_data(nested_attr));
break;
}
return err;
}
static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key,
const struct nlattr *a, int rem)
{
struct deferred_action *da;
if (!is_flow_key_valid(key)) {
int err;
err = ovs_flow_key_update(skb, key);
if (err)
return err;
}
BUG_ON(!is_flow_key_valid(key));
if (!nla_is_last(a, rem)) {
/* Recirc action is the not the last action
* of the action list, need to clone the skb.
*/
skb = skb_clone(skb, GFP_ATOMIC);
/* Skip the recirc action when out of memory, but
* continue on with the rest of the action list.
*/
if (!skb)
return 0;
}
da = add_deferred_actions(skb, key, NULL);
if (da) {
da->pkt_key.recirc_id = nla_get_u32(a);
} else {
kfree_skb(skb);
if (net_ratelimit())
pr_warn("%s: deferred action limit reached, drop recirc action\n",
ovs_dp_name(dp));
}
return 0;
}
/* Execute a list of actions against 'skb'. */
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key,
2014-07-22 06:12:34 +08:00
const struct nlattr *attr, int len)
{
/* Every output action needs a separate clone of 'skb', but the common
* case is just a single output action, so that doing a clone and
* then freeing the original skbuff is wasteful. So the following code
* is slightly obscure just to avoid that.
*/
int prev_port = -1;
const struct nlattr *a;
int rem;
for (a = attr, rem = len; rem > 0;
a = nla_next(a, &rem)) {
int err = 0;
if (unlikely(prev_port != -1)) {
struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
if (out_skb)
do_output(dp, out_skb, prev_port);
prev_port = -1;
}
switch (nla_type(a)) {
case OVS_ACTION_ATTR_OUTPUT:
prev_port = nla_get_u32(a);
break;
case OVS_ACTION_ATTR_USERSPACE:
output_userspace(dp, skb, key, a);
break;
case OVS_ACTION_ATTR_HASH:
execute_hash(skb, key, a);
break;
case OVS_ACTION_ATTR_PUSH_MPLS:
err = push_mpls(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_POP_MPLS:
err = pop_mpls(skb, key, nla_get_be16(a));
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
err = push_vlan(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_POP_VLAN:
err = pop_vlan(skb, key);
break;
case OVS_ACTION_ATTR_RECIRC:
err = execute_recirc(dp, skb, key, a, rem);
if (nla_is_last(a, rem)) {
/* If this is the last action, the skb has
* been consumed or freed.
* Return immediately.
*/
return err;
}
break;
case OVS_ACTION_ATTR_SET:
err = execute_set_action(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_SAMPLE:
err = sample(dp, skb, key, a);
break;
}
if (unlikely(err)) {
kfree_skb(skb);
return err;
}
}
2014-07-22 06:12:34 +08:00
if (prev_port != -1)
do_output(dp, skb, prev_port);
2014-07-22 06:12:34 +08:00
else
consume_skb(skb);
return 0;
}
static void process_deferred_actions(struct datapath *dp)
{
struct action_fifo *fifo = this_cpu_ptr(action_fifos);
/* Do not touch the FIFO in case there is no deferred actions. */
if (action_fifo_is_empty(fifo))
return;
/* Finishing executing all deferred actions. */
do {
struct deferred_action *da = action_fifo_get(fifo);
struct sk_buff *skb = da->skb;
struct sw_flow_key *key = &da->pkt_key;
const struct nlattr *actions = da->actions;
if (actions)
do_execute_actions(dp, skb, key, actions,
nla_len(actions));
else
ovs_dp_process_packet(skb, key);
} while (!action_fifo_is_empty(fifo));
/* Reset FIFO for the next packet. */
action_fifo_init(fifo);
}
/* Execute a list of actions against 'skb'. */
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
const struct sw_flow_actions *acts,
struct sw_flow_key *key)
{
int level = this_cpu_read(exec_actions_level);
int err;
this_cpu_inc(exec_actions_level);
OVS_CB(skb)->egress_tun_info = NULL;
err = do_execute_actions(dp, skb, key,
acts->actions, acts->actions_len);
if (!level)
process_deferred_actions(dp);
this_cpu_dec(exec_actions_level);
return err;
}
int action_fifos_init(void)
{
action_fifos = alloc_percpu(struct action_fifo);
if (!action_fifos)
return -ENOMEM;
return 0;
}
void action_fifos_exit(void)
{
free_percpu(action_fifos);
}