2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-20 00:26:39 +08:00
linux-next/arch/avr32/mach-at32ap/at32ap7000.c

877 lines
20 KiB
C
Raw Normal View History

[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
/*
* Copyright (C) 2005-2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/arch/board.h>
#include <asm/arch/portmux.h>
#include <asm/arch/sm.h>
#include "clock.h"
#include "pio.h"
#include "sm.h"
#define PBMEM(base) \
{ \
.start = base, \
.end = base + 0x3ff, \
.flags = IORESOURCE_MEM, \
}
#define IRQ(num) \
{ \
.start = num, \
.end = num, \
.flags = IORESOURCE_IRQ, \
}
#define NAMED_IRQ(num, _name) \
{ \
.start = num, \
.end = num, \
.name = _name, \
.flags = IORESOURCE_IRQ, \
}
#define DEFINE_DEV(_name, _id) \
static struct platform_device _name##_id##_device = { \
.name = #_name, \
.id = _id, \
.resource = _name##_id##_resource, \
.num_resources = ARRAY_SIZE(_name##_id##_resource), \
}
#define DEFINE_DEV_DATA(_name, _id) \
static struct platform_device _name##_id##_device = { \
.name = #_name, \
.id = _id, \
.dev = { \
.platform_data = &_name##_id##_data, \
}, \
.resource = _name##_id##_resource, \
.num_resources = ARRAY_SIZE(_name##_id##_resource), \
}
#define DEV_CLK(_name, devname, bus, _index) \
static struct clk devname##_##_name = { \
.name = #_name, \
.dev = &devname##_device.dev, \
.parent = &bus##_clk, \
.mode = bus##_clk_mode, \
.get_rate = bus##_clk_get_rate, \
.index = _index, \
}
enum {
PIOA,
PIOB,
PIOC,
PIOD,
};
enum {
FUNC_A,
FUNC_B,
};
unsigned long at32ap7000_osc_rates[3] = {
[0] = 32768,
/* FIXME: these are ATSTK1002-specific */
[1] = 20000000,
[2] = 12000000,
};
static unsigned long osc_get_rate(struct clk *clk)
{
return at32ap7000_osc_rates[clk->index];
}
static unsigned long pll_get_rate(struct clk *clk, unsigned long control)
{
unsigned long div, mul, rate;
if (!(control & SM_BIT(PLLEN)))
return 0;
div = SM_BFEXT(PLLDIV, control) + 1;
mul = SM_BFEXT(PLLMUL, control) + 1;
rate = clk->parent->get_rate(clk->parent);
rate = (rate + div / 2) / div;
rate *= mul;
return rate;
}
static unsigned long pll0_get_rate(struct clk *clk)
{
u32 control;
control = sm_readl(&system_manager, PM_PLL0);
return pll_get_rate(clk, control);
}
static unsigned long pll1_get_rate(struct clk *clk)
{
u32 control;
control = sm_readl(&system_manager, PM_PLL1);
return pll_get_rate(clk, control);
}
/*
* The AT32AP7000 has five primary clock sources: One 32kHz
* oscillator, two crystal oscillators and two PLLs.
*/
static struct clk osc32k = {
.name = "osc32k",
.get_rate = osc_get_rate,
.users = 1,
.index = 0,
};
static struct clk osc0 = {
.name = "osc0",
.get_rate = osc_get_rate,
.users = 1,
.index = 1,
};
static struct clk osc1 = {
.name = "osc1",
.get_rate = osc_get_rate,
.index = 2,
};
static struct clk pll0 = {
.name = "pll0",
.get_rate = pll0_get_rate,
.parent = &osc0,
};
static struct clk pll1 = {
.name = "pll1",
.get_rate = pll1_get_rate,
.parent = &osc0,
};
/*
* The main clock can be either osc0 or pll0. The boot loader may
* have chosen one for us, so we don't really know which one until we
* have a look at the SM.
*/
static struct clk *main_clock;
/*
* Synchronous clocks are generated from the main clock. The clocks
* must satisfy the constraint
* fCPU >= fHSB >= fPB
* i.e. each clock must not be faster than its parent.
*/
static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift)
{
return main_clock->get_rate(main_clock) >> shift;
};
static void cpu_clk_mode(struct clk *clk, int enabled)
{
struct at32_sm *sm = &system_manager;
unsigned long flags;
u32 mask;
spin_lock_irqsave(&sm->lock, flags);
mask = sm_readl(sm, PM_CPU_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
sm_writel(sm, PM_CPU_MASK, mask);
spin_unlock_irqrestore(&sm->lock, flags);
}
static unsigned long cpu_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = sm_readl(&system_manager, PM_CKSEL);
if (cksel & SM_BIT(CPUDIV))
shift = SM_BFEXT(CPUSEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static void hsb_clk_mode(struct clk *clk, int enabled)
{
struct at32_sm *sm = &system_manager;
unsigned long flags;
u32 mask;
spin_lock_irqsave(&sm->lock, flags);
mask = sm_readl(sm, PM_HSB_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
sm_writel(sm, PM_HSB_MASK, mask);
spin_unlock_irqrestore(&sm->lock, flags);
}
static unsigned long hsb_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = sm_readl(&system_manager, PM_CKSEL);
if (cksel & SM_BIT(HSBDIV))
shift = SM_BFEXT(HSBSEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static void pba_clk_mode(struct clk *clk, int enabled)
{
struct at32_sm *sm = &system_manager;
unsigned long flags;
u32 mask;
spin_lock_irqsave(&sm->lock, flags);
mask = sm_readl(sm, PM_PBA_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
sm_writel(sm, PM_PBA_MASK, mask);
spin_unlock_irqrestore(&sm->lock, flags);
}
static unsigned long pba_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = sm_readl(&system_manager, PM_CKSEL);
if (cksel & SM_BIT(PBADIV))
shift = SM_BFEXT(PBASEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static void pbb_clk_mode(struct clk *clk, int enabled)
{
struct at32_sm *sm = &system_manager;
unsigned long flags;
u32 mask;
spin_lock_irqsave(&sm->lock, flags);
mask = sm_readl(sm, PM_PBB_MASK);
if (enabled)
mask |= 1 << clk->index;
else
mask &= ~(1 << clk->index);
sm_writel(sm, PM_PBB_MASK, mask);
spin_unlock_irqrestore(&sm->lock, flags);
}
static unsigned long pbb_clk_get_rate(struct clk *clk)
{
unsigned long cksel, shift = 0;
cksel = sm_readl(&system_manager, PM_CKSEL);
if (cksel & SM_BIT(PBBDIV))
shift = SM_BFEXT(PBBSEL, cksel) + 1;
return bus_clk_get_rate(clk, shift);
}
static struct clk cpu_clk = {
.name = "cpu",
.get_rate = cpu_clk_get_rate,
.users = 1,
};
static struct clk hsb_clk = {
.name = "hsb",
.parent = &cpu_clk,
.get_rate = hsb_clk_get_rate,
};
static struct clk pba_clk = {
.name = "pba",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = pba_clk_get_rate,
.index = 1,
};
static struct clk pbb_clk = {
.name = "pbb",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = pbb_clk_get_rate,
.users = 1,
.index = 2,
};
/* --------------------------------------------------------------------
* Generic Clock operations
* -------------------------------------------------------------------- */
static void genclk_mode(struct clk *clk, int enabled)
{
u32 control;
BUG_ON(clk->index > 7);
control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
if (enabled)
control |= SM_BIT(CEN);
else
control &= ~SM_BIT(CEN);
sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control);
}
static unsigned long genclk_get_rate(struct clk *clk)
{
u32 control;
unsigned long div = 1;
BUG_ON(clk->index > 7);
if (!clk->parent)
return 0;
control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
if (control & SM_BIT(DIVEN))
div = 2 * (SM_BFEXT(DIV, control) + 1);
return clk->parent->get_rate(clk->parent) / div;
}
static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply)
{
u32 control;
unsigned long parent_rate, actual_rate, div;
BUG_ON(clk->index > 7);
if (!clk->parent)
return 0;
parent_rate = clk->parent->get_rate(clk->parent);
control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
if (rate > 3 * parent_rate / 4) {
actual_rate = parent_rate;
control &= ~SM_BIT(DIVEN);
} else {
div = (parent_rate + rate) / (2 * rate) - 1;
control = SM_BFINS(DIV, div, control) | SM_BIT(DIVEN);
actual_rate = parent_rate / (2 * (div + 1));
}
printk("clk %s: new rate %lu (actual rate %lu)\n",
clk->name, rate, actual_rate);
if (apply)
sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index,
control);
return actual_rate;
}
int genclk_set_parent(struct clk *clk, struct clk *parent)
{
u32 control;
BUG_ON(clk->index > 7);
printk("clk %s: new parent %s (was %s)\n",
clk->name, parent->name,
clk->parent ? clk->parent->name : "(null)");
control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
if (parent == &osc1 || parent == &pll1)
control |= SM_BIT(OSCSEL);
else if (parent == &osc0 || parent == &pll0)
control &= ~SM_BIT(OSCSEL);
else
return -EINVAL;
if (parent == &pll0 || parent == &pll1)
control |= SM_BIT(PLLSEL);
else
control &= ~SM_BIT(PLLSEL);
sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control);
clk->parent = parent;
return 0;
}
/* --------------------------------------------------------------------
* System peripherals
* -------------------------------------------------------------------- */
static struct resource sm_resource[] = {
PBMEM(0xfff00000),
NAMED_IRQ(19, "eim"),
NAMED_IRQ(20, "pm"),
NAMED_IRQ(21, "rtc"),
};
struct platform_device at32_sm_device = {
.name = "sm",
.id = 0,
.resource = sm_resource,
.num_resources = ARRAY_SIZE(sm_resource),
};
DEV_CLK(pclk, at32_sm, pbb, 0);
static struct resource intc0_resource[] = {
PBMEM(0xfff00400),
};
struct platform_device at32_intc0_device = {
.name = "intc",
.id = 0,
.resource = intc0_resource,
.num_resources = ARRAY_SIZE(intc0_resource),
};
DEV_CLK(pclk, at32_intc0, pbb, 1);
static struct clk ebi_clk = {
.name = "ebi",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = hsb_clk_get_rate,
.users = 1,
};
static struct clk hramc_clk = {
.name = "hramc",
.parent = &hsb_clk,
.mode = hsb_clk_mode,
.get_rate = hsb_clk_get_rate,
.users = 1,
};
static struct resource smc0_resource[] = {
PBMEM(0xfff03400),
};
DEFINE_DEV(smc, 0);
DEV_CLK(pclk, smc0, pbb, 13);
DEV_CLK(mck, smc0, hsb, 0);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
static struct platform_device pdc_device = {
.name = "pdc",
.id = 0,
};
DEV_CLK(hclk, pdc, hsb, 4);
DEV_CLK(pclk, pdc, pba, 16);
static struct clk pico_clk = {
.name = "pico",
.parent = &cpu_clk,
.mode = cpu_clk_mode,
.get_rate = cpu_clk_get_rate,
.users = 1,
};
/* --------------------------------------------------------------------
* PIO
* -------------------------------------------------------------------- */
static struct resource pio0_resource[] = {
PBMEM(0xffe02800),
IRQ(13),
};
DEFINE_DEV(pio, 0);
DEV_CLK(mck, pio0, pba, 10);
static struct resource pio1_resource[] = {
PBMEM(0xffe02c00),
IRQ(14),
};
DEFINE_DEV(pio, 1);
DEV_CLK(mck, pio1, pba, 11);
static struct resource pio2_resource[] = {
PBMEM(0xffe03000),
IRQ(15),
};
DEFINE_DEV(pio, 2);
DEV_CLK(mck, pio2, pba, 12);
static struct resource pio3_resource[] = {
PBMEM(0xffe03400),
IRQ(16),
};
DEFINE_DEV(pio, 3);
DEV_CLK(mck, pio3, pba, 13);
void __init at32_add_system_devices(void)
{
system_manager.eim_first_irq = NR_INTERNAL_IRQS;
platform_device_register(&at32_sm_device);
platform_device_register(&at32_intc0_device);
platform_device_register(&smc0_device);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
platform_device_register(&pdc_device);
platform_device_register(&pio0_device);
platform_device_register(&pio1_device);
platform_device_register(&pio2_device);
platform_device_register(&pio3_device);
}
/* --------------------------------------------------------------------
* USART
* -------------------------------------------------------------------- */
static struct resource atmel_usart0_resource[] = {
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
PBMEM(0xffe00c00),
IRQ(7),
};
DEFINE_DEV(atmel_usart, 0);
DEV_CLK(usart, atmel_usart0, pba, 4);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
static struct resource atmel_usart1_resource[] = {
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
PBMEM(0xffe01000),
IRQ(7),
};
DEFINE_DEV(atmel_usart, 1);
DEV_CLK(usart, atmel_usart1, pba, 4);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
static struct resource atmel_usart2_resource[] = {
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
PBMEM(0xffe01400),
IRQ(8),
};
DEFINE_DEV(atmel_usart, 2);
DEV_CLK(usart, atmel_usart2, pba, 5);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
static struct resource atmel_usart3_resource[] = {
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
PBMEM(0xffe01800),
IRQ(9),
};
DEFINE_DEV(atmel_usart, 3);
DEV_CLK(usart, atmel_usart3, pba, 6);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
static inline void configure_usart0_pins(void)
{
portmux_set_func(PIOA, 8, FUNC_B); /* RXD */
portmux_set_func(PIOA, 9, FUNC_B); /* TXD */
}
static inline void configure_usart1_pins(void)
{
portmux_set_func(PIOA, 17, FUNC_A); /* RXD */
portmux_set_func(PIOA, 18, FUNC_A); /* TXD */
}
static inline void configure_usart2_pins(void)
{
portmux_set_func(PIOB, 26, FUNC_B); /* RXD */
portmux_set_func(PIOB, 27, FUNC_B); /* TXD */
}
static inline void configure_usart3_pins(void)
{
portmux_set_func(PIOB, 18, FUNC_B); /* RXD */
portmux_set_func(PIOB, 17, FUNC_B); /* TXD */
}
static struct platform_device *setup_usart(unsigned int id)
{
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &atmel_usart0_device;
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
configure_usart0_pins();
break;
case 1:
pdev = &atmel_usart1_device;
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
configure_usart1_pins();
break;
case 2:
pdev = &atmel_usart2_device;
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
configure_usart2_pins();
break;
case 3:
pdev = &atmel_usart3_device;
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
configure_usart3_pins();
break;
default:
pdev = NULL;
break;
}
return pdev;
}
struct platform_device *__init at32_add_device_usart(unsigned int id)
{
struct platform_device *pdev;
pdev = setup_usart(id);
if (pdev)
platform_device_register(pdev);
return pdev;
}
struct platform_device *at91_default_console_device;
void __init at32_setup_serial_console(unsigned int usart_id)
{
at91_default_console_device = setup_usart(usart_id);
}
/* --------------------------------------------------------------------
* Ethernet
* -------------------------------------------------------------------- */
static struct eth_platform_data macb0_data;
static struct resource macb0_resource[] = {
PBMEM(0xfff01800),
IRQ(25),
};
DEFINE_DEV_DATA(macb, 0);
DEV_CLK(hclk, macb0, hsb, 8);
DEV_CLK(pclk, macb0, pbb, 6);
struct platform_device *__init
at32_add_device_eth(unsigned int id, struct eth_platform_data *data)
{
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &macb0_device;
portmux_set_func(PIOC, 3, FUNC_A); /* TXD0 */
portmux_set_func(PIOC, 4, FUNC_A); /* TXD1 */
portmux_set_func(PIOC, 7, FUNC_A); /* TXEN */
portmux_set_func(PIOC, 8, FUNC_A); /* TXCK */
portmux_set_func(PIOC, 9, FUNC_A); /* RXD0 */
portmux_set_func(PIOC, 10, FUNC_A); /* RXD1 */
portmux_set_func(PIOC, 13, FUNC_A); /* RXER */
portmux_set_func(PIOC, 15, FUNC_A); /* RXDV */
portmux_set_func(PIOC, 16, FUNC_A); /* MDC */
portmux_set_func(PIOC, 17, FUNC_A); /* MDIO */
if (!data->is_rmii) {
portmux_set_func(PIOC, 0, FUNC_A); /* COL */
portmux_set_func(PIOC, 1, FUNC_A); /* CRS */
portmux_set_func(PIOC, 2, FUNC_A); /* TXER */
portmux_set_func(PIOC, 5, FUNC_A); /* TXD2 */
portmux_set_func(PIOC, 6, FUNC_A); /* TXD3 */
portmux_set_func(PIOC, 11, FUNC_A); /* RXD2 */
portmux_set_func(PIOC, 12, FUNC_A); /* RXD3 */
portmux_set_func(PIOC, 14, FUNC_A); /* RXCK */
portmux_set_func(PIOC, 18, FUNC_A); /* SPD */
}
break;
default:
return NULL;
}
memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data));
platform_device_register(pdev);
return pdev;
}
/* --------------------------------------------------------------------
* SPI
* -------------------------------------------------------------------- */
static struct resource spi0_resource[] = {
PBMEM(0xffe00000),
IRQ(3),
};
DEFINE_DEV(spi, 0);
DEV_CLK(mck, spi0, pba, 0);
struct platform_device *__init at32_add_device_spi(unsigned int id)
{
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &spi0_device;
portmux_set_func(PIOA, 0, FUNC_A); /* MISO */
portmux_set_func(PIOA, 1, FUNC_A); /* MOSI */
portmux_set_func(PIOA, 2, FUNC_A); /* SCK */
portmux_set_func(PIOA, 3, FUNC_A); /* NPCS0 */
portmux_set_func(PIOA, 4, FUNC_A); /* NPCS1 */
portmux_set_func(PIOA, 5, FUNC_A); /* NPCS2 */
break;
default:
return NULL;
}
platform_device_register(pdev);
return pdev;
}
/* --------------------------------------------------------------------
* LCDC
* -------------------------------------------------------------------- */
static struct lcdc_platform_data lcdc0_data;
static struct resource lcdc0_resource[] = {
{
.start = 0xff000000,
.end = 0xff000fff,
.flags = IORESOURCE_MEM,
},
IRQ(1),
};
DEFINE_DEV_DATA(lcdc, 0);
DEV_CLK(hclk, lcdc0, hsb, 7);
static struct clk lcdc0_pixclk = {
.name = "pixclk",
.dev = &lcdc0_device.dev,
.mode = genclk_mode,
.get_rate = genclk_get_rate,
.set_rate = genclk_set_rate,
.set_parent = genclk_set_parent,
.index = 7,
};
struct platform_device *__init
at32_add_device_lcdc(unsigned int id, struct lcdc_platform_data *data)
{
struct platform_device *pdev;
switch (id) {
case 0:
pdev = &lcdc0_device;
portmux_set_func(PIOC, 19, FUNC_A); /* CC */
portmux_set_func(PIOC, 20, FUNC_A); /* HSYNC */
portmux_set_func(PIOC, 21, FUNC_A); /* PCLK */
portmux_set_func(PIOC, 22, FUNC_A); /* VSYNC */
portmux_set_func(PIOC, 23, FUNC_A); /* DVAL */
portmux_set_func(PIOC, 24, FUNC_A); /* MODE */
portmux_set_func(PIOC, 25, FUNC_A); /* PWR */
portmux_set_func(PIOC, 26, FUNC_A); /* DATA0 */
portmux_set_func(PIOC, 27, FUNC_A); /* DATA1 */
portmux_set_func(PIOC, 28, FUNC_A); /* DATA2 */
portmux_set_func(PIOC, 29, FUNC_A); /* DATA3 */
portmux_set_func(PIOC, 30, FUNC_A); /* DATA4 */
portmux_set_func(PIOC, 31, FUNC_A); /* DATA5 */
portmux_set_func(PIOD, 0, FUNC_A); /* DATA6 */
portmux_set_func(PIOD, 1, FUNC_A); /* DATA7 */
portmux_set_func(PIOD, 2, FUNC_A); /* DATA8 */
portmux_set_func(PIOD, 3, FUNC_A); /* DATA9 */
portmux_set_func(PIOD, 4, FUNC_A); /* DATA10 */
portmux_set_func(PIOD, 5, FUNC_A); /* DATA11 */
portmux_set_func(PIOD, 6, FUNC_A); /* DATA12 */
portmux_set_func(PIOD, 7, FUNC_A); /* DATA13 */
portmux_set_func(PIOD, 8, FUNC_A); /* DATA14 */
portmux_set_func(PIOD, 9, FUNC_A); /* DATA15 */
portmux_set_func(PIOD, 10, FUNC_A); /* DATA16 */
portmux_set_func(PIOD, 11, FUNC_A); /* DATA17 */
portmux_set_func(PIOD, 12, FUNC_A); /* DATA18 */
portmux_set_func(PIOD, 13, FUNC_A); /* DATA19 */
portmux_set_func(PIOD, 14, FUNC_A); /* DATA20 */
portmux_set_func(PIOD, 15, FUNC_A); /* DATA21 */
portmux_set_func(PIOD, 16, FUNC_A); /* DATA22 */
portmux_set_func(PIOD, 17, FUNC_A); /* DATA23 */
clk_set_parent(&lcdc0_pixclk, &pll0);
clk_set_rate(&lcdc0_pixclk, clk_get_rate(&pll0));
break;
default:
return NULL;
}
memcpy(pdev->dev.platform_data, data,
sizeof(struct lcdc_platform_data));
platform_device_register(pdev);
return pdev;
}
struct clk *at32_clock_list[] = {
&osc32k,
&osc0,
&osc1,
&pll0,
&pll1,
&cpu_clk,
&hsb_clk,
&pba_clk,
&pbb_clk,
&at32_sm_pclk,
&at32_intc0_pclk,
&ebi_clk,
&hramc_clk,
&smc0_pclk,
&smc0_mck,
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
&pdc_hclk,
&pdc_pclk,
&pico_clk,
&pio0_mck,
&pio1_mck,
&pio2_mck,
&pio3_mck,
&atmel_usart0_usart,
&atmel_usart1_usart,
&atmel_usart2_usart,
&atmel_usart3_usart,
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 14:32:13 +08:00
&macb0_hclk,
&macb0_pclk,
&spi0_mck,
&lcdc0_hclk,
&lcdc0_pixclk,
};
unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list);
void __init at32_portmux_init(void)
{
at32_init_pio(&pio0_device);
at32_init_pio(&pio1_device);
at32_init_pio(&pio2_device);
at32_init_pio(&pio3_device);
}
void __init at32_clock_init(void)
{
struct at32_sm *sm = &system_manager;
u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0;
int i;
if (sm_readl(sm, PM_MCCTRL) & SM_BIT(PLLSEL))
main_clock = &pll0;
else
main_clock = &osc0;
if (sm_readl(sm, PM_PLL0) & SM_BIT(PLLOSC))
pll0.parent = &osc1;
if (sm_readl(sm, PM_PLL1) & SM_BIT(PLLOSC))
pll1.parent = &osc1;
/*
* Turn on all clocks that have at least one user already, and
* turn off everything else. We only do this for module
* clocks, and even though it isn't particularly pretty to
* check the address of the mode function, it should do the
* trick...
*/
for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) {
struct clk *clk = at32_clock_list[i];
if (clk->mode == &cpu_clk_mode)
cpu_mask |= 1 << clk->index;
else if (clk->mode == &hsb_clk_mode)
hsb_mask |= 1 << clk->index;
else if (clk->mode == &pba_clk_mode)
pba_mask |= 1 << clk->index;
else if (clk->mode == &pbb_clk_mode)
pbb_mask |= 1 << clk->index;
}
sm_writel(sm, PM_CPU_MASK, cpu_mask);
sm_writel(sm, PM_HSB_MASK, hsb_mask);
sm_writel(sm, PM_PBA_MASK, pba_mask);
sm_writel(sm, PM_PBB_MASK, pbb_mask);
}