2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/drivers/ata/pata_sc1200.c

254 lines
6.8 KiB
C
Raw Normal View History

/*
* New ATA layer SC1200 driver Alan Cox <alan@redhat.com>
*
* TODO: Mode selection filtering
* TODO: Can't enable second channel until ATA core has serialize
* TODO: Needs custom DMA cleanup code
*
* Based very heavily on
*
* linux/drivers/ide/pci/sc1200.c Version 0.91 28-Jan-2003
*
* Copyright (C) 2000-2002 Mark Lord <mlord@pobox.com>
* May be copied or modified under the terms of the GNU General Public License
*
* Development of this chipset driver was funded
* by the nice folks at National Semiconductor.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "sc1200"
#define DRV_VERSION "0.2.6"
#define SC1200_REV_A 0x00
#define SC1200_REV_B1 0x01
#define SC1200_REV_B3 0x02
#define SC1200_REV_C1 0x03
#define SC1200_REV_D1 0x04
/**
* sc1200_clock - PCI clock
*
* Return the PCI bus clocking for the SC1200 chipset configuration
* in use. We return 0 for 33MHz 1 for 48MHz and 2 for 66Mhz
*/
static int sc1200_clock(void)
{
/* Magic registers that give us the chipset data */
u8 chip_id = inb(0x903C);
u8 silicon_rev = inb(0x903D);
u16 pci_clock;
if (chip_id == 0x04 && silicon_rev < SC1200_REV_B1)
return 0; /* 33 MHz mode */
/* Clock generator configuration 0x901E its 8/9 are the PCI clocking
0/3 is 33Mhz 1 is 48 2 is 66 */
pci_clock = inw(0x901E);
pci_clock >>= 8;
pci_clock &= 0x03;
if (pci_clock == 3)
pci_clock = 0;
return pci_clock;
}
/**
* sc1200_set_piomode - PIO setup
* @ap: ATA interface
* @adev: device on the interface
*
* Set our PIO requirements. This is fairly simple on the SC1200
*/
static void sc1200_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
static const u32 pio_timings[4][5] = {
{0x00009172, 0x00012171, 0x00020080, 0x00032010, 0x00040010}, // format0 33Mhz
{0xd1329172, 0x71212171, 0x30200080, 0x20102010, 0x00100010}, // format1, 33Mhz
{0xfaa3f4f3, 0xc23232b2, 0x513101c1, 0x31213121, 0x10211021}, // format1, 48Mhz
{0xfff4fff4, 0xf35353d3, 0x814102f1, 0x42314231, 0x11311131} // format1, 66Mhz
};
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u32 format;
unsigned int reg = 0x40 + 0x10 * ap->port_no;
int mode = adev->pio_mode - XFER_PIO_0;
pci_read_config_dword(pdev, reg + 4, &format);
format >>= 31;
format += sc1200_clock();
pci_write_config_dword(pdev, reg + 8 * adev->devno,
pio_timings[format][mode]);
}
/**
* sc1200_set_dmamode - DMA timing setup
* @ap: ATA interface
* @adev: Device being configured
*
* We cannot mix MWDMA and UDMA without reloading timings each switch
* master to slave.
*/
static void sc1200_set_dmamode(struct ata_port *ap, struct ata_device *adev)
{
static const u32 udma_timing[3][3] = {
{ 0x00921250, 0x00911140, 0x00911030 },
{ 0x00932470, 0x00922260, 0x00922140 },
{ 0x009436A1, 0x00933481, 0x00923261 }
};
static const u32 mwdma_timing[3][3] = {
{ 0x00077771, 0x00012121, 0x00002020 },
{ 0x000BBBB2, 0x00024241, 0x00013131 },
{ 0x000FFFF3, 0x00035352, 0x00015151 }
};
int clock = sc1200_clock();
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
unsigned int reg = 0x40 + 0x10 * ap->port_no;
int mode = adev->dma_mode;
u32 format;
if (mode >= XFER_UDMA_0)
format = udma_timing[clock][mode - XFER_UDMA_0];
else
format = mwdma_timing[clock][mode - XFER_MW_DMA_0];
if (adev->devno == 0) {
u32 timings;
pci_read_config_dword(pdev, reg + 4, &timings);
timings &= 0x80000000UL;
timings |= format;
pci_write_config_dword(pdev, reg + 4, timings);
} else
pci_write_config_dword(pdev, reg + 12, format);
}
/**
* sc1200_qc_issue - command issue
* @qc: command pending
*
* Called when the libata layer is about to issue a command. We wrap
* this interface so that we can load the correct ATA timings if
* necessary. Specifically we have a problem that there is only
* one MWDMA/UDMA bit.
*/
static unsigned int sc1200_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *adev = qc->dev;
struct ata_device *prev = ap->private_data;
/* See if the DMA settings could be wrong */
if (ata_dma_enabled(adev) && adev != prev && prev != NULL) {
/* Maybe, but do the channels match MWDMA/UDMA ? */
if ((ata_using_udma(adev) && !ata_using_udma(prev)) ||
(ata_using_udma(prev) && !ata_using_udma(adev)))
/* Switch the mode bits */
sc1200_set_dmamode(ap, adev);
}
return ata_sff_qc_issue(qc);
}
static struct scsi_host_template sc1200_sht = {
ATA_BMDMA_SHT(DRV_NAME),
.sg_tablesize = LIBATA_DUMB_MAX_PRD,
};
static struct ata_port_operations sc1200_port_ops = {
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.inherits = &ata_bmdma_port_ops,
.qc_prep = ata_sff_dumb_qc_prep,
.qc_issue = sc1200_qc_issue,
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.cable_detect = ata_cable_40wire,
.set_piomode = sc1200_set_piomode,
.set_dmamode = sc1200_set_dmamode,
};
/**
* sc1200_init_one - Initialise an SC1200
* @dev: PCI device
* @id: Entry in match table
*
* Just throw the needed data at the libata helper and it does all
* our work.
*/
static int sc1200_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
libata: clean up SFF init mess The intention of using port_mask in SFF init helpers was to eventually support exoctic configurations such as combination of legacy and native port on the same controller. This never became actually necessary and the related code always has been subtly broken one way or the other. Now that new init model is in place, there is no reason to make common helpers capable of handling all corner cases. Exotic cases can simply dealt within LLDs as necessary. This patch removes port_mask handling in SFF init helpers. SFF init helpers don't take n_ports argument and interpret it into port_mask anymore. All information is carried via port_info. n_ports argument is dropped and always two ports are allocated. LLD can tell SFF to skip certain port by marking it dummy. Note that SFF code has been treating unuvailable ports this way for a long time until recent breakage fix from Linus and is consistent with how other drivers handle with unavailable ports. This fixes 1-port legacy host handling still broken after the recent native mode fix and simplifies SFF init logic. The following changes are made... * ata_pci_init_native_host() and ata_init_legacy_host() both now try to initialized whatever they can and mark failed ports dummy. They return 0 if any port is successfully initialized. * ata_pci_prepare_native_host() and ata_pci_init_one() now doesn't take n_ports argument. All info should be specified via port_info array. Always two ports are allocated. * ata_pci_init_bmdma() exported to be used by LLDs in exotic cases. * port_info handling in all LLDs are standardized - all port_info arrays are const stack variable named ppi. Unless the second port is different from the first, its port_info is specified as NULL (tells libata that it's identical to the last non-NULL port_info). * pata_hpt37x/hpt3x2n: don't modify static variable directly. Make an on-stack copy instead as ata_piix does. * pata_uli: It has 4 ports instead of 2. Don't use ata_pci_prepare_native_host(). Allocate the host explicitly and use init helpers. It's simple enough. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-04 18:43:58 +08:00
static const struct ata_port_info info = {
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = 0x1f,
.mwdma_mask = 0x07,
.udma_mask = 0x07,
.port_ops = &sc1200_port_ops
};
/* Can't enable port 2 yet, see top comments */
libata: clean up SFF init mess The intention of using port_mask in SFF init helpers was to eventually support exoctic configurations such as combination of legacy and native port on the same controller. This never became actually necessary and the related code always has been subtly broken one way or the other. Now that new init model is in place, there is no reason to make common helpers capable of handling all corner cases. Exotic cases can simply dealt within LLDs as necessary. This patch removes port_mask handling in SFF init helpers. SFF init helpers don't take n_ports argument and interpret it into port_mask anymore. All information is carried via port_info. n_ports argument is dropped and always two ports are allocated. LLD can tell SFF to skip certain port by marking it dummy. Note that SFF code has been treating unuvailable ports this way for a long time until recent breakage fix from Linus and is consistent with how other drivers handle with unavailable ports. This fixes 1-port legacy host handling still broken after the recent native mode fix and simplifies SFF init logic. The following changes are made... * ata_pci_init_native_host() and ata_init_legacy_host() both now try to initialized whatever they can and mark failed ports dummy. They return 0 if any port is successfully initialized. * ata_pci_prepare_native_host() and ata_pci_init_one() now doesn't take n_ports argument. All info should be specified via port_info array. Always two ports are allocated. * ata_pci_init_bmdma() exported to be used by LLDs in exotic cases. * port_info handling in all LLDs are standardized - all port_info arrays are const stack variable named ppi. Unless the second port is different from the first, its port_info is specified as NULL (tells libata that it's identical to the last non-NULL port_info). * pata_hpt37x/hpt3x2n: don't modify static variable directly. Make an on-stack copy instead as ata_piix does. * pata_uli: It has 4 ports instead of 2. Don't use ata_pci_prepare_native_host(). Allocate the host explicitly and use init helpers. It's simple enough. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-04 18:43:58 +08:00
const struct ata_port_info *ppi[] = { &info, &ata_dummy_port_info };
return ata_pci_sff_init_one(dev, ppi, &sc1200_sht, NULL);
}
static const struct pci_device_id sc1200[] = {
{ PCI_VDEVICE(NS, PCI_DEVICE_ID_NS_SCx200_IDE), },
{ },
};
static struct pci_driver sc1200_pci_driver = {
.name = DRV_NAME,
.id_table = sc1200,
.probe = sc1200_init_one,
.remove = ata_pci_remove_one,
#ifdef CONFIG_PM
.suspend = ata_pci_device_suspend,
.resume = ata_pci_device_resume,
#endif
};
static int __init sc1200_init(void)
{
return pci_register_driver(&sc1200_pci_driver);
}
static void __exit sc1200_exit(void)
{
pci_unregister_driver(&sc1200_pci_driver);
}
MODULE_AUTHOR("Alan Cox, Mark Lord");
MODULE_DESCRIPTION("low-level driver for the NS/AMD SC1200");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, sc1200);
MODULE_VERSION(DRV_VERSION);
module_init(sc1200_init);
module_exit(sc1200_exit);