2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/drivers/net/dl2k.c

1846 lines
48 KiB
C
Raw Normal View History

/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
/*
Copyright (c) 2001, 2002 by D-Link Corporation
Written by Edward Peng.<edward_peng@dlink.com.tw>
Created 03-May-2001, base on Linux' sundance.c.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
*/
#define DRV_NAME "DL2000/TC902x-based linux driver"
#define DRV_VERSION "v1.19"
#define DRV_RELDATE "2007/08/12"
#include "dl2k.h"
#include <linux/dma-mapping.h>
static char version[] __devinitdata =
KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
#define MAX_UNITS 8
static int mtu[MAX_UNITS];
static int vlan[MAX_UNITS];
static int jumbo[MAX_UNITS];
static char *media[MAX_UNITS];
static int tx_flow=-1;
static int rx_flow=-1;
static int copy_thresh;
static int rx_coalesce=10; /* Rx frame count each interrupt */
static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
MODULE_AUTHOR ("Edward Peng");
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
MODULE_LICENSE("GPL");
module_param_array(mtu, int, NULL, 0);
module_param_array(media, charp, NULL, 0);
module_param_array(vlan, int, NULL, 0);
module_param_array(jumbo, int, NULL, 0);
module_param(tx_flow, int, 0);
module_param(rx_flow, int, 0);
module_param(copy_thresh, int, 0);
module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
/* Enable the default interrupts */
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
UpdateStats | LinkEvent)
#define EnableInt() \
writew(DEFAULT_INTR, ioaddr + IntEnable)
2006-03-04 10:33:57 +08:00
static const int max_intrloop = 50;
static const int multicast_filter_limit = 0x40;
static int rio_open (struct net_device *dev);
static void rio_timer (unsigned long data);
static void rio_tx_timeout (struct net_device *dev);
static void alloc_list (struct net_device *dev);
static int start_xmit (struct sk_buff *skb, struct net_device *dev);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
static void rio_free_tx (struct net_device *dev, int irq);
static void tx_error (struct net_device *dev, int tx_status);
static int receive_packet (struct net_device *dev);
static void rio_error (struct net_device *dev, int int_status);
static int change_mtu (struct net_device *dev, int new_mtu);
static void set_multicast (struct net_device *dev);
static struct net_device_stats *get_stats (struct net_device *dev);
static int clear_stats (struct net_device *dev);
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
static int rio_close (struct net_device *dev);
static int find_miiphy (struct net_device *dev);
static int parse_eeprom (struct net_device *dev);
static int read_eeprom (long ioaddr, int eep_addr);
static int mii_wait_link (struct net_device *dev, int wait);
static int mii_set_media (struct net_device *dev);
static int mii_get_media (struct net_device *dev);
static int mii_set_media_pcs (struct net_device *dev);
static int mii_get_media_pcs (struct net_device *dev);
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
u16 data);
static const struct ethtool_ops ethtool_ops;
static const struct net_device_ops netdev_ops = {
.ndo_open = rio_open,
.ndo_start_xmit = start_xmit,
.ndo_stop = rio_close,
.ndo_get_stats = get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_set_multicast_list = set_multicast,
.ndo_do_ioctl = rio_ioctl,
.ndo_tx_timeout = rio_tx_timeout,
.ndo_change_mtu = change_mtu,
};
static int __devinit
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev;
struct netdev_private *np;
static int card_idx;
int chip_idx = ent->driver_data;
int err, irq;
long ioaddr;
static int version_printed;
void *ring_space;
dma_addr_t ring_dma;
if (!version_printed++)
printk ("%s", version);
err = pci_enable_device (pdev);
if (err)
return err;
irq = pdev->irq;
err = pci_request_regions (pdev, "dl2k");
if (err)
goto err_out_disable;
pci_set_master (pdev);
dev = alloc_etherdev (sizeof (*np));
if (!dev) {
err = -ENOMEM;
goto err_out_res;
}
SET_NETDEV_DEV(dev, &pdev->dev);
#ifdef MEM_MAPPING
ioaddr = pci_resource_start (pdev, 1);
ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
if (!ioaddr) {
err = -ENOMEM;
goto err_out_dev;
}
#else
ioaddr = pci_resource_start (pdev, 0);
#endif
dev->base_addr = ioaddr;
dev->irq = irq;
np = netdev_priv(dev);
np->chip_id = chip_idx;
np->pdev = pdev;
spin_lock_init (&np->tx_lock);
spin_lock_init (&np->rx_lock);
/* Parse manual configuration */
np->an_enable = 1;
np->tx_coalesce = 1;
if (card_idx < MAX_UNITS) {
if (media[card_idx] != NULL) {
np->an_enable = 0;
if (strcmp (media[card_idx], "auto") == 0 ||
strcmp (media[card_idx], "autosense") == 0 ||
strcmp (media[card_idx], "0") == 0 ) {
np->an_enable = 2;
} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
strcmp (media[card_idx], "4") == 0) {
np->speed = 100;
np->full_duplex = 1;
} else if (strcmp (media[card_idx], "100mbps_hd") == 0
|| strcmp (media[card_idx], "3") == 0) {
np->speed = 100;
np->full_duplex = 0;
} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
strcmp (media[card_idx], "2") == 0) {
np->speed = 10;
np->full_duplex = 1;
} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
strcmp (media[card_idx], "1") == 0) {
np->speed = 10;
np->full_duplex = 0;
} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
strcmp (media[card_idx], "6") == 0) {
np->speed=1000;
np->full_duplex=1;
} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
strcmp (media[card_idx], "5") == 0) {
np->speed = 1000;
np->full_duplex = 0;
} else {
np->an_enable = 1;
}
}
if (jumbo[card_idx] != 0) {
np->jumbo = 1;
dev->mtu = MAX_JUMBO;
} else {
np->jumbo = 0;
if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
dev->mtu = mtu[card_idx];
}
np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
vlan[card_idx] : 0;
if (rx_coalesce > 0 && rx_timeout > 0) {
np->rx_coalesce = rx_coalesce;
np->rx_timeout = rx_timeout;
np->coalesce = 1;
}
np->tx_flow = (tx_flow == 0) ? 0 : 1;
np->rx_flow = (rx_flow == 0) ? 0 : 1;
if (tx_coalesce < 1)
tx_coalesce = 1;
else if (tx_coalesce > TX_RING_SIZE-1)
tx_coalesce = TX_RING_SIZE - 1;
}
dev->netdev_ops = &netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
SET_ETHTOOL_OPS(dev, &ethtool_ops);
#if 0
dev->features = NETIF_F_IP_CSUM;
#endif
pci_set_drvdata (pdev, dev);
ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
if (!ring_space)
goto err_out_iounmap;
np->tx_ring = (struct netdev_desc *) ring_space;
np->tx_ring_dma = ring_dma;
ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
if (!ring_space)
goto err_out_unmap_tx;
np->rx_ring = (struct netdev_desc *) ring_space;
np->rx_ring_dma = ring_dma;
/* Parse eeprom data */
parse_eeprom (dev);
/* Find PHY address */
err = find_miiphy (dev);
if (err)
goto err_out_unmap_rx;
/* Fiber device? */
np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
np->link_status = 0;
/* Set media and reset PHY */
if (np->phy_media) {
/* default Auto-Negotiation for fiber deivices */
if (np->an_enable == 2) {
np->an_enable = 1;
}
mii_set_media_pcs (dev);
} else {
/* Auto-Negotiation is mandatory for 1000BASE-T,
IEEE 802.3ab Annex 28D page 14 */
if (np->speed == 1000)
np->an_enable = 1;
mii_set_media (dev);
}
err = register_netdev (dev);
if (err)
goto err_out_unmap_rx;
card_idx++;
printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
dev->name, np->name, dev->dev_addr, irq);
if (tx_coalesce > 1)
printk(KERN_INFO "tx_coalesce:\t%d packets\n",
tx_coalesce);
if (np->coalesce)
printk(KERN_INFO "rx_coalesce:\t%d packets\n"
KERN_INFO "rx_timeout: \t%d ns\n",
np->rx_coalesce, np->rx_timeout*640);
if (np->vlan)
printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
return 0;
err_out_unmap_rx:
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
err_out_unmap_tx:
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
err_out_iounmap:
#ifdef MEM_MAPPING
iounmap ((void *) ioaddr);
err_out_dev:
#endif
free_netdev (dev);
err_out_res:
pci_release_regions (pdev);
err_out_disable:
pci_disable_device (pdev);
return err;
}
static int
find_miiphy (struct net_device *dev)
{
int i, phy_found = 0;
struct netdev_private *np;
long ioaddr;
np = netdev_priv(dev);
ioaddr = dev->base_addr;
np->phy_addr = 1;
for (i = 31; i >= 0; i--) {
int mii_status = mii_read (dev, i, 1);
if (mii_status != 0xffff && mii_status != 0x0000) {
np->phy_addr = i;
phy_found++;
}
}
if (!phy_found) {
printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
return -ENODEV;
}
return 0;
}
static int
parse_eeprom (struct net_device *dev)
{
int i, j;
long ioaddr = dev->base_addr;
u8 sromdata[256];
u8 *psib;
u32 crc;
PSROM_t psrom = (PSROM_t) sromdata;
struct netdev_private *np = netdev_priv(dev);
int cid, next;
#ifdef MEM_MAPPING
ioaddr = pci_resource_start (np->pdev, 0);
#endif
/* Read eeprom */
for (i = 0; i < 128; i++) {
((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
}
#ifdef MEM_MAPPING
ioaddr = dev->base_addr;
#endif
if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
/* Check CRC */
crc = ~ether_crc_le (256 - 4, sromdata);
if (psrom->crc != crc) {
printk (KERN_ERR "%s: EEPROM data CRC error.\n",
dev->name);
return -1;
}
}
/* Set MAC address */
for (i = 0; i < 6; i++)
dev->dev_addr[i] = psrom->mac_addr[i];
if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
return 0;
}
/* Parse Software Information Block */
i = 0x30;
psib = (u8 *) sromdata;
do {
cid = psib[i++];
next = psib[i++];
if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
printk (KERN_ERR "Cell data error\n");
return -1;
}
switch (cid) {
case 0: /* Format version */
break;
case 1: /* End of cell */
return 0;
case 2: /* Duplex Polarity */
np->duplex_polarity = psib[i];
writeb (readb (ioaddr + PhyCtrl) | psib[i],
ioaddr + PhyCtrl);
break;
case 3: /* Wake Polarity */
np->wake_polarity = psib[i];
break;
case 9: /* Adapter description */
j = (next - i > 255) ? 255 : next - i;
memcpy (np->name, &(psib[i]), j);
break;
case 4:
case 5:
case 6:
case 7:
case 8: /* Reversed */
break;
default: /* Unknown cell */
return -1;
}
i = next;
} while (1);
return 0;
}
static int
rio_open (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
long ioaddr = dev->base_addr;
int i;
u16 macctrl;
i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
if (i)
return i;
/* Reset all logic functions */
writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
ioaddr + ASICCtrl + 2);
mdelay(10);
/* DebugCtrl bit 4, 5, 9 must set */
writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
/* Jumbo frame */
if (np->jumbo != 0)
writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
alloc_list (dev);
/* Get station address */
for (i = 0; i < 6; i++)
writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
set_multicast (dev);
if (np->coalesce) {
writel (np->rx_coalesce | np->rx_timeout << 16,
ioaddr + RxDMAIntCtrl);
}
/* Set RIO to poll every N*320nsec. */
writeb (0x20, ioaddr + RxDMAPollPeriod);
writeb (0xff, ioaddr + TxDMAPollPeriod);
writeb (0x30, ioaddr + RxDMABurstThresh);
writeb (0x30, ioaddr + RxDMAUrgentThresh);
writel (0x0007ffff, ioaddr + RmonStatMask);
/* clear statistics */
clear_stats (dev);
/* VLAN supported */
if (np->vlan) {
/* priority field in RxDMAIntCtrl */
writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
ioaddr + RxDMAIntCtrl);
/* VLANId */
writew (np->vlan, ioaddr + VLANId);
/* Length/Type should be 0x8100 */
writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
VLAN information tagged by TFC' VID, CFI fields. */
writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
ioaddr + MACCtrl);
}
init_timer (&np->timer);
np->timer.expires = jiffies + 1*HZ;
np->timer.data = (unsigned long) dev;
np->timer.function = &rio_timer;
add_timer (&np->timer);
/* Start Tx/Rx */
writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
ioaddr + MACCtrl);
macctrl = 0;
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
writew(macctrl, ioaddr + MACCtrl);
netif_start_queue (dev);
/* Enable default interrupts */
EnableInt ();
return 0;
}
static void
rio_timer (unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct netdev_private *np = netdev_priv(dev);
unsigned int entry;
int next_tick = 1*HZ;
unsigned long flags;
spin_lock_irqsave(&np->rx_lock, flags);
/* Recover rx ring exhausted error */
if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
printk(KERN_INFO "Try to recover rx ring exhausted...\n");
/* Re-allocate skbuffs to fill the descriptor ring */
for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
struct sk_buff *skb;
entry = np->old_rx % RX_RING_SIZE;
/* Dropped packets don't need to re-allocate */
if (np->rx_skbuff[entry] == NULL) {
skb = netdev_alloc_skb (dev, np->rx_buf_sz);
if (skb == NULL) {
np->rx_ring[entry].fraginfo = 0;
printk (KERN_INFO
"%s: Still unable to re-allocate Rx skbuff.#%d\n",
dev->name, entry);
break;
}
np->rx_skbuff[entry] = skb;
/* 16 byte align the IP header */
skb_reserve (skb, 2);
np->rx_ring[entry].fraginfo =
cpu_to_le64 (pci_map_single
(np->pdev, skb->data, np->rx_buf_sz,
PCI_DMA_FROMDEVICE));
}
np->rx_ring[entry].fraginfo |=
cpu_to_le64((u64)np->rx_buf_sz << 48);
np->rx_ring[entry].status = 0;
} /* end for */
} /* end if */
spin_unlock_irqrestore (&np->rx_lock, flags);
np->timer.expires = jiffies + next_tick;
add_timer(&np->timer);
}
static void
rio_tx_timeout (struct net_device *dev)
{
long ioaddr = dev->base_addr;
printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
dev->name, readl (ioaddr + TxStatus));
rio_free_tx(dev, 0);
dev->if_port = 0;
dev->trans_start = jiffies;
}
/* allocate and initialize Tx and Rx descriptors */
static void
alloc_list (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
int i;
np->cur_rx = np->cur_tx = 0;
np->old_rx = np->old_tx = 0;
np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
for (i = 0; i < TX_RING_SIZE; i++) {
np->tx_skbuff[i] = NULL;
np->tx_ring[i].status = cpu_to_le64 (TFDDone);
np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
((i+1)%TX_RING_SIZE) *
sizeof (struct netdev_desc));
}
/* Initialize Rx descriptors */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
((i + 1) % RX_RING_SIZE) *
sizeof (struct netdev_desc));
np->rx_ring[i].status = 0;
np->rx_ring[i].fraginfo = 0;
np->rx_skbuff[i] = NULL;
}
/* Allocate the rx buffers */
for (i = 0; i < RX_RING_SIZE; i++) {
/* Allocated fixed size of skbuff */
struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
np->rx_skbuff[i] = skb;
if (skb == NULL) {
printk (KERN_ERR
"%s: alloc_list: allocate Rx buffer error! ",
dev->name);
break;
}
skb_reserve (skb, 2); /* 16 byte align the IP header. */
/* Rubicon now supports 40 bits of addressing space. */
np->rx_ring[i].fraginfo =
cpu_to_le64 ( pci_map_single (
np->pdev, skb->data, np->rx_buf_sz,
PCI_DMA_FROMDEVICE));
np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
}
/* Set RFDListPtr */
writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
writel (0, dev->base_addr + RFDListPtr1);
return;
}
static int
start_xmit (struct sk_buff *skb, struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
struct netdev_desc *txdesc;
unsigned entry;
u32 ioaddr;
u64 tfc_vlan_tag = 0;
if (np->link_status == 0) { /* Link Down */
dev_kfree_skb(skb);
return 0;
}
ioaddr = dev->base_addr;
entry = np->cur_tx % TX_RING_SIZE;
np->tx_skbuff[entry] = skb;
txdesc = &np->tx_ring[entry];
#if 0
if (skb->ip_summed == CHECKSUM_PARTIAL) {
txdesc->status |=
cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
IPChecksumEnable);
}
#endif
if (np->vlan) {
tfc_vlan_tag = VLANTagInsert |
((u64)np->vlan << 32) |
((u64)skb->priority << 45);
}
txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
skb->len,
PCI_DMA_TODEVICE));
txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
* Work around: Always use 1 descriptor in 10Mbps mode */
if (entry % np->tx_coalesce == 0 || np->speed == 10)
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
WordAlignDisable |
TxDMAIndicate |
(1 << FragCountShift));
else
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
WordAlignDisable |
(1 << FragCountShift));
/* TxDMAPollNow */
writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
/* Schedule ISR */
writel(10000, ioaddr + CountDown);
np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
< TX_QUEUE_LEN - 1 && np->speed != 10) {
/* do nothing */
} else if (!netif_queue_stopped(dev)) {
netif_stop_queue (dev);
}
/* The first TFDListPtr */
if (readl (dev->base_addr + TFDListPtr0) == 0) {
writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
dev->base_addr + TFDListPtr0);
writel (0, dev->base_addr + TFDListPtr1);
}
/* NETDEV WATCHDOG timer */
dev->trans_start = jiffies;
return 0;
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
rio_interrupt (int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct netdev_private *np;
unsigned int_status;
long ioaddr;
int cnt = max_intrloop;
int handled = 0;
ioaddr = dev->base_addr;
np = netdev_priv(dev);
while (1) {
int_status = readw (ioaddr + IntStatus);
writew (int_status, ioaddr + IntStatus);
int_status &= DEFAULT_INTR;
if (int_status == 0 || --cnt < 0)
break;
handled = 1;
/* Processing received packets */
if (int_status & RxDMAComplete)
receive_packet (dev);
/* TxDMAComplete interrupt */
if ((int_status & (TxDMAComplete|IntRequested))) {
int tx_status;
tx_status = readl (ioaddr + TxStatus);
if (tx_status & 0x01)
tx_error (dev, tx_status);
/* Free used tx skbuffs */
rio_free_tx (dev, 1);
}
/* Handle uncommon events */
if (int_status &
(HostError | LinkEvent | UpdateStats))
rio_error (dev, int_status);
}
if (np->cur_tx != np->old_tx)
writel (100, ioaddr + CountDown);
return IRQ_RETVAL(handled);
}
static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
{
return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
}
static void
rio_free_tx (struct net_device *dev, int irq)
{
struct netdev_private *np = netdev_priv(dev);
int entry = np->old_tx % TX_RING_SIZE;
int tx_use = 0;
unsigned long flag = 0;
if (irq)
spin_lock(&np->tx_lock);
else
spin_lock_irqsave(&np->tx_lock, flag);
/* Free used tx skbuffs */
while (entry != np->cur_tx) {
struct sk_buff *skb;
if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
break;
skb = np->tx_skbuff[entry];
pci_unmap_single (np->pdev,
desc_to_dma(&np->tx_ring[entry]),
skb->len, PCI_DMA_TODEVICE);
if (irq)
dev_kfree_skb_irq (skb);
else
dev_kfree_skb (skb);
np->tx_skbuff[entry] = NULL;
entry = (entry + 1) % TX_RING_SIZE;
tx_use++;
}
if (irq)
spin_unlock(&np->tx_lock);
else
spin_unlock_irqrestore(&np->tx_lock, flag);
np->old_tx = entry;
/* If the ring is no longer full, clear tx_full and
call netif_wake_queue() */
if (netif_queue_stopped(dev) &&
((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
< TX_QUEUE_LEN - 1 || np->speed == 10)) {
netif_wake_queue (dev);
}
}
static void
tx_error (struct net_device *dev, int tx_status)
{
struct netdev_private *np;
long ioaddr = dev->base_addr;
int frame_id;
int i;
np = netdev_priv(dev);
frame_id = (tx_status & 0xffff0000);
printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
dev->name, tx_status, frame_id);
np->stats.tx_errors++;
/* Ttransmit Underrun */
if (tx_status & 0x10) {
np->stats.tx_fifo_errors++;
writew (readw (ioaddr + TxStartThresh) + 0x10,
ioaddr + TxStartThresh);
/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
writew (TxReset | DMAReset | FIFOReset | NetworkReset,
ioaddr + ASICCtrl + 2);
/* Wait for ResetBusy bit clear */
for (i = 50; i > 0; i--) {
if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
break;
mdelay (1);
}
rio_free_tx (dev, 1);
/* Reset TFDListPtr */
writel (np->tx_ring_dma +
np->old_tx * sizeof (struct netdev_desc),
dev->base_addr + TFDListPtr0);
writel (0, dev->base_addr + TFDListPtr1);
/* Let TxStartThresh stay default value */
}
/* Late Collision */
if (tx_status & 0x04) {
np->stats.tx_fifo_errors++;
/* TxReset and clear FIFO */
writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
/* Wait reset done */
for (i = 50; i > 0; i--) {
if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
break;
mdelay (1);
}
/* Let TxStartThresh stay default value */
}
/* Maximum Collisions */
#ifdef ETHER_STATS
if (tx_status & 0x08)
np->stats.collisions16++;
#else
if (tx_status & 0x08)
np->stats.collisions++;
#endif
/* Restart the Tx */
writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
}
static int
receive_packet (struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
int entry = np->cur_rx % RX_RING_SIZE;
int cnt = 30;
/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
while (1) {
struct netdev_desc *desc = &np->rx_ring[entry];
int pkt_len;
u64 frame_status;
if (!(desc->status & cpu_to_le64(RFDDone)) ||
!(desc->status & cpu_to_le64(FrameStart)) ||
!(desc->status & cpu_to_le64(FrameEnd)))
break;
/* Chip omits the CRC. */
frame_status = le64_to_cpu(desc->status);
pkt_len = frame_status & 0xffff;
if (--cnt < 0)
break;
/* Update rx error statistics, drop packet. */
if (frame_status & RFS_Errors) {
np->stats.rx_errors++;
if (frame_status & (RxRuntFrame | RxLengthError))
np->stats.rx_length_errors++;
if (frame_status & RxFCSError)
np->stats.rx_crc_errors++;
if (frame_status & RxAlignmentError && np->speed != 1000)
np->stats.rx_frame_errors++;
if (frame_status & RxFIFOOverrun)
np->stats.rx_fifo_errors++;
} else {
struct sk_buff *skb;
/* Small skbuffs for short packets */
if (pkt_len > copy_thresh) {
pci_unmap_single (np->pdev,
desc_to_dma(desc),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_put (skb = np->rx_skbuff[entry], pkt_len);
np->rx_skbuff[entry] = NULL;
} else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
pci_dma_sync_single_for_cpu(np->pdev,
desc_to_dma(desc),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
/* 16 byte align the IP header */
skb_reserve (skb, 2);
skb_copy_to_linear_data (skb,
np->rx_skbuff[entry]->data,
pkt_len);
skb_put (skb, pkt_len);
pci_dma_sync_single_for_device(np->pdev,
desc_to_dma(desc),
np->rx_buf_sz,
PCI_DMA_FROMDEVICE);
}
skb->protocol = eth_type_trans (skb, dev);
#if 0
/* Checksum done by hw, but csum value unavailable. */
if (np->pdev->pci_rev_id >= 0x0c &&
!(frame_status & (TCPError | UDPError | IPError))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#endif
netif_rx (skb);
}
entry = (entry + 1) % RX_RING_SIZE;
}
spin_lock(&np->rx_lock);
np->cur_rx = entry;
/* Re-allocate skbuffs to fill the descriptor ring */
entry = np->old_rx;
while (entry != np->cur_rx) {
struct sk_buff *skb;
/* Dropped packets don't need to re-allocate */
if (np->rx_skbuff[entry] == NULL) {
skb = netdev_alloc_skb(dev, np->rx_buf_sz);
if (skb == NULL) {
np->rx_ring[entry].fraginfo = 0;
printk (KERN_INFO
"%s: receive_packet: "
"Unable to re-allocate Rx skbuff.#%d\n",
dev->name, entry);
break;
}
np->rx_skbuff[entry] = skb;
/* 16 byte align the IP header */
skb_reserve (skb, 2);
np->rx_ring[entry].fraginfo =
cpu_to_le64 (pci_map_single
(np->pdev, skb->data, np->rx_buf_sz,
PCI_DMA_FROMDEVICE));
}
np->rx_ring[entry].fraginfo |=
cpu_to_le64((u64)np->rx_buf_sz << 48);
np->rx_ring[entry].status = 0;
entry = (entry + 1) % RX_RING_SIZE;
}
np->old_rx = entry;
spin_unlock(&np->rx_lock);
return 0;
}
static void
rio_error (struct net_device *dev, int int_status)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = netdev_priv(dev);
u16 macctrl;
/* Link change event */
if (int_status & LinkEvent) {
if (mii_wait_link (dev, 10) == 0) {
printk (KERN_INFO "%s: Link up\n", dev->name);
if (np->phy_media)
mii_get_media_pcs (dev);
else
mii_get_media (dev);
if (np->speed == 1000)
np->tx_coalesce = tx_coalesce;
else
np->tx_coalesce = 1;
macctrl = 0;
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
macctrl |= (np->tx_flow) ?
TxFlowControlEnable : 0;
macctrl |= (np->rx_flow) ?
RxFlowControlEnable : 0;
writew(macctrl, ioaddr + MACCtrl);
np->link_status = 1;
netif_carrier_on(dev);
} else {
printk (KERN_INFO "%s: Link off\n", dev->name);
np->link_status = 0;
netif_carrier_off(dev);
}
}
/* UpdateStats statistics registers */
if (int_status & UpdateStats) {
get_stats (dev);
}
/* PCI Error, a catastronphic error related to the bus interface
occurs, set GlobalReset and HostReset to reset. */
if (int_status & HostError) {
printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
dev->name, int_status);
writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
mdelay (500);
}
}
static struct net_device_stats *
get_stats (struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = netdev_priv(dev);
#ifdef MEM_MAPPING
int i;
#endif
unsigned int stat_reg;
/* All statistics registers need to be acknowledged,
else statistic overflow could cause problems */
np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
np->stats.collisions += readl (ioaddr + SingleColFrames)
+ readl (ioaddr + MultiColFrames);
/* detailed tx errors */
stat_reg = readw (ioaddr + FramesAbortXSColls);
np->stats.tx_aborted_errors += stat_reg;
np->stats.tx_errors += stat_reg;
stat_reg = readw (ioaddr + CarrierSenseErrors);
np->stats.tx_carrier_errors += stat_reg;
np->stats.tx_errors += stat_reg;
/* Clear all other statistic register. */
readl (ioaddr + McstOctetXmtOk);
readw (ioaddr + BcstFramesXmtdOk);
readl (ioaddr + McstFramesXmtdOk);
readw (ioaddr + BcstFramesRcvdOk);
readw (ioaddr + MacControlFramesRcvd);
readw (ioaddr + FrameTooLongErrors);
readw (ioaddr + InRangeLengthErrors);
readw (ioaddr + FramesCheckSeqErrors);
readw (ioaddr + FramesLostRxErrors);
readl (ioaddr + McstOctetXmtOk);
readl (ioaddr + BcstOctetXmtOk);
readl (ioaddr + McstFramesXmtdOk);
readl (ioaddr + FramesWDeferredXmt);
readl (ioaddr + LateCollisions);
readw (ioaddr + BcstFramesXmtdOk);
readw (ioaddr + MacControlFramesXmtd);
readw (ioaddr + FramesWEXDeferal);
#ifdef MEM_MAPPING
for (i = 0x100; i <= 0x150; i += 4)
readl (ioaddr + i);
#endif
readw (ioaddr + TxJumboFrames);
readw (ioaddr + RxJumboFrames);
readw (ioaddr + TCPCheckSumErrors);
readw (ioaddr + UDPCheckSumErrors);
readw (ioaddr + IPCheckSumErrors);
return &np->stats;
}
static int
clear_stats (struct net_device *dev)
{
long ioaddr = dev->base_addr;
#ifdef MEM_MAPPING
int i;
#endif
/* All statistics registers need to be acknowledged,
else statistic overflow could cause problems */
readl (ioaddr + FramesRcvOk);
readl (ioaddr + FramesXmtOk);
readl (ioaddr + OctetRcvOk);
readl (ioaddr + OctetXmtOk);
readl (ioaddr + McstFramesRcvdOk);
readl (ioaddr + SingleColFrames);
readl (ioaddr + MultiColFrames);
readl (ioaddr + LateCollisions);
/* detailed rx errors */
readw (ioaddr + FrameTooLongErrors);
readw (ioaddr + InRangeLengthErrors);
readw (ioaddr + FramesCheckSeqErrors);
readw (ioaddr + FramesLostRxErrors);
/* detailed tx errors */
readw (ioaddr + FramesAbortXSColls);
readw (ioaddr + CarrierSenseErrors);
/* Clear all other statistic register. */
readl (ioaddr + McstOctetXmtOk);
readw (ioaddr + BcstFramesXmtdOk);
readl (ioaddr + McstFramesXmtdOk);
readw (ioaddr + BcstFramesRcvdOk);
readw (ioaddr + MacControlFramesRcvd);
readl (ioaddr + McstOctetXmtOk);
readl (ioaddr + BcstOctetXmtOk);
readl (ioaddr + McstFramesXmtdOk);
readl (ioaddr + FramesWDeferredXmt);
readw (ioaddr + BcstFramesXmtdOk);
readw (ioaddr + MacControlFramesXmtd);
readw (ioaddr + FramesWEXDeferal);
#ifdef MEM_MAPPING
for (i = 0x100; i <= 0x150; i += 4)
readl (ioaddr + i);
#endif
readw (ioaddr + TxJumboFrames);
readw (ioaddr + RxJumboFrames);
readw (ioaddr + TCPCheckSumErrors);
readw (ioaddr + UDPCheckSumErrors);
readw (ioaddr + IPCheckSumErrors);
return 0;
}
static int
change_mtu (struct net_device *dev, int new_mtu)
{
struct netdev_private *np = netdev_priv(dev);
int max = (np->jumbo) ? MAX_JUMBO : 1536;
if ((new_mtu < 68) || (new_mtu > max)) {
return -EINVAL;
}
dev->mtu = new_mtu;
return 0;
}
static void
set_multicast (struct net_device *dev)
{
long ioaddr = dev->base_addr;
u32 hash_table[2];
u16 rx_mode = 0;
struct netdev_private *np = netdev_priv(dev);
hash_table[0] = hash_table[1] = 0;
/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
hash_table[1] |= 0x02000000;
if (dev->flags & IFF_PROMISC) {
/* Receive all frames promiscuously. */
rx_mode = ReceiveAllFrames;
} else if ((dev->flags & IFF_ALLMULTI) ||
(dev->mc_count > multicast_filter_limit)) {
/* Receive broadcast and multicast frames */
rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
} else if (dev->mc_count > 0) {
int i;
struct dev_mc_list *mclist;
/* Receive broadcast frames and multicast frames filtering
by Hashtable */
rx_mode =
ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist=mclist->next)
{
int bit, index = 0;
int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
/* The inverted high significant 6 bits of CRC are
used as an index to hashtable */
for (bit = 0; bit < 6; bit++)
if (crc & (1 << (31 - bit)))
index |= (1 << bit);
hash_table[index / 32] |= (1 << (index % 32));
}
} else {
rx_mode = ReceiveBroadcast | ReceiveUnicast;
}
if (np->vlan) {
/* ReceiveVLANMatch field in ReceiveMode */
rx_mode |= ReceiveVLANMatch;
}
writel (hash_table[0], ioaddr + HashTable0);
writel (hash_table[1], ioaddr + HashTable1);
writew (rx_mode, ioaddr + ReceiveMode);
}
static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct netdev_private *np = netdev_priv(dev);
strcpy(info->driver, "dl2k");
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(np->pdev));
}
static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct netdev_private *np = netdev_priv(dev);
if (np->phy_media) {
/* fiber device */
cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
cmd->port = PORT_FIBRE;
cmd->transceiver = XCVR_INTERNAL;
} else {
/* copper device */
cmd->supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_MII;
cmd->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
ADVERTISED_Autoneg | ADVERTISED_MII;
cmd->port = PORT_MII;
cmd->transceiver = XCVR_INTERNAL;
}
if ( np->link_status ) {
cmd->speed = np->speed;
cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
} else {
cmd->speed = -1;
cmd->duplex = -1;
}
if ( np->an_enable)
cmd->autoneg = AUTONEG_ENABLE;
else
cmd->autoneg = AUTONEG_DISABLE;
cmd->phy_address = np->phy_addr;
return 0;
}
static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct netdev_private *np = netdev_priv(dev);
netif_carrier_off(dev);
if (cmd->autoneg == AUTONEG_ENABLE) {
if (np->an_enable)
return 0;
else {
np->an_enable = 1;
mii_set_media(dev);
return 0;
}
} else {
np->an_enable = 0;
if (np->speed == 1000) {
cmd->speed = SPEED_100;
cmd->duplex = DUPLEX_FULL;
printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
}
switch(cmd->speed + cmd->duplex) {
case SPEED_10 + DUPLEX_HALF:
np->speed = 10;
np->full_duplex = 0;
break;
case SPEED_10 + DUPLEX_FULL:
np->speed = 10;
np->full_duplex = 1;
break;
case SPEED_100 + DUPLEX_HALF:
np->speed = 100;
np->full_duplex = 0;
break;
case SPEED_100 + DUPLEX_FULL:
np->speed = 100;
np->full_duplex = 1;
break;
case SPEED_1000 + DUPLEX_HALF:/* not supported */
case SPEED_1000 + DUPLEX_FULL:/* not supported */
default:
return -EINVAL;
}
mii_set_media(dev);
}
return 0;
}
static u32 rio_get_link(struct net_device *dev)
{
struct netdev_private *np = netdev_priv(dev);
return np->link_status;
}
static const struct ethtool_ops ethtool_ops = {
.get_drvinfo = rio_get_drvinfo,
.get_settings = rio_get_settings,
.set_settings = rio_set_settings,
.get_link = rio_get_link,
};
static int
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
int phy_addr;
struct netdev_private *np = netdev_priv(dev);
struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
struct netdev_desc *desc;
int i;
phy_addr = np->phy_addr;
switch (cmd) {
case SIOCDEVPRIVATE:
break;
case SIOCDEVPRIVATE + 1:
miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
break;
case SIOCDEVPRIVATE + 2:
mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
break;
case SIOCDEVPRIVATE + 3:
break;
case SIOCDEVPRIVATE + 4:
break;
case SIOCDEVPRIVATE + 5:
netif_stop_queue (dev);
break;
case SIOCDEVPRIVATE + 6:
netif_wake_queue (dev);
break;
case SIOCDEVPRIVATE + 7:
printk
("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
np->old_rx);
break;
case SIOCDEVPRIVATE + 8:
printk("TX ring:\n");
for (i = 0; i < TX_RING_SIZE; i++) {
desc = &np->tx_ring[i];
printk
("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
i,
(u32) (np->tx_ring_dma + i * sizeof (*desc)),
(u32)le64_to_cpu(desc->next_desc),
(u32)le64_to_cpu(desc->status),
(u32)(le64_to_cpu(desc->fraginfo) >> 32),
(u32)le64_to_cpu(desc->fraginfo));
printk ("\n");
}
printk ("\n");
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
#define EEP_READ 0x0200
#define EEP_BUSY 0x8000
/* Read the EEPROM word */
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
static int
read_eeprom (long ioaddr, int eep_addr)
{
int i = 1000;
outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
while (i-- > 0) {
if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
return inw (ioaddr + EepromData);
}
}
return 0;
}
enum phy_ctrl_bits {
MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
MII_DUPLEX = 0x08,
};
#define mii_delay() readb(ioaddr)
static void
mii_sendbit (struct net_device *dev, u32 data)
{
long ioaddr = dev->base_addr + PhyCtrl;
data = (data) ? MII_DATA1 : 0;
data |= MII_WRITE;
data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
writeb (data, ioaddr);
mii_delay ();
writeb (data | MII_CLK, ioaddr);
mii_delay ();
}
static int
mii_getbit (struct net_device *dev)
{
long ioaddr = dev->base_addr + PhyCtrl;
u8 data;
data = (readb (ioaddr) & 0xf8) | MII_READ;
writeb (data, ioaddr);
mii_delay ();
writeb (data | MII_CLK, ioaddr);
mii_delay ();
return ((readb (ioaddr) >> 1) & 1);
}
static void
mii_send_bits (struct net_device *dev, u32 data, int len)
{
int i;
for (i = len - 1; i >= 0; i--) {
mii_sendbit (dev, data & (1 << i));
}
}
static int
mii_read (struct net_device *dev, int phy_addr, int reg_num)
{
u32 cmd;
int i;
u32 retval = 0;
/* Preamble */
mii_send_bits (dev, 0xffffffff, 32);
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
/* ST,OP = 0110'b for read operation */
cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
mii_send_bits (dev, cmd, 14);
/* Turnaround */
if (mii_getbit (dev))
goto err_out;
/* Read data */
for (i = 0; i < 16; i++) {
retval |= mii_getbit (dev);
retval <<= 1;
}
/* End cycle */
mii_getbit (dev);
return (retval >> 1) & 0xffff;
err_out:
return 0;
}
static int
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
{
u32 cmd;
/* Preamble */
mii_send_bits (dev, 0xffffffff, 32);
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
mii_send_bits (dev, cmd, 32);
/* End cycle */
mii_getbit (dev);
return 0;
}
static int
mii_wait_link (struct net_device *dev, int wait)
{
__u16 bmsr;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
do {
bmsr = mii_read (dev, phy_addr, MII_BMSR);
if (bmsr & MII_BMSR_LINK_STATUS)
return 0;
mdelay (1);
} while (--wait > 0);
return -1;
}
static int
mii_get_media (struct net_device *dev)
{
__u16 negotiate;
__u16 bmsr;
__u16 mscr;
__u16 mssr;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
bmsr = mii_read (dev, phy_addr, MII_BMSR);
if (np->an_enable) {
if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
/* Auto-Negotiation not completed */
return -1;
}
negotiate = mii_read (dev, phy_addr, MII_ANAR) &
mii_read (dev, phy_addr, MII_ANLPAR);
mscr = mii_read (dev, phy_addr, MII_MSCR);
mssr = mii_read (dev, phy_addr, MII_MSSR);
if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
np->speed = 1000;
np->full_duplex = 1;
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
} else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
np->speed = 1000;
np->full_duplex = 0;
printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
} else if (negotiate & MII_ANAR_100BX_FD) {
np->speed = 100;
np->full_duplex = 1;
printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
} else if (negotiate & MII_ANAR_100BX_HD) {
np->speed = 100;
np->full_duplex = 0;
printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
} else if (negotiate & MII_ANAR_10BT_FD) {
np->speed = 10;
np->full_duplex = 1;
printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
} else if (negotiate & MII_ANAR_10BT_HD) {
np->speed = 10;
np->full_duplex = 0;
printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
}
if (negotiate & MII_ANAR_PAUSE) {
np->tx_flow &= 1;
np->rx_flow &= 1;
} else if (negotiate & MII_ANAR_ASYMMETRIC) {
np->tx_flow = 0;
np->rx_flow &= 1;
}
/* else tx_flow, rx_flow = user select */
} else {
__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
case MII_BMCR_SPEED_1000:
printk (KERN_INFO "Operating at 1000 Mbps, ");
break;
case MII_BMCR_SPEED_100:
printk (KERN_INFO "Operating at 100 Mbps, ");
break;
case 0:
printk (KERN_INFO "Operating at 10 Mbps, ");
}
if (bmcr & MII_BMCR_DUPLEX_MODE) {
printk ("Full duplex\n");
} else {
printk ("Half duplex\n");
}
}
if (np->tx_flow)
printk(KERN_INFO "Enable Tx Flow Control\n");
else
printk(KERN_INFO "Disable Tx Flow Control\n");
if (np->rx_flow)
printk(KERN_INFO "Enable Rx Flow Control\n");
else
printk(KERN_INFO "Disable Rx Flow Control\n");
return 0;
}
static int
mii_set_media (struct net_device *dev)
{
__u16 pscr;
__u16 bmcr;
__u16 bmsr;
__u16 anar;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
/* Does user set speed? */
if (np->an_enable) {
/* Advertise capabilities */
bmsr = mii_read (dev, phy_addr, MII_BMSR);
anar = mii_read (dev, phy_addr, MII_ANAR) &
~MII_ANAR_100BX_FD &
~MII_ANAR_100BX_HD &
~MII_ANAR_100BT4 &
~MII_ANAR_10BT_FD &
~MII_ANAR_10BT_HD;
if (bmsr & MII_BMSR_100BX_FD)
anar |= MII_ANAR_100BX_FD;
if (bmsr & MII_BMSR_100BX_HD)
anar |= MII_ANAR_100BX_HD;
if (bmsr & MII_BMSR_100BT4)
anar |= MII_ANAR_100BT4;
if (bmsr & MII_BMSR_10BT_FD)
anar |= MII_ANAR_10BT_FD;
if (bmsr & MII_BMSR_10BT_HD)
anar |= MII_ANAR_10BT_HD;
anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
mii_write (dev, phy_addr, MII_ANAR, anar);
/* Enable Auto crossover */
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
pscr |= 3 << 5; /* 11'b */
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
/* Soft reset PHY */
mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(1);
} else {
/* Force speed setting */
/* 1) Disable Auto crossover */
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
pscr &= ~(3 << 5);
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
/* 2) PHY Reset */
bmcr = mii_read (dev, phy_addr, MII_BMCR);
bmcr |= MII_BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
/* 3) Power Down */
bmcr = 0x1940; /* must be 0x1940 */
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay (100); /* wait a certain time */
/* 4) Advertise nothing */
mii_write (dev, phy_addr, MII_ANAR, 0);
/* 5) Set media and Power Up */
bmcr = MII_BMCR_POWER_DOWN;
if (np->speed == 100) {
bmcr |= MII_BMCR_SPEED_100;
printk (KERN_INFO "Manual 100 Mbps, ");
} else if (np->speed == 10) {
printk (KERN_INFO "Manual 10 Mbps, ");
}
if (np->full_duplex) {
bmcr |= MII_BMCR_DUPLEX_MODE;
printk ("Full duplex\n");
} else {
printk ("Half duplex\n");
}
#if 0
/* Set 1000BaseT Master/Slave setting */
mscr = mii_read (dev, phy_addr, MII_MSCR);
mscr |= MII_MSCR_CFG_ENABLE;
mscr &= ~MII_MSCR_CFG_VALUE = 0;
#endif
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(10);
}
return 0;
}
static int
mii_get_media_pcs (struct net_device *dev)
{
__u16 negotiate;
__u16 bmsr;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
bmsr = mii_read (dev, phy_addr, PCS_BMSR);
if (np->an_enable) {
if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
/* Auto-Negotiation not completed */
return -1;
}
negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
mii_read (dev, phy_addr, PCS_ANLPAR);
np->speed = 1000;
if (negotiate & PCS_ANAR_FULL_DUPLEX) {
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
np->full_duplex = 1;
} else {
printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
np->full_duplex = 0;
}
if (negotiate & PCS_ANAR_PAUSE) {
np->tx_flow &= 1;
np->rx_flow &= 1;
} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
np->tx_flow = 0;
np->rx_flow &= 1;
}
/* else tx_flow, rx_flow = user select */
} else {
__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
printk (KERN_INFO "Operating at 1000 Mbps, ");
if (bmcr & MII_BMCR_DUPLEX_MODE) {
printk ("Full duplex\n");
} else {
printk ("Half duplex\n");
}
}
if (np->tx_flow)
printk(KERN_INFO "Enable Tx Flow Control\n");
else
printk(KERN_INFO "Disable Tx Flow Control\n");
if (np->rx_flow)
printk(KERN_INFO "Enable Rx Flow Control\n");
else
printk(KERN_INFO "Disable Rx Flow Control\n");
return 0;
}
static int
mii_set_media_pcs (struct net_device *dev)
{
__u16 bmcr;
__u16 esr;
__u16 anar;
int phy_addr;
struct netdev_private *np;
np = netdev_priv(dev);
phy_addr = np->phy_addr;
/* Auto-Negotiation? */
if (np->an_enable) {
/* Advertise capabilities */
esr = mii_read (dev, phy_addr, PCS_ESR);
anar = mii_read (dev, phy_addr, MII_ANAR) &
~PCS_ANAR_HALF_DUPLEX &
~PCS_ANAR_FULL_DUPLEX;
if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
anar |= PCS_ANAR_HALF_DUPLEX;
if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
anar |= PCS_ANAR_FULL_DUPLEX;
anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
mii_write (dev, phy_addr, MII_ANAR, anar);
/* Soft reset PHY */
mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
MII_BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(1);
} else {
/* Force speed setting */
/* PHY Reset */
bmcr = MII_BMCR_RESET;
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(10);
if (np->full_duplex) {
bmcr = MII_BMCR_DUPLEX_MODE;
printk (KERN_INFO "Manual full duplex\n");
} else {
bmcr = 0;
printk (KERN_INFO "Manual half duplex\n");
}
mii_write (dev, phy_addr, MII_BMCR, bmcr);
mdelay(10);
/* Advertise nothing */
mii_write (dev, phy_addr, MII_ANAR, 0);
}
return 0;
}
static int
rio_close (struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = netdev_priv(dev);
struct sk_buff *skb;
int i;
netif_stop_queue (dev);
/* Disable interrupts */
writew (0, ioaddr + IntEnable);
/* Stop Tx and Rx logics */
writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
free_irq (dev->irq, dev);
del_timer_sync (&np->timer);
/* Free all the skbuffs in the queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].status = 0;
np->rx_ring[i].fraginfo = 0;
skb = np->rx_skbuff[i];
if (skb) {
pci_unmap_single(np->pdev,
desc_to_dma(&np->rx_ring[i]),
skb->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb (skb);
np->rx_skbuff[i] = NULL;
}
}
for (i = 0; i < TX_RING_SIZE; i++) {
skb = np->tx_skbuff[i];
if (skb) {
pci_unmap_single(np->pdev,
desc_to_dma(&np->tx_ring[i]),
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb (skb);
np->tx_skbuff[i] = NULL;
}
}
return 0;
}
static void __devexit
rio_remove1 (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata (pdev);
if (dev) {
struct netdev_private *np = netdev_priv(dev);
unregister_netdev (dev);
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
np->rx_ring_dma);
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
np->tx_ring_dma);
#ifdef MEM_MAPPING
iounmap ((char *) (dev->base_addr));
#endif
free_netdev (dev);
pci_release_regions (pdev);
pci_disable_device (pdev);
}
pci_set_drvdata (pdev, NULL);
}
static struct pci_driver rio_driver = {
.name = "dl2k",
.id_table = rio_pci_tbl,
.probe = rio_probe1,
.remove = __devexit_p(rio_remove1),
};
static int __init
rio_init (void)
{
return pci_register_driver(&rio_driver);
}
static void __exit
rio_exit (void)
{
pci_unregister_driver (&rio_driver);
}
module_init (rio_init);
module_exit (rio_exit);
/*
Compile command:
gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
Read Documentation/networking/dl2k.txt for details.
*/