2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/drivers/net/irda/nsc-ircc.c

2406 lines
59 KiB
C
Raw Normal View History

/*********************************************************************
*
* Filename: nsc-ircc.c
* Version: 1.0
* Description: Driver for the NSC PC'108 and PC'338 IrDA chipsets
* Status: Stable.
* Author: Dag Brattli <dagb@cs.uit.no>
* Created at: Sat Nov 7 21:43:15 1998
* Modified at: Wed Mar 1 11:29:34 2000
* Modified by: Dag Brattli <dagb@cs.uit.no>
*
* Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>
* Copyright (c) 1998 Lichen Wang, <lwang@actisys.com>
* Copyright (c) 1998 Actisys Corp., www.actisys.com
* Copyright (c) 2000-2004 Jean Tourrilhes <jt@hpl.hp.com>
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* Neither Dag Brattli nor University of Troms<EFBFBD> admit liability nor
* provide warranty for any of this software. This material is
* provided "AS-IS" and at no charge.
*
* Notice that all functions that needs to access the chip in _any_
* way, must save BSR register on entry, and restore it on exit.
* It is _very_ important to follow this policy!
*
* __u8 bank;
*
* bank = inb(iobase+BSR);
*
* do_your_stuff_here();
*
* outb(bank, iobase+BSR);
*
* If you find bugs in this file, its very likely that the same bug
* will also be in w83977af_ir.c since the implementations are quite
* similar.
*
********************************************************************/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rtnetlink.h>
#include <linux/dma-mapping.h>
#include <linux/pnp.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/byteorder.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda.h>
#include <net/irda/irda_device.h>
#include "nsc-ircc.h"
#define CHIP_IO_EXTENT 8
#define BROKEN_DONGLE_ID
static char *driver_name = "nsc-ircc";
/* Power Management */
#define NSC_IRCC_DRIVER_NAME "nsc-ircc"
static int nsc_ircc_suspend(struct platform_device *dev, pm_message_t state);
static int nsc_ircc_resume(struct platform_device *dev);
static struct platform_driver nsc_ircc_driver = {
.suspend = nsc_ircc_suspend,
.resume = nsc_ircc_resume,
.driver = {
.name = NSC_IRCC_DRIVER_NAME,
},
};
/* Module parameters */
static int qos_mtt_bits = 0x07; /* 1 ms or more */
static int dongle_id;
/* Use BIOS settions by default, but user may supply module parameters */
static unsigned int io[] = { ~0, ~0, ~0, ~0, ~0 };
static unsigned int irq[] = { 0, 0, 0, 0, 0 };
static unsigned int dma[] = { 0, 0, 0, 0, 0 };
static int nsc_ircc_probe_108(nsc_chip_t *chip, chipio_t *info);
static int nsc_ircc_probe_338(nsc_chip_t *chip, chipio_t *info);
static int nsc_ircc_probe_39x(nsc_chip_t *chip, chipio_t *info);
static int nsc_ircc_init_108(nsc_chip_t *chip, chipio_t *info);
static int nsc_ircc_init_338(nsc_chip_t *chip, chipio_t *info);
static int nsc_ircc_init_39x(nsc_chip_t *chip, chipio_t *info);
static int nsc_ircc_pnp_probe(struct pnp_dev *dev, const struct pnp_device_id *id);
/* These are the known NSC chips */
static nsc_chip_t chips[] = {
/* Name, {cfg registers}, chip id index reg, chip id expected value, revision mask */
{ "PC87108", { 0x150, 0x398, 0xea }, 0x05, 0x10, 0xf0,
nsc_ircc_probe_108, nsc_ircc_init_108 },
{ "PC87338", { 0x398, 0x15c, 0x2e }, 0x08, 0xb0, 0xf8,
nsc_ircc_probe_338, nsc_ircc_init_338 },
/* Contributed by Steffen Pingel - IBM X40 */
{ "PC8738x", { 0x164e, 0x4e, 0x0 }, 0x20, 0xf4, 0xff,
nsc_ircc_probe_39x, nsc_ircc_init_39x },
/* Contributed by Jan Frey - IBM A30/A31 */
{ "PC8739x", { 0x2e, 0x4e, 0x0 }, 0x20, 0xea, 0xff,
nsc_ircc_probe_39x, nsc_ircc_init_39x },
{ "IBM", { 0x2e, 0x4e, 0x0 }, 0x20, 0xf4, 0xff,
nsc_ircc_probe_39x, nsc_ircc_init_39x },
{ NULL }
};
static struct nsc_ircc_cb *dev_self[] = { NULL, NULL, NULL, NULL, NULL };
static char *dongle_types[] = {
"Differential serial interface",
"Differential serial interface",
"Reserved",
"Reserved",
"Sharp RY5HD01",
"Reserved",
"Single-ended serial interface",
"Consumer-IR only",
"HP HSDL-2300, HP HSDL-3600/HSDL-3610",
"IBM31T1100 or Temic TFDS6000/TFDS6500",
"Reserved",
"Reserved",
"HP HSDL-1100/HSDL-2100",
"HP HSDL-1100/HSDL-2100",
"Supports SIR Mode only",
"No dongle connected",
};
/* PNP probing */
static chipio_t pnp_info;
static const struct pnp_device_id nsc_ircc_pnp_table[] = {
{ .id = "NSC6001", .driver_data = 0 },
{ .id = "IBM0071", .driver_data = 0 },
{ }
};
MODULE_DEVICE_TABLE(pnp, nsc_ircc_pnp_table);
static struct pnp_driver nsc_ircc_pnp_driver = {
.name = "nsc-ircc",
.id_table = nsc_ircc_pnp_table,
.probe = nsc_ircc_pnp_probe,
};
/* Some prototypes */
static int nsc_ircc_open(chipio_t *info);
static int nsc_ircc_close(struct nsc_ircc_cb *self);
static int nsc_ircc_setup(chipio_t *info);
static void nsc_ircc_pio_receive(struct nsc_ircc_cb *self);
static int nsc_ircc_dma_receive(struct nsc_ircc_cb *self);
static int nsc_ircc_dma_receive_complete(struct nsc_ircc_cb *self, int iobase);
static int nsc_ircc_hard_xmit_sir(struct sk_buff *skb, struct net_device *dev);
static int nsc_ircc_hard_xmit_fir(struct sk_buff *skb, struct net_device *dev);
static int nsc_ircc_pio_write(int iobase, __u8 *buf, int len, int fifo_size);
static void nsc_ircc_dma_xmit(struct nsc_ircc_cb *self, int iobase);
static __u8 nsc_ircc_change_speed(struct nsc_ircc_cb *self, __u32 baud);
static int nsc_ircc_is_receiving(struct nsc_ircc_cb *self);
static int nsc_ircc_read_dongle_id (int iobase);
static void nsc_ircc_init_dongle_interface (int iobase, int dongle_id);
static int nsc_ircc_net_open(struct net_device *dev);
static int nsc_ircc_net_close(struct net_device *dev);
static int nsc_ircc_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static struct net_device_stats *nsc_ircc_net_get_stats(struct net_device *dev);
/* Globals */
static int pnp_registered;
static int pnp_succeeded;
/*
* Function nsc_ircc_init ()
*
* Initialize chip. Just try to find out how many chips we are dealing with
* and where they are
*/
static int __init nsc_ircc_init(void)
{
chipio_t info;
nsc_chip_t *chip;
int ret;
int cfg_base;
int cfg, id;
int reg;
int i = 0;
ret = platform_driver_register(&nsc_ircc_driver);
if (ret) {
IRDA_ERROR("%s, Can't register driver!\n", driver_name);
return ret;
}
/* Register with PnP subsystem to detect disable ports */
ret = pnp_register_driver(&nsc_ircc_pnp_driver);
if (!ret)
pnp_registered = 1;
ret = -ENODEV;
/* Probe for all the NSC chipsets we know about */
for (chip = chips; chip->name ; chip++) {
IRDA_DEBUG(2, "%s(), Probing for %s ...\n", __FUNCTION__,
chip->name);
/* Try all config registers for this chip */
for (cfg = 0; cfg < ARRAY_SIZE(chip->cfg); cfg++) {
cfg_base = chip->cfg[cfg];
if (!cfg_base)
continue;
/* Read index register */
reg = inb(cfg_base);
if (reg == 0xff) {
IRDA_DEBUG(2, "%s() no chip at 0x%03x\n", __FUNCTION__, cfg_base);
continue;
}
/* Read chip identification register */
outb(chip->cid_index, cfg_base);
id = inb(cfg_base+1);
if ((id & chip->cid_mask) == chip->cid_value) {
IRDA_DEBUG(2, "%s() Found %s chip, revision=%d\n",
__FUNCTION__, chip->name, id & ~chip->cid_mask);
/*
* If we found a correct PnP setting,
* we first try it.
*/
if (pnp_succeeded) {
memset(&info, 0, sizeof(chipio_t));
info.cfg_base = cfg_base;
info.fir_base = pnp_info.fir_base;
info.dma = pnp_info.dma;
info.irq = pnp_info.irq;
if (info.fir_base < 0x2000) {
IRDA_MESSAGE("%s, chip->init\n", driver_name);
chip->init(chip, &info);
} else
chip->probe(chip, &info);
if (nsc_ircc_open(&info) >= 0)
ret = 0;
}
/*
* Opening based on PnP values failed.
* Let's fallback to user values, or probe
* the chip.
*/
if (ret) {
IRDA_DEBUG(2, "%s, PnP init failed\n", driver_name);
memset(&info, 0, sizeof(chipio_t));
info.cfg_base = cfg_base;
info.fir_base = io[i];
info.dma = dma[i];
info.irq = irq[i];
/*
* If the user supplies the base address, then
* we init the chip, if not we probe the values
* set by the BIOS
*/
if (io[i] < 0x2000) {
chip->init(chip, &info);
} else
chip->probe(chip, &info);
if (nsc_ircc_open(&info) >= 0)
ret = 0;
}
i++;
} else {
IRDA_DEBUG(2, "%s(), Wrong chip id=0x%02x\n", __FUNCTION__, id);
}
}
}
if (ret) {
platform_driver_unregister(&nsc_ircc_driver);
pnp_unregister_driver(&nsc_ircc_pnp_driver);
pnp_registered = 0;
}
return ret;
}
/*
* Function nsc_ircc_cleanup ()
*
* Close all configured chips
*
*/
static void __exit nsc_ircc_cleanup(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(dev_self); i++) {
if (dev_self[i])
nsc_ircc_close(dev_self[i]);
}
platform_driver_unregister(&nsc_ircc_driver);
if (pnp_registered)
pnp_unregister_driver(&nsc_ircc_pnp_driver);
pnp_registered = 0;
}
/*
* Function nsc_ircc_open (iobase, irq)
*
* Open driver instance
*
*/
static int __init nsc_ircc_open(chipio_t *info)
{
struct net_device *dev;
struct nsc_ircc_cb *self;
void *ret;
int err, chip_index;
IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
for (chip_index = 0; chip_index < ARRAY_SIZE(dev_self); chip_index++) {
if (!dev_self[chip_index])
break;
}
if (chip_index == ARRAY_SIZE(dev_self)) {
IRDA_ERROR("%s(), maximum number of supported chips reached!\n", __FUNCTION__);
return -ENOMEM;
}
IRDA_MESSAGE("%s, Found chip at base=0x%03x\n", driver_name,
info->cfg_base);
if ((nsc_ircc_setup(info)) == -1)
return -1;
IRDA_MESSAGE("%s, driver loaded (Dag Brattli)\n", driver_name);
dev = alloc_irdadev(sizeof(struct nsc_ircc_cb));
if (dev == NULL) {
IRDA_ERROR("%s(), can't allocate memory for "
"control block!\n", __FUNCTION__);
return -ENOMEM;
}
self = dev->priv;
self->netdev = dev;
spin_lock_init(&self->lock);
/* Need to store self somewhere */
dev_self[chip_index] = self;
self->index = chip_index;
/* Initialize IO */
self->io.cfg_base = info->cfg_base;
self->io.fir_base = info->fir_base;
self->io.irq = info->irq;
self->io.fir_ext = CHIP_IO_EXTENT;
self->io.dma = info->dma;
self->io.fifo_size = 32;
/* Reserve the ioports that we need */
ret = request_region(self->io.fir_base, self->io.fir_ext, driver_name);
if (!ret) {
IRDA_WARNING("%s(), can't get iobase of 0x%03x\n",
__FUNCTION__, self->io.fir_base);
err = -ENODEV;
goto out1;
}
/* Initialize QoS for this device */
irda_init_max_qos_capabilies(&self->qos);
/* The only value we must override it the baudrate */
self->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
IR_115200|IR_576000|IR_1152000 |(IR_4000000 << 8);
self->qos.min_turn_time.bits = qos_mtt_bits;
irda_qos_bits_to_value(&self->qos);
/* Max DMA buffer size needed = (data_size + 6) * (window_size) + 6; */
self->rx_buff.truesize = 14384;
self->tx_buff.truesize = 14384;
/* Allocate memory if needed */
self->rx_buff.head =
dma_alloc_coherent(NULL, self->rx_buff.truesize,
&self->rx_buff_dma, GFP_KERNEL);
if (self->rx_buff.head == NULL) {
err = -ENOMEM;
goto out2;
}
memset(self->rx_buff.head, 0, self->rx_buff.truesize);
self->tx_buff.head =
dma_alloc_coherent(NULL, self->tx_buff.truesize,
&self->tx_buff_dma, GFP_KERNEL);
if (self->tx_buff.head == NULL) {
err = -ENOMEM;
goto out3;
}
memset(self->tx_buff.head, 0, self->tx_buff.truesize);
self->rx_buff.in_frame = FALSE;
self->rx_buff.state = OUTSIDE_FRAME;
self->tx_buff.data = self->tx_buff.head;
self->rx_buff.data = self->rx_buff.head;
/* Reset Tx queue info */
self->tx_fifo.len = self->tx_fifo.ptr = self->tx_fifo.free = 0;
self->tx_fifo.tail = self->tx_buff.head;
/* Override the network functions we need to use */
SET_MODULE_OWNER(dev);
dev->hard_start_xmit = nsc_ircc_hard_xmit_sir;
dev->open = nsc_ircc_net_open;
dev->stop = nsc_ircc_net_close;
dev->do_ioctl = nsc_ircc_net_ioctl;
dev->get_stats = nsc_ircc_net_get_stats;
err = register_netdev(dev);
if (err) {
IRDA_ERROR("%s(), register_netdev() failed!\n", __FUNCTION__);
goto out4;
}
IRDA_MESSAGE("IrDA: Registered device %s\n", dev->name);
/* Check if user has supplied a valid dongle id or not */
if ((dongle_id <= 0) ||
(dongle_id >= ARRAY_SIZE(dongle_types))) {
dongle_id = nsc_ircc_read_dongle_id(self->io.fir_base);
IRDA_MESSAGE("%s, Found dongle: %s\n", driver_name,
dongle_types[dongle_id]);
} else {
IRDA_MESSAGE("%s, Using dongle: %s\n", driver_name,
dongle_types[dongle_id]);
}
self->io.dongle_id = dongle_id;
nsc_ircc_init_dongle_interface(self->io.fir_base, dongle_id);
self->pldev = platform_device_register_simple(NSC_IRCC_DRIVER_NAME,
self->index, NULL, 0);
if (IS_ERR(self->pldev)) {
err = PTR_ERR(self->pldev);
goto out5;
}
platform_set_drvdata(self->pldev, self);
return chip_index;
out5:
unregister_netdev(dev);
out4:
dma_free_coherent(NULL, self->tx_buff.truesize,
self->tx_buff.head, self->tx_buff_dma);
out3:
dma_free_coherent(NULL, self->rx_buff.truesize,
self->rx_buff.head, self->rx_buff_dma);
out2:
release_region(self->io.fir_base, self->io.fir_ext);
out1:
free_netdev(dev);
dev_self[chip_index] = NULL;
return err;
}
/*
* Function nsc_ircc_close (self)
*
* Close driver instance
*
*/
static int __exit nsc_ircc_close(struct nsc_ircc_cb *self)
{
int iobase;
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
IRDA_ASSERT(self != NULL, return -1;);
iobase = self->io.fir_base;
platform_device_unregister(self->pldev);
/* Remove netdevice */
unregister_netdev(self->netdev);
/* Release the PORT that this driver is using */
IRDA_DEBUG(4, "%s(), Releasing Region %03x\n",
__FUNCTION__, self->io.fir_base);
release_region(self->io.fir_base, self->io.fir_ext);
if (self->tx_buff.head)
dma_free_coherent(NULL, self->tx_buff.truesize,
self->tx_buff.head, self->tx_buff_dma);
if (self->rx_buff.head)
dma_free_coherent(NULL, self->rx_buff.truesize,
self->rx_buff.head, self->rx_buff_dma);
dev_self[self->index] = NULL;
free_netdev(self->netdev);
return 0;
}
/*
* Function nsc_ircc_init_108 (iobase, cfg_base, irq, dma)
*
* Initialize the NSC '108 chip
*
*/
static int nsc_ircc_init_108(nsc_chip_t *chip, chipio_t *info)
{
int cfg_base = info->cfg_base;
__u8 temp=0;
outb(2, cfg_base); /* Mode Control Register (MCTL) */
outb(0x00, cfg_base+1); /* Disable device */
/* Base Address and Interrupt Control Register (BAIC) */
outb(CFG_108_BAIC, cfg_base);
switch (info->fir_base) {
case 0x3e8: outb(0x14, cfg_base+1); break;
case 0x2e8: outb(0x15, cfg_base+1); break;
case 0x3f8: outb(0x16, cfg_base+1); break;
case 0x2f8: outb(0x17, cfg_base+1); break;
default: IRDA_ERROR("%s(), invalid base_address", __FUNCTION__);
}
/* Control Signal Routing Register (CSRT) */
switch (info->irq) {
case 3: temp = 0x01; break;
case 4: temp = 0x02; break;
case 5: temp = 0x03; break;
case 7: temp = 0x04; break;
case 9: temp = 0x05; break;
case 11: temp = 0x06; break;
case 15: temp = 0x07; break;
default: IRDA_ERROR("%s(), invalid irq", __FUNCTION__);
}
outb(CFG_108_CSRT, cfg_base);
switch (info->dma) {
case 0: outb(0x08+temp, cfg_base+1); break;
case 1: outb(0x10+temp, cfg_base+1); break;
case 3: outb(0x18+temp, cfg_base+1); break;
default: IRDA_ERROR("%s(), invalid dma", __FUNCTION__);
}
outb(CFG_108_MCTL, cfg_base); /* Mode Control Register (MCTL) */
outb(0x03, cfg_base+1); /* Enable device */
return 0;
}
/*
* Function nsc_ircc_probe_108 (chip, info)
*
*
*
*/
static int nsc_ircc_probe_108(nsc_chip_t *chip, chipio_t *info)
{
int cfg_base = info->cfg_base;
int reg;
/* Read address and interrupt control register (BAIC) */
outb(CFG_108_BAIC, cfg_base);
reg = inb(cfg_base+1);
switch (reg & 0x03) {
case 0:
info->fir_base = 0x3e8;
break;
case 1:
info->fir_base = 0x2e8;
break;
case 2:
info->fir_base = 0x3f8;
break;
case 3:
info->fir_base = 0x2f8;
break;
}
info->sir_base = info->fir_base;
IRDA_DEBUG(2, "%s(), probing fir_base=0x%03x\n", __FUNCTION__,
info->fir_base);
/* Read control signals routing register (CSRT) */
outb(CFG_108_CSRT, cfg_base);
reg = inb(cfg_base+1);
switch (reg & 0x07) {
case 0:
info->irq = -1;
break;
case 1:
info->irq = 3;
break;
case 2:
info->irq = 4;
break;
case 3:
info->irq = 5;
break;
case 4:
info->irq = 7;
break;
case 5:
info->irq = 9;
break;
case 6:
info->irq = 11;
break;
case 7:
info->irq = 15;
break;
}
IRDA_DEBUG(2, "%s(), probing irq=%d\n", __FUNCTION__, info->irq);
/* Currently we only read Rx DMA but it will also be used for Tx */
switch ((reg >> 3) & 0x03) {
case 0:
info->dma = -1;
break;
case 1:
info->dma = 0;
break;
case 2:
info->dma = 1;
break;
case 3:
info->dma = 3;
break;
}
IRDA_DEBUG(2, "%s(), probing dma=%d\n", __FUNCTION__, info->dma);
/* Read mode control register (MCTL) */
outb(CFG_108_MCTL, cfg_base);
reg = inb(cfg_base+1);
info->enabled = reg & 0x01;
info->suspended = !((reg >> 1) & 0x01);
return 0;
}
/*
* Function nsc_ircc_init_338 (chip, info)
*
* Initialize the NSC '338 chip. Remember that the 87338 needs two
* consecutive writes to the data registers while CPU interrupts are
* disabled. The 97338 does not require this, but shouldn't be any
* harm if we do it anyway.
*/
static int nsc_ircc_init_338(nsc_chip_t *chip, chipio_t *info)
{
/* No init yet */
return 0;
}
/*
* Function nsc_ircc_probe_338 (chip, info)
*
*
*
*/
static int nsc_ircc_probe_338(nsc_chip_t *chip, chipio_t *info)
{
int cfg_base = info->cfg_base;
int reg, com = 0;
int pnp;
/* Read funtion enable register (FER) */
outb(CFG_338_FER, cfg_base);
reg = inb(cfg_base+1);
info->enabled = (reg >> 2) & 0x01;
/* Check if we are in Legacy or PnP mode */
outb(CFG_338_PNP0, cfg_base);
reg = inb(cfg_base+1);
pnp = (reg >> 3) & 0x01;
if (pnp) {
IRDA_DEBUG(2, "(), Chip is in PnP mode\n");
outb(0x46, cfg_base);
reg = (inb(cfg_base+1) & 0xfe) << 2;
outb(0x47, cfg_base);
reg |= ((inb(cfg_base+1) & 0xfc) << 8);
info->fir_base = reg;
} else {
/* Read function address register (FAR) */
outb(CFG_338_FAR, cfg_base);
reg = inb(cfg_base+1);
switch ((reg >> 4) & 0x03) {
case 0:
info->fir_base = 0x3f8;
break;
case 1:
info->fir_base = 0x2f8;
break;
case 2:
com = 3;
break;
case 3:
com = 4;
break;
}
if (com) {
switch ((reg >> 6) & 0x03) {
case 0:
if (com == 3)
info->fir_base = 0x3e8;
else
info->fir_base = 0x2e8;
break;
case 1:
if (com == 3)
info->fir_base = 0x338;
else
info->fir_base = 0x238;
break;
case 2:
if (com == 3)
info->fir_base = 0x2e8;
else
info->fir_base = 0x2e0;
break;
case 3:
if (com == 3)
info->fir_base = 0x220;
else
info->fir_base = 0x228;
break;
}
}
}
info->sir_base = info->fir_base;
/* Read PnP register 1 (PNP1) */
outb(CFG_338_PNP1, cfg_base);
reg = inb(cfg_base+1);
info->irq = reg >> 4;
/* Read PnP register 3 (PNP3) */
outb(CFG_338_PNP3, cfg_base);
reg = inb(cfg_base+1);
info->dma = (reg & 0x07) - 1;
/* Read power and test register (PTR) */
outb(CFG_338_PTR, cfg_base);
reg = inb(cfg_base+1);
info->suspended = reg & 0x01;
return 0;
}
/*
* Function nsc_ircc_init_39x (chip, info)
*
* Now that we know it's a '39x (see probe below), we need to
* configure it so we can use it.
*
* The NSC '338 chip is a Super I/O chip with a "bank" architecture,
* the configuration of the different functionality (serial, parallel,
* floppy...) are each in a different bank (Logical Device Number).
* The base address, irq and dma configuration registers are common
* to all functionalities (index 0x30 to 0x7F).
* There is only one configuration register specific to the
* serial port, CFG_39X_SPC.
* JeanII
*
* Note : this code was written by Jan Frey <janfrey@web.de>
*/
static int nsc_ircc_init_39x(nsc_chip_t *chip, chipio_t *info)
{
int cfg_base = info->cfg_base;
int enabled;
/* User is sure about his config... accept it. */
IRDA_DEBUG(2, "%s(): nsc_ircc_init_39x (user settings): "
"io=0x%04x, irq=%d, dma=%d\n",
__FUNCTION__, info->fir_base, info->irq, info->dma);
/* Access bank for SP2 */
outb(CFG_39X_LDN, cfg_base);
outb(0x02, cfg_base+1);
/* Configure SP2 */
/* We want to enable the device if not enabled */
outb(CFG_39X_ACT, cfg_base);
enabled = inb(cfg_base+1) & 0x01;
if (!enabled) {
/* Enable the device */
outb(CFG_39X_SIOCF1, cfg_base);
outb(0x01, cfg_base+1);
/* May want to update info->enabled. Jean II */
}
/* Enable UART bank switching (bit 7) ; Sets the chip to normal
* power mode (wake up from sleep mode) (bit 1) */
outb(CFG_39X_SPC, cfg_base);
outb(0x82, cfg_base+1);
return 0;
}
/*
* Function nsc_ircc_probe_39x (chip, info)
*
* Test if we really have a '39x chip at the given address
*
* Note : this code was written by Jan Frey <janfrey@web.de>
*/
static int nsc_ircc_probe_39x(nsc_chip_t *chip, chipio_t *info)
{
int cfg_base = info->cfg_base;
int reg1, reg2, irq, irqt, dma1, dma2;
int enabled, susp;
IRDA_DEBUG(2, "%s(), nsc_ircc_probe_39x, base=%d\n",
__FUNCTION__, cfg_base);
/* This function should be executed with irq off to avoid
* another driver messing with the Super I/O bank - Jean II */
/* Access bank for SP2 */
outb(CFG_39X_LDN, cfg_base);
outb(0x02, cfg_base+1);
/* Read infos about SP2 ; store in info struct */
outb(CFG_39X_BASEH, cfg_base);
reg1 = inb(cfg_base+1);
outb(CFG_39X_BASEL, cfg_base);
reg2 = inb(cfg_base+1);
info->fir_base = (reg1 << 8) | reg2;
outb(CFG_39X_IRQNUM, cfg_base);
irq = inb(cfg_base+1);
outb(CFG_39X_IRQSEL, cfg_base);
irqt = inb(cfg_base+1);
info->irq = irq;
outb(CFG_39X_DMA0, cfg_base);
dma1 = inb(cfg_base+1);
outb(CFG_39X_DMA1, cfg_base);
dma2 = inb(cfg_base+1);
info->dma = dma1 -1;
outb(CFG_39X_ACT, cfg_base);
info->enabled = enabled = inb(cfg_base+1) & 0x01;
outb(CFG_39X_SPC, cfg_base);
susp = 1 - ((inb(cfg_base+1) & 0x02) >> 1);
IRDA_DEBUG(2, "%s(): io=0x%02x%02x, irq=%d (type %d), rxdma=%d, txdma=%d, enabled=%d (suspended=%d)\n", __FUNCTION__, reg1,reg2,irq,irqt,dma1,dma2,enabled,susp);
/* Configure SP2 */
/* We want to enable the device if not enabled */
outb(CFG_39X_ACT, cfg_base);
enabled = inb(cfg_base+1) & 0x01;
if (!enabled) {
/* Enable the device */
outb(CFG_39X_SIOCF1, cfg_base);
outb(0x01, cfg_base+1);
/* May want to update info->enabled. Jean II */
}
/* Enable UART bank switching (bit 7) ; Sets the chip to normal
* power mode (wake up from sleep mode) (bit 1) */
outb(CFG_39X_SPC, cfg_base);
outb(0x82, cfg_base+1);
return 0;
}
/* PNP probing */
static int nsc_ircc_pnp_probe(struct pnp_dev *dev, const struct pnp_device_id *id)
{
memset(&pnp_info, 0, sizeof(chipio_t));
pnp_info.irq = -1;
pnp_info.dma = -1;
pnp_succeeded = 1;
/* There don't seem to be any way to get the cfg_base.
* On my box, cfg_base is in the PnP descriptor of the
* motherboard. Oh well... Jean II */
if (pnp_port_valid(dev, 0) &&
!(pnp_port_flags(dev, 0) & IORESOURCE_DISABLED))
pnp_info.fir_base = pnp_port_start(dev, 0);
if (pnp_irq_valid(dev, 0) &&
!(pnp_irq_flags(dev, 0) & IORESOURCE_DISABLED))
pnp_info.irq = pnp_irq(dev, 0);
if (pnp_dma_valid(dev, 0) &&
!(pnp_dma_flags(dev, 0) & IORESOURCE_DISABLED))
pnp_info.dma = pnp_dma(dev, 0);
IRDA_DEBUG(0, "%s() : From PnP, found firbase 0x%03X ; irq %d ; dma %d.\n",
__FUNCTION__, pnp_info.fir_base, pnp_info.irq, pnp_info.dma);
if((pnp_info.fir_base == 0) ||
(pnp_info.irq == -1) || (pnp_info.dma == -1)) {
/* Returning an error will disable the device. Yuck ! */
//return -EINVAL;
pnp_succeeded = 0;
}
return 0;
}
/*
* Function nsc_ircc_setup (info)
*
* Returns non-negative on success.
*
*/
static int nsc_ircc_setup(chipio_t *info)
{
int version;
int iobase = info->fir_base;
/* Read the Module ID */
switch_bank(iobase, BANK3);
version = inb(iobase+MID);
IRDA_DEBUG(2, "%s() Driver %s Found chip version %02x\n",
__FUNCTION__, driver_name, version);
/* Should be 0x2? */
if (0x20 != (version & 0xf0)) {
IRDA_ERROR("%s, Wrong chip version %02x\n",
driver_name, version);
return -1;
}
/* Switch to advanced mode */
switch_bank(iobase, BANK2);
outb(ECR1_EXT_SL, iobase+ECR1);
switch_bank(iobase, BANK0);
/* Set FIFO threshold to TX17, RX16, reset and enable FIFO's */
switch_bank(iobase, BANK0);
outb(FCR_RXTH|FCR_TXTH|FCR_TXSR|FCR_RXSR|FCR_FIFO_EN, iobase+FCR);
outb(0x03, iobase+LCR); /* 8 bit word length */
outb(MCR_SIR, iobase+MCR); /* Start at SIR-mode, also clears LSR*/
/* Set FIFO size to 32 */
switch_bank(iobase, BANK2);
outb(EXCR2_RFSIZ|EXCR2_TFSIZ, iobase+EXCR2);
/* IRCR2: FEND_MD is not set */
switch_bank(iobase, BANK5);
outb(0x02, iobase+4);
/* Make sure that some defaults are OK */
switch_bank(iobase, BANK6);
outb(0x20, iobase+0); /* Set 32 bits FIR CRC */
outb(0x0a, iobase+1); /* Set MIR pulse width */
outb(0x0d, iobase+2); /* Set SIR pulse width to 1.6us */
outb(0x2a, iobase+4); /* Set beginning frag, and preamble length */
/* Enable receive interrupts */
switch_bank(iobase, BANK0);
outb(IER_RXHDL_IE, iobase+IER);
return 0;
}
/*
* Function nsc_ircc_read_dongle_id (void)
*
* Try to read dongle indentification. This procedure needs to be executed
* once after power-on/reset. It also needs to be used whenever you suspect
* that the user may have plugged/unplugged the IrDA Dongle.
*/
static int nsc_ircc_read_dongle_id (int iobase)
{
int dongle_id;
__u8 bank;
bank = inb(iobase+BSR);
/* Select Bank 7 */
switch_bank(iobase, BANK7);
/* IRCFG4: IRSL0_DS and IRSL21_DS are cleared */
outb(0x00, iobase+7);
/* ID0, 1, and 2 are pulled up/down very slowly */
udelay(50);
/* IRCFG1: read the ID bits */
dongle_id = inb(iobase+4) & 0x0f;
#ifdef BROKEN_DONGLE_ID
if (dongle_id == 0x0a)
dongle_id = 0x09;
#endif
/* Go back to bank 0 before returning */
switch_bank(iobase, BANK0);
outb(bank, iobase+BSR);
return dongle_id;
}
/*
* Function nsc_ircc_init_dongle_interface (iobase, dongle_id)
*
* This function initializes the dongle for the transceiver that is
* used. This procedure needs to be executed once after
* power-on/reset. It also needs to be used whenever you suspect that
* the dongle is changed.
*/
static void nsc_ircc_init_dongle_interface (int iobase, int dongle_id)
{
int bank;
/* Save current bank */
bank = inb(iobase+BSR);
/* Select Bank 7 */
switch_bank(iobase, BANK7);
/* IRCFG4: set according to dongle_id */
switch (dongle_id) {
case 0x00: /* same as */
case 0x01: /* Differential serial interface */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x02: /* same as */
case 0x03: /* Reserved */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x04: /* Sharp RY5HD01 */
break;
case 0x05: /* Reserved, but this is what the Thinkpad reports */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x06: /* Single-ended serial interface */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x07: /* Consumer-IR only */
IRDA_DEBUG(0, "%s(), %s is not for IrDA mode\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x08: /* HP HSDL-2300, HP HSDL-3600/HSDL-3610 */
IRDA_DEBUG(0, "%s(), %s\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x09: /* IBM31T1100 or Temic TFDS6000/TFDS6500 */
outb(0x28, iobase+7); /* Set irsl[0-2] as output */
break;
case 0x0A: /* same as */
case 0x0B: /* Reserved */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x0C: /* same as */
case 0x0D: /* HP HSDL-1100/HSDL-2100 */
/*
* Set irsl0 as input, irsl[1-2] as output, and separate
* inputs are used for SIR and MIR/FIR
*/
outb(0x48, iobase+7);
break;
case 0x0E: /* Supports SIR Mode only */
outb(0x28, iobase+7); /* Set irsl[0-2] as output */
break;
case 0x0F: /* No dongle connected */
IRDA_DEBUG(0, "%s(), %s\n",
__FUNCTION__, dongle_types[dongle_id]);
switch_bank(iobase, BANK0);
outb(0x62, iobase+MCR);
break;
default:
IRDA_DEBUG(0, "%s(), invalid dongle_id %#x",
__FUNCTION__, dongle_id);
}
/* IRCFG1: IRSL1 and 2 are set to IrDA mode */
outb(0x00, iobase+4);
/* Restore bank register */
outb(bank, iobase+BSR);
} /* set_up_dongle_interface */
/*
* Function nsc_ircc_change_dongle_speed (iobase, speed, dongle_id)
*
* Change speed of the attach dongle
*
*/
static void nsc_ircc_change_dongle_speed(int iobase, int speed, int dongle_id)
{
__u8 bank;
/* Save current bank */
bank = inb(iobase+BSR);
/* Select Bank 7 */
switch_bank(iobase, BANK7);
/* IRCFG1: set according to dongle_id */
switch (dongle_id) {
case 0x00: /* same as */
case 0x01: /* Differential serial interface */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x02: /* same as */
case 0x03: /* Reserved */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x04: /* Sharp RY5HD01 */
break;
case 0x05: /* Reserved */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x06: /* Single-ended serial interface */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x07: /* Consumer-IR only */
IRDA_DEBUG(0, "%s(), %s is not for IrDA mode\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x08: /* HP HSDL-2300, HP HSDL-3600/HSDL-3610 */
IRDA_DEBUG(0, "%s(), %s\n",
__FUNCTION__, dongle_types[dongle_id]);
outb(0x00, iobase+4);
if (speed > 115200)
outb(0x01, iobase+4);
break;
case 0x09: /* IBM31T1100 or Temic TFDS6000/TFDS6500 */
outb(0x01, iobase+4);
if (speed == 4000000) {
/* There was a cli() there, but we now are already
* under spin_lock_irqsave() - JeanII */
outb(0x81, iobase+4);
outb(0x80, iobase+4);
} else
outb(0x00, iobase+4);
break;
case 0x0A: /* same as */
case 0x0B: /* Reserved */
IRDA_DEBUG(0, "%s(), %s not defined by irda yet\n",
__FUNCTION__, dongle_types[dongle_id]);
break;
case 0x0C: /* same as */
case 0x0D: /* HP HSDL-1100/HSDL-2100 */
break;
case 0x0E: /* Supports SIR Mode only */
break;
case 0x0F: /* No dongle connected */
IRDA_DEBUG(0, "%s(), %s is not for IrDA mode\n",
__FUNCTION__, dongle_types[dongle_id]);
switch_bank(iobase, BANK0);
outb(0x62, iobase+MCR);
break;
default:
IRDA_DEBUG(0, "%s(), invalid data_rate\n", __FUNCTION__);
}
/* Restore bank register */
outb(bank, iobase+BSR);
}
/*
* Function nsc_ircc_change_speed (self, baud)
*
* Change the speed of the device
*
* This function *must* be called with irq off and spin-lock.
*/
static __u8 nsc_ircc_change_speed(struct nsc_ircc_cb *self, __u32 speed)
{
struct net_device *dev = self->netdev;
__u8 mcr = MCR_SIR;
int iobase;
__u8 bank;
__u8 ier; /* Interrupt enable register */
IRDA_DEBUG(2, "%s(), speed=%d\n", __FUNCTION__, speed);
IRDA_ASSERT(self != NULL, return 0;);
iobase = self->io.fir_base;
/* Update accounting for new speed */
self->io.speed = speed;
/* Save current bank */
bank = inb(iobase+BSR);
/* Disable interrupts */
switch_bank(iobase, BANK0);
outb(0, iobase+IER);
/* Select Bank 2 */
switch_bank(iobase, BANK2);
outb(0x00, iobase+BGDH);
switch (speed) {
case 9600: outb(0x0c, iobase+BGDL); break;
case 19200: outb(0x06, iobase+BGDL); break;
case 38400: outb(0x03, iobase+BGDL); break;
case 57600: outb(0x02, iobase+BGDL); break;
case 115200: outb(0x01, iobase+BGDL); break;
case 576000:
switch_bank(iobase, BANK5);
/* IRCR2: MDRS is set */
outb(inb(iobase+4) | 0x04, iobase+4);
mcr = MCR_MIR;
IRDA_DEBUG(0, "%s(), handling baud of 576000\n", __FUNCTION__);
break;
case 1152000:
mcr = MCR_MIR;
IRDA_DEBUG(0, "%s(), handling baud of 1152000\n", __FUNCTION__);
break;
case 4000000:
mcr = MCR_FIR;
IRDA_DEBUG(0, "%s(), handling baud of 4000000\n", __FUNCTION__);
break;
default:
mcr = MCR_FIR;
IRDA_DEBUG(0, "%s(), unknown baud rate of %d\n",
__FUNCTION__, speed);
break;
}
/* Set appropriate speed mode */
switch_bank(iobase, BANK0);
outb(mcr | MCR_TX_DFR, iobase+MCR);
/* Give some hits to the transceiver */
nsc_ircc_change_dongle_speed(iobase, speed, self->io.dongle_id);
/* Set FIFO threshold to TX17, RX16 */
switch_bank(iobase, BANK0);
outb(0x00, iobase+FCR);
outb(FCR_FIFO_EN, iobase+FCR);
outb(FCR_RXTH| /* Set Rx FIFO threshold */
FCR_TXTH| /* Set Tx FIFO threshold */
FCR_TXSR| /* Reset Tx FIFO */
FCR_RXSR| /* Reset Rx FIFO */
FCR_FIFO_EN, /* Enable FIFOs */
iobase+FCR);
/* Set FIFO size to 32 */
switch_bank(iobase, BANK2);
outb(EXCR2_RFSIZ|EXCR2_TFSIZ, iobase+EXCR2);
/* Enable some interrupts so we can receive frames */
switch_bank(iobase, BANK0);
if (speed > 115200) {
/* Install FIR xmit handler */
dev->hard_start_xmit = nsc_ircc_hard_xmit_fir;
ier = IER_SFIF_IE;
nsc_ircc_dma_receive(self);
} else {
/* Install SIR xmit handler */
dev->hard_start_xmit = nsc_ircc_hard_xmit_sir;
ier = IER_RXHDL_IE;
}
/* Set our current interrupt mask */
outb(ier, iobase+IER);
/* Restore BSR */
outb(bank, iobase+BSR);
/* Make sure interrupt handlers keep the proper interrupt mask */
return(ier);
}
/*
* Function nsc_ircc_hard_xmit (skb, dev)
*
* Transmit the frame!
*
*/
static int nsc_ircc_hard_xmit_sir(struct sk_buff *skb, struct net_device *dev)
{
struct nsc_ircc_cb *self;
unsigned long flags;
int iobase;
__s32 speed;
__u8 bank;
self = (struct nsc_ircc_cb *) dev->priv;
IRDA_ASSERT(self != NULL, return 0;);
iobase = self->io.fir_base;
netif_stop_queue(dev);
/* Make sure tests *& speed change are atomic */
spin_lock_irqsave(&self->lock, flags);
/* Check if we need to change the speed */
speed = irda_get_next_speed(skb);
if ((speed != self->io.speed) && (speed != -1)) {
/* Check for empty frame. */
if (!skb->len) {
/* If we just sent a frame, we get called before
* the last bytes get out (because of the SIR FIFO).
* If this is the case, let interrupt handler change
* the speed itself... Jean II */
if (self->io.direction == IO_RECV) {
nsc_ircc_change_speed(self, speed);
/* TODO : For SIR->SIR, the next packet
* may get corrupted - Jean II */
netif_wake_queue(dev);
} else {
self->new_speed = speed;
/* Queue will be restarted after speed change
* to make sure packets gets through the
* proper xmit handler - Jean II */
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&self->lock, flags);
dev_kfree_skb(skb);
return 0;
} else
self->new_speed = speed;
}
/* Save current bank */
bank = inb(iobase+BSR);
self->tx_buff.data = self->tx_buff.head;
self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
self->tx_buff.truesize);
self->stats.tx_bytes += self->tx_buff.len;
/* Add interrupt on tx low level (will fire immediately) */
switch_bank(iobase, BANK0);
outb(IER_TXLDL_IE, iobase+IER);
/* Restore bank register */
outb(bank, iobase+BSR);
dev->trans_start = jiffies;
spin_unlock_irqrestore(&self->lock, flags);
dev_kfree_skb(skb);
return 0;
}
static int nsc_ircc_hard_xmit_fir(struct sk_buff *skb, struct net_device *dev)
{
struct nsc_ircc_cb *self;
unsigned long flags;
int iobase;
__s32 speed;
__u8 bank;
int mtt, diff;
self = (struct nsc_ircc_cb *) dev->priv;
iobase = self->io.fir_base;
netif_stop_queue(dev);
/* Make sure tests *& speed change are atomic */
spin_lock_irqsave(&self->lock, flags);
/* Check if we need to change the speed */
speed = irda_get_next_speed(skb);
if ((speed != self->io.speed) && (speed != -1)) {
/* Check for empty frame. */
if (!skb->len) {
/* If we are currently transmitting, defer to
* interrupt handler. - Jean II */
if(self->tx_fifo.len == 0) {
nsc_ircc_change_speed(self, speed);
netif_wake_queue(dev);
} else {
self->new_speed = speed;
/* Keep queue stopped :
* the speed change operation may change the
* xmit handler, and we want to make sure
* the next packet get through the proper
* Tx path, so block the Tx queue until
* the speed change has been done.
* Jean II */
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&self->lock, flags);
dev_kfree_skb(skb);
return 0;
} else {
/* Change speed after current frame */
self->new_speed = speed;
}
}
/* Save current bank */
bank = inb(iobase+BSR);
/* Register and copy this frame to DMA memory */
self->tx_fifo.queue[self->tx_fifo.free].start = self->tx_fifo.tail;
self->tx_fifo.queue[self->tx_fifo.free].len = skb->len;
self->tx_fifo.tail += skb->len;
self->stats.tx_bytes += skb->len;
memcpy(self->tx_fifo.queue[self->tx_fifo.free].start, skb->data,
skb->len);
self->tx_fifo.len++;
self->tx_fifo.free++;
/* Start transmit only if there is currently no transmit going on */
if (self->tx_fifo.len == 1) {
/* Check if we must wait the min turn time or not */
mtt = irda_get_mtt(skb);
if (mtt) {
/* Check how much time we have used already */
do_gettimeofday(&self->now);
diff = self->now.tv_usec - self->stamp.tv_usec;
if (diff < 0)
diff += 1000000;
/* Check if the mtt is larger than the time we have
* already used by all the protocol processing
*/
if (mtt > diff) {
mtt -= diff;
/*
* Use timer if delay larger than 125 us, and
* use udelay for smaller values which should
* be acceptable
*/
if (mtt > 125) {
/* Adjust for timer resolution */
mtt = mtt / 125;
/* Setup timer */
switch_bank(iobase, BANK4);
outb(mtt & 0xff, iobase+TMRL);
outb((mtt >> 8) & 0x0f, iobase+TMRH);
/* Start timer */
outb(IRCR1_TMR_EN, iobase+IRCR1);
self->io.direction = IO_XMIT;
/* Enable timer interrupt */
switch_bank(iobase, BANK0);
outb(IER_TMR_IE, iobase+IER);
/* Timer will take care of the rest */
goto out;
} else
udelay(mtt);
}
}
/* Enable DMA interrupt */
switch_bank(iobase, BANK0);
outb(IER_DMA_IE, iobase+IER);
/* Transmit frame */
nsc_ircc_dma_xmit(self, iobase);
}
out:
/* Not busy transmitting anymore if window is not full,
* and if we don't need to change speed */
if ((self->tx_fifo.free < MAX_TX_WINDOW) && (self->new_speed == 0))
netif_wake_queue(self->netdev);
/* Restore bank register */
outb(bank, iobase+BSR);
dev->trans_start = jiffies;
spin_unlock_irqrestore(&self->lock, flags);
dev_kfree_skb(skb);
return 0;
}
/*
* Function nsc_ircc_dma_xmit (self, iobase)
*
* Transmit data using DMA
*
*/
static void nsc_ircc_dma_xmit(struct nsc_ircc_cb *self, int iobase)
{
int bsr;
/* Save current bank */
bsr = inb(iobase+BSR);
/* Disable DMA */
switch_bank(iobase, BANK0);
outb(inb(iobase+MCR) & ~MCR_DMA_EN, iobase+MCR);
self->io.direction = IO_XMIT;
/* Choose transmit DMA channel */
switch_bank(iobase, BANK2);
outb(ECR1_DMASWP|ECR1_DMANF|ECR1_EXT_SL, iobase+ECR1);
irda_setup_dma(self->io.dma,
((u8 *)self->tx_fifo.queue[self->tx_fifo.ptr].start -
self->tx_buff.head) + self->tx_buff_dma,
self->tx_fifo.queue[self->tx_fifo.ptr].len,
DMA_TX_MODE);
/* Enable DMA and SIR interaction pulse */
switch_bank(iobase, BANK0);
outb(inb(iobase+MCR)|MCR_TX_DFR|MCR_DMA_EN|MCR_IR_PLS, iobase+MCR);
/* Restore bank register */
outb(bsr, iobase+BSR);
}
/*
* Function nsc_ircc_pio_xmit (self, iobase)
*
* Transmit data using PIO. Returns the number of bytes that actually
* got transferred
*
*/
static int nsc_ircc_pio_write(int iobase, __u8 *buf, int len, int fifo_size)
{
int actual = 0;
__u8 bank;
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
/* Save current bank */
bank = inb(iobase+BSR);
switch_bank(iobase, BANK0);
if (!(inb_p(iobase+LSR) & LSR_TXEMP)) {
IRDA_DEBUG(4, "%s(), warning, FIFO not empty yet!\n",
__FUNCTION__);
/* FIFO may still be filled to the Tx interrupt threshold */
fifo_size -= 17;
}
/* Fill FIFO with current frame */
while ((fifo_size-- > 0) && (actual < len)) {
/* Transmit next byte */
outb(buf[actual++], iobase+TXD);
}
IRDA_DEBUG(4, "%s(), fifo_size %d ; %d sent of %d\n",
__FUNCTION__, fifo_size, actual, len);
/* Restore bank */
outb(bank, iobase+BSR);
return actual;
}
/*
* Function nsc_ircc_dma_xmit_complete (self)
*
* The transfer of a frame in finished. This function will only be called
* by the interrupt handler
*
*/
static int nsc_ircc_dma_xmit_complete(struct nsc_ircc_cb *self)
{
int iobase;
__u8 bank;
int ret = TRUE;
IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
iobase = self->io.fir_base;
/* Save current bank */
bank = inb(iobase+BSR);
/* Disable DMA */
switch_bank(iobase, BANK0);
outb(inb(iobase+MCR) & ~MCR_DMA_EN, iobase+MCR);
/* Check for underrrun! */
if (inb(iobase+ASCR) & ASCR_TXUR) {
self->stats.tx_errors++;
self->stats.tx_fifo_errors++;
/* Clear bit, by writing 1 into it */
outb(ASCR_TXUR, iobase+ASCR);
} else {
self->stats.tx_packets++;
}
/* Finished with this frame, so prepare for next */
self->tx_fifo.ptr++;
self->tx_fifo.len--;
/* Any frames to be sent back-to-back? */
if (self->tx_fifo.len) {
nsc_ircc_dma_xmit(self, iobase);
/* Not finished yet! */
ret = FALSE;
} else {
/* Reset Tx FIFO info */
self->tx_fifo.len = self->tx_fifo.ptr = self->tx_fifo.free = 0;
self->tx_fifo.tail = self->tx_buff.head;
}
/* Make sure we have room for more frames and
* that we don't need to change speed */
if ((self->tx_fifo.free < MAX_TX_WINDOW) && (self->new_speed == 0)) {
/* Not busy transmitting anymore */
/* Tell the network layer, that we can accept more frames */
netif_wake_queue(self->netdev);
}
/* Restore bank */
outb(bank, iobase+BSR);
return ret;
}
/*
* Function nsc_ircc_dma_receive (self)
*
* Get ready for receiving a frame. The device will initiate a DMA
* if it starts to receive a frame.
*
*/
static int nsc_ircc_dma_receive(struct nsc_ircc_cb *self)
{
int iobase;
__u8 bsr;
iobase = self->io.fir_base;
/* Reset Tx FIFO info */
self->tx_fifo.len = self->tx_fifo.ptr = self->tx_fifo.free = 0;
self->tx_fifo.tail = self->tx_buff.head;
/* Save current bank */
bsr = inb(iobase+BSR);
/* Disable DMA */
switch_bank(iobase, BANK0);
outb(inb(iobase+MCR) & ~MCR_DMA_EN, iobase+MCR);
/* Choose DMA Rx, DMA Fairness, and Advanced mode */
switch_bank(iobase, BANK2);
outb(ECR1_DMANF|ECR1_EXT_SL, iobase+ECR1);
self->io.direction = IO_RECV;
self->rx_buff.data = self->rx_buff.head;
/* Reset Rx FIFO. This will also flush the ST_FIFO */
switch_bank(iobase, BANK0);
outb(FCR_RXSR|FCR_FIFO_EN, iobase+FCR);
self->st_fifo.len = self->st_fifo.pending_bytes = 0;
self->st_fifo.tail = self->st_fifo.head = 0;
irda_setup_dma(self->io.dma, self->rx_buff_dma, self->rx_buff.truesize,
DMA_RX_MODE);
/* Enable DMA */
switch_bank(iobase, BANK0);
outb(inb(iobase+MCR)|MCR_DMA_EN, iobase+MCR);
/* Restore bank register */
outb(bsr, iobase+BSR);
return 0;
}
/*
* Function nsc_ircc_dma_receive_complete (self)
*
* Finished with receiving frames
*
*
*/
static int nsc_ircc_dma_receive_complete(struct nsc_ircc_cb *self, int iobase)
{
struct st_fifo *st_fifo;
struct sk_buff *skb;
__u8 status;
__u8 bank;
int len;
st_fifo = &self->st_fifo;
/* Save current bank */
bank = inb(iobase+BSR);
/* Read all entries in status FIFO */
switch_bank(iobase, BANK5);
while ((status = inb(iobase+FRM_ST)) & FRM_ST_VLD) {
/* We must empty the status FIFO no matter what */
len = inb(iobase+RFLFL) | ((inb(iobase+RFLFH) & 0x1f) << 8);
if (st_fifo->tail >= MAX_RX_WINDOW) {
IRDA_DEBUG(0, "%s(), window is full!\n", __FUNCTION__);
continue;
}
st_fifo->entries[st_fifo->tail].status = status;
st_fifo->entries[st_fifo->tail].len = len;
st_fifo->pending_bytes += len;
st_fifo->tail++;
st_fifo->len++;
}
/* Try to process all entries in status FIFO */
while (st_fifo->len > 0) {
/* Get first entry */
status = st_fifo->entries[st_fifo->head].status;
len = st_fifo->entries[st_fifo->head].len;
st_fifo->pending_bytes -= len;
st_fifo->head++;
st_fifo->len--;
/* Check for errors */
if (status & FRM_ST_ERR_MSK) {
if (status & FRM_ST_LOST_FR) {
/* Add number of lost frames to stats */
self->stats.rx_errors += len;
} else {
/* Skip frame */
self->stats.rx_errors++;
self->rx_buff.data += len;
if (status & FRM_ST_MAX_LEN)
self->stats.rx_length_errors++;
if (status & FRM_ST_PHY_ERR)
self->stats.rx_frame_errors++;
if (status & FRM_ST_BAD_CRC)
self->stats.rx_crc_errors++;
}
/* The errors below can be reported in both cases */
if (status & FRM_ST_OVR1)
self->stats.rx_fifo_errors++;
if (status & FRM_ST_OVR2)
self->stats.rx_fifo_errors++;
} else {
/*
* First we must make sure that the frame we
* want to deliver is all in main memory. If we
* cannot tell, then we check if the Rx FIFO is
* empty. If not then we will have to take a nap
* and try again later.
*/
if (st_fifo->pending_bytes < self->io.fifo_size) {
switch_bank(iobase, BANK0);
if (inb(iobase+LSR) & LSR_RXDA) {
/* Put this entry back in fifo */
st_fifo->head--;
st_fifo->len++;
st_fifo->pending_bytes += len;
st_fifo->entries[st_fifo->head].status = status;
st_fifo->entries[st_fifo->head].len = len;
/*
* DMA not finished yet, so try again
* later, set timer value, resolution
* 125 us
*/
switch_bank(iobase, BANK4);
outb(0x02, iobase+TMRL); /* x 125 us */
outb(0x00, iobase+TMRH);
/* Start timer */
outb(IRCR1_TMR_EN, iobase+IRCR1);
/* Restore bank register */
outb(bank, iobase+BSR);
return FALSE; /* I'll be back! */
}
}
/*
* Remember the time we received this frame, so we can
* reduce the min turn time a bit since we will know
* how much time we have used for protocol processing
*/
do_gettimeofday(&self->stamp);
skb = dev_alloc_skb(len+1);
if (skb == NULL) {
IRDA_WARNING("%s(), memory squeeze, "
"dropping frame.\n",
__FUNCTION__);
self->stats.rx_dropped++;
/* Restore bank register */
outb(bank, iobase+BSR);
return FALSE;
}
/* Make sure IP header gets aligned */
skb_reserve(skb, 1);
/* Copy frame without CRC */
if (self->io.speed < 4000000) {
skb_put(skb, len-2);
memcpy(skb->data, self->rx_buff.data, len-2);
} else {
skb_put(skb, len-4);
memcpy(skb->data, self->rx_buff.data, len-4);
}
/* Move to next frame */
self->rx_buff.data += len;
self->stats.rx_bytes += len;
self->stats.rx_packets++;
skb->dev = self->netdev;
skb->mac.raw = skb->data;
skb->protocol = htons(ETH_P_IRDA);
netif_rx(skb);
self->netdev->last_rx = jiffies;
}
}
/* Restore bank register */
outb(bank, iobase+BSR);
return TRUE;
}
/*
* Function nsc_ircc_pio_receive (self)
*
* Receive all data in receiver FIFO
*
*/
static void nsc_ircc_pio_receive(struct nsc_ircc_cb *self)
{
__u8 byte;
int iobase;
iobase = self->io.fir_base;
/* Receive all characters in Rx FIFO */
do {
byte = inb(iobase+RXD);
async_unwrap_char(self->netdev, &self->stats, &self->rx_buff,
byte);
} while (inb(iobase+LSR) & LSR_RXDA); /* Data available */
}
/*
* Function nsc_ircc_sir_interrupt (self, eir)
*
* Handle SIR interrupt
*
*/
static void nsc_ircc_sir_interrupt(struct nsc_ircc_cb *self, int eir)
{
int actual;
/* Check if transmit FIFO is low on data */
if (eir & EIR_TXLDL_EV) {
/* Write data left in transmit buffer */
actual = nsc_ircc_pio_write(self->io.fir_base,
self->tx_buff.data,
self->tx_buff.len,
self->io.fifo_size);
self->tx_buff.data += actual;
self->tx_buff.len -= actual;
self->io.direction = IO_XMIT;
/* Check if finished */
if (self->tx_buff.len > 0)
self->ier = IER_TXLDL_IE;
else {
self->stats.tx_packets++;
netif_wake_queue(self->netdev);
self->ier = IER_TXEMP_IE;
}
}
/* Check if transmission has completed */
if (eir & EIR_TXEMP_EV) {
/* Turn around and get ready to receive some data */
self->io.direction = IO_RECV;
self->ier = IER_RXHDL_IE;
/* Check if we need to change the speed?
* Need to be after self->io.direction to avoid race with
* nsc_ircc_hard_xmit_sir() - Jean II */
if (self->new_speed) {
IRDA_DEBUG(2, "%s(), Changing speed!\n", __FUNCTION__);
self->ier = nsc_ircc_change_speed(self,
self->new_speed);
self->new_speed = 0;
netif_wake_queue(self->netdev);
/* Check if we are going to FIR */
if (self->io.speed > 115200) {
/* No need to do anymore SIR stuff */
return;
}
}
}
/* Rx FIFO threshold or timeout */
if (eir & EIR_RXHDL_EV) {
nsc_ircc_pio_receive(self);
/* Keep receiving */
self->ier = IER_RXHDL_IE;
}
}
/*
* Function nsc_ircc_fir_interrupt (self, eir)
*
* Handle MIR/FIR interrupt
*
*/
static void nsc_ircc_fir_interrupt(struct nsc_ircc_cb *self, int iobase,
int eir)
{
__u8 bank;
bank = inb(iobase+BSR);
/* Status FIFO event*/
if (eir & EIR_SFIF_EV) {
/* Check if DMA has finished */
if (nsc_ircc_dma_receive_complete(self, iobase)) {
/* Wait for next status FIFO interrupt */
self->ier = IER_SFIF_IE;
} else {
self->ier = IER_SFIF_IE | IER_TMR_IE;
}
} else if (eir & EIR_TMR_EV) { /* Timer finished */
/* Disable timer */
switch_bank(iobase, BANK4);
outb(0, iobase+IRCR1);
/* Clear timer event */
switch_bank(iobase, BANK0);
outb(ASCR_CTE, iobase+ASCR);
/* Check if this is a Tx timer interrupt */
if (self->io.direction == IO_XMIT) {
nsc_ircc_dma_xmit(self, iobase);
/* Interrupt on DMA */
self->ier = IER_DMA_IE;
} else {
/* Check (again) if DMA has finished */
if (nsc_ircc_dma_receive_complete(self, iobase)) {
self->ier = IER_SFIF_IE;
} else {
self->ier = IER_SFIF_IE | IER_TMR_IE;
}
}
} else if (eir & EIR_DMA_EV) {
/* Finished with all transmissions? */
if (nsc_ircc_dma_xmit_complete(self)) {
if(self->new_speed != 0) {
/* As we stop the Tx queue, the speed change
* need to be done when the Tx fifo is
* empty. Ask for a Tx done interrupt */
self->ier = IER_TXEMP_IE;
} else {
/* Check if there are more frames to be
* transmitted */
if (irda_device_txqueue_empty(self->netdev)) {
/* Prepare for receive */
nsc_ircc_dma_receive(self);
self->ier = IER_SFIF_IE;
} else
IRDA_WARNING("%s(), potential "
"Tx queue lockup !\n",
__FUNCTION__);
}
} else {
/* Not finished yet, so interrupt on DMA again */
self->ier = IER_DMA_IE;
}
} else if (eir & EIR_TXEMP_EV) {
/* The Tx FIFO has totally drained out, so now we can change
* the speed... - Jean II */
self->ier = nsc_ircc_change_speed(self, self->new_speed);
self->new_speed = 0;
netif_wake_queue(self->netdev);
/* Note : nsc_ircc_change_speed() restarted Rx fifo */
}
outb(bank, iobase+BSR);
}
/*
* Function nsc_ircc_interrupt (irq, dev_id, regs)
*
* An interrupt from the chip has arrived. Time to do some work
*
*/
static irqreturn_t nsc_ircc_interrupt(int irq, void *dev_id,
struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct nsc_ircc_cb *self;
__u8 bsr, eir;
int iobase;
if (!dev) {
IRDA_WARNING("%s: irq %d for unknown device.\n",
driver_name, irq);
return IRQ_NONE;
}
self = (struct nsc_ircc_cb *) dev->priv;
spin_lock(&self->lock);
iobase = self->io.fir_base;
bsr = inb(iobase+BSR); /* Save current bank */
switch_bank(iobase, BANK0);
self->ier = inb(iobase+IER);
eir = inb(iobase+EIR) & self->ier; /* Mask out the interesting ones */
outb(0, iobase+IER); /* Disable interrupts */
if (eir) {
/* Dispatch interrupt handler for the current speed */
if (self->io.speed > 115200)
nsc_ircc_fir_interrupt(self, iobase, eir);
else
nsc_ircc_sir_interrupt(self, eir);
}
outb(self->ier, iobase+IER); /* Restore interrupts */
outb(bsr, iobase+BSR); /* Restore bank register */
spin_unlock(&self->lock);
return IRQ_RETVAL(eir);
}
/*
* Function nsc_ircc_is_receiving (self)
*
* Return TRUE is we are currently receiving a frame
*
*/
static int nsc_ircc_is_receiving(struct nsc_ircc_cb *self)
{
unsigned long flags;
int status = FALSE;
int iobase;
__u8 bank;
IRDA_ASSERT(self != NULL, return FALSE;);
spin_lock_irqsave(&self->lock, flags);
if (self->io.speed > 115200) {
iobase = self->io.fir_base;
/* Check if rx FIFO is not empty */
bank = inb(iobase+BSR);
switch_bank(iobase, BANK2);
if ((inb(iobase+RXFLV) & 0x3f) != 0) {
/* We are receiving something */
status = TRUE;
}
outb(bank, iobase+BSR);
} else
status = (self->rx_buff.state != OUTSIDE_FRAME);
spin_unlock_irqrestore(&self->lock, flags);
return status;
}
/*
* Function nsc_ircc_net_open (dev)
*
* Start the device
*
*/
static int nsc_ircc_net_open(struct net_device *dev)
{
struct nsc_ircc_cb *self;
int iobase;
char hwname[32];
__u8 bank;
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
IRDA_ASSERT(dev != NULL, return -1;);
self = (struct nsc_ircc_cb *) dev->priv;
IRDA_ASSERT(self != NULL, return 0;);
iobase = self->io.fir_base;
if (request_irq(self->io.irq, nsc_ircc_interrupt, 0, dev->name, dev)) {
IRDA_WARNING("%s, unable to allocate irq=%d\n",
driver_name, self->io.irq);
return -EAGAIN;
}
/*
* Always allocate the DMA channel after the IRQ, and clean up on
* failure.
*/
if (request_dma(self->io.dma, dev->name)) {
IRDA_WARNING("%s, unable to allocate dma=%d\n",
driver_name, self->io.dma);
free_irq(self->io.irq, dev);
return -EAGAIN;
}
/* Save current bank */
bank = inb(iobase+BSR);
/* turn on interrupts */
switch_bank(iobase, BANK0);
outb(IER_LS_IE | IER_RXHDL_IE, iobase+IER);
/* Restore bank register */
outb(bank, iobase+BSR);
/* Ready to play! */
netif_start_queue(dev);
/* Give self a hardware name */
sprintf(hwname, "NSC-FIR @ 0x%03x", self->io.fir_base);
/*
* Open new IrLAP layer instance, now that everything should be
* initialized properly
*/
self->irlap = irlap_open(dev, &self->qos, hwname);
return 0;
}
/*
* Function nsc_ircc_net_close (dev)
*
* Stop the device
*
*/
static int nsc_ircc_net_close(struct net_device *dev)
{
struct nsc_ircc_cb *self;
int iobase;
__u8 bank;
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
IRDA_ASSERT(dev != NULL, return -1;);
self = (struct nsc_ircc_cb *) dev->priv;
IRDA_ASSERT(self != NULL, return 0;);
/* Stop device */
netif_stop_queue(dev);
/* Stop and remove instance of IrLAP */
if (self->irlap)
irlap_close(self->irlap);
self->irlap = NULL;
iobase = self->io.fir_base;
disable_dma(self->io.dma);
/* Save current bank */
bank = inb(iobase+BSR);
/* Disable interrupts */
switch_bank(iobase, BANK0);
outb(0, iobase+IER);
free_irq(self->io.irq, dev);
free_dma(self->io.dma);
/* Restore bank register */
outb(bank, iobase+BSR);
return 0;
}
/*
* Function nsc_ircc_net_ioctl (dev, rq, cmd)
*
* Process IOCTL commands for this device
*
*/
static int nsc_ircc_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct if_irda_req *irq = (struct if_irda_req *) rq;
struct nsc_ircc_cb *self;
unsigned long flags;
int ret = 0;
IRDA_ASSERT(dev != NULL, return -1;);
self = dev->priv;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_DEBUG(2, "%s(), %s, (cmd=0x%X)\n", __FUNCTION__, dev->name, cmd);
switch (cmd) {
case SIOCSBANDWIDTH: /* Set bandwidth */
if (!capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
spin_lock_irqsave(&self->lock, flags);
nsc_ircc_change_speed(self, irq->ifr_baudrate);
spin_unlock_irqrestore(&self->lock, flags);
break;
case SIOCSMEDIABUSY: /* Set media busy */
if (!capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
irda_device_set_media_busy(self->netdev, TRUE);
break;
case SIOCGRECEIVING: /* Check if we are receiving right now */
/* This is already protected */
irq->ifr_receiving = nsc_ircc_is_receiving(self);
break;
default:
ret = -EOPNOTSUPP;
}
return ret;
}
static struct net_device_stats *nsc_ircc_net_get_stats(struct net_device *dev)
{
struct nsc_ircc_cb *self = (struct nsc_ircc_cb *) dev->priv;
return &self->stats;
}
static int nsc_ircc_suspend(struct platform_device *dev, pm_message_t state)
{
struct nsc_ircc_cb *self = platform_get_drvdata(dev);
int bank;
unsigned long flags;
int iobase = self->io.fir_base;
if (self->io.suspended)
return 0;
IRDA_DEBUG(1, "%s, Suspending\n", driver_name);
rtnl_lock();
if (netif_running(self->netdev)) {
netif_device_detach(self->netdev);
spin_lock_irqsave(&self->lock, flags);
/* Save current bank */
bank = inb(iobase+BSR);
/* Disable interrupts */
switch_bank(iobase, BANK0);
outb(0, iobase+IER);
/* Restore bank register */
outb(bank, iobase+BSR);
spin_unlock_irqrestore(&self->lock, flags);
free_irq(self->io.irq, self->netdev);
disable_dma(self->io.dma);
}
self->io.suspended = 1;
rtnl_unlock();
return 0;
}
static int nsc_ircc_resume(struct platform_device *dev)
{
struct nsc_ircc_cb *self = platform_get_drvdata(dev);
unsigned long flags;
if (!self->io.suspended)
return 0;
IRDA_DEBUG(1, "%s, Waking up\n", driver_name);
rtnl_lock();
nsc_ircc_setup(&self->io);
nsc_ircc_init_dongle_interface(self->io.fir_base, self->io.dongle_id);
if (netif_running(self->netdev)) {
if (request_irq(self->io.irq, nsc_ircc_interrupt, 0,
self->netdev->name, self->netdev)) {
IRDA_WARNING("%s, unable to allocate irq=%d\n",
driver_name, self->io.irq);
/*
* Don't fail resume process, just kill this
* network interface
*/
unregister_netdevice(self->netdev);
} else {
spin_lock_irqsave(&self->lock, flags);
nsc_ircc_change_speed(self, self->io.speed);
spin_unlock_irqrestore(&self->lock, flags);
netif_device_attach(self->netdev);
}
} else {
spin_lock_irqsave(&self->lock, flags);
nsc_ircc_change_speed(self, 9600);
spin_unlock_irqrestore(&self->lock, flags);
}
self->io.suspended = 0;
rtnl_unlock();
return 0;
}
MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>");
MODULE_DESCRIPTION("NSC IrDA Device Driver");
MODULE_LICENSE("GPL");
module_param(qos_mtt_bits, int, 0);
MODULE_PARM_DESC(qos_mtt_bits, "Minimum Turn Time");
module_param_array(io, int, NULL, 0);
MODULE_PARM_DESC(io, "Base I/O addresses");
module_param_array(irq, int, NULL, 0);
MODULE_PARM_DESC(irq, "IRQ lines");
module_param_array(dma, int, NULL, 0);
MODULE_PARM_DESC(dma, "DMA channels");
module_param(dongle_id, int, 0);
MODULE_PARM_DESC(dongle_id, "Type-id of used dongle");
module_init(nsc_ircc_init);
module_exit(nsc_ircc_cleanup);