2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 06:04:14 +08:00
linux-next/include/linux/tracepoint-defs.h

91 lines
2.3 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef TRACEPOINT_DEFS_H
#define TRACEPOINT_DEFS_H 1
/*
* File can be included directly by headers who only want to access
* tracepoint->key to guard out of line trace calls, or the definition of
* trace_print_flags{_u64}. Otherwise linux/tracepoint.h should be used.
*/
#include <linux/atomic.h>
#include <linux/static_key.h>
struct static_call_key;
struct trace_print_flags {
unsigned long mask;
const char *name;
};
struct trace_print_flags_u64 {
unsigned long long mask;
const char *name;
};
struct tracepoint_func {
void *func;
void *data;
int prio;
};
struct tracepoint {
const char *name; /* Tracepoint name */
struct static_key key;
struct static_call_key *static_call_key;
void *static_call_tramp;
void *iterator;
int (*regfunc)(void);
void (*unregfunc)(void);
struct tracepoint_func __rcu *funcs;
};
tracepoint: Fix tracepoint array element size mismatch commit 46e0c9be206f ("kernel: tracepoints: add support for relative references") changes the layout of the __tracepoint_ptrs section on architectures supporting relative references. However, it does so without turning struct tracepoint * const into const int elsewhere in the tracepoint code, which has the following side-effect: Setting mod->num_tracepoints is done in by module.c: mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", sizeof(*mod->tracepoints_ptrs), &mod->num_tracepoints); Basically, since sizeof(*mod->tracepoints_ptrs) is a pointer size (rather than sizeof(int)), num_tracepoints is erroneously set to half the size it should be on 64-bit arch. So a module with an odd number of tracepoints misses the last tracepoint due to effect of integer division. So in the module going notifier: for_each_tracepoint_range(mod->tracepoints_ptrs, mod->tracepoints_ptrs + mod->num_tracepoints, tp_module_going_check_quiescent, NULL); the expression (mod->tracepoints_ptrs + mod->num_tracepoints) actually evaluates to something within the bounds of the array, but miss the last tracepoint if the number of tracepoints is odd on 64-bit arch. Fix this by introducing a new typedef: tracepoint_ptr_t, which is either "const int" on architectures that have PREL32 relocations, or "struct tracepoint * const" on architectures that does not have this feature. Also provide a new tracepoint_ptr_defer() static inline to encapsulate deferencing this type rather than duplicate code and ugly idefs within the for_each_tracepoint_range() implementation. This issue appears in 4.19-rc kernels, and should ideally be fixed before the end of the rc cycle. Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Jessica Yu <jeyu@kernel.org> Link: http://lkml.kernel.org/r/20181013191050.22389-1-mathieu.desnoyers@efficios.com Link: http://lkml.kernel.org/r/20180704083651.24360-7-ard.biesheuvel@linaro.org Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morris <james.morris@microsoft.com> Cc: James Morris <jmorris@namei.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Nicolas Pitre <nico@linaro.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Russell King <linux@armlinux.org.uk> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-10-14 03:10:50 +08:00
#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
typedef const int tracepoint_ptr_t;
#else
typedef struct tracepoint * const tracepoint_ptr_t;
#endif
bpf: introduce BPF_RAW_TRACEPOINT Introduce BPF_PROG_TYPE_RAW_TRACEPOINT bpf program type to access kernel internal arguments of the tracepoints in their raw form. >From bpf program point of view the access to the arguments look like: struct bpf_raw_tracepoint_args { __u64 args[0]; }; int bpf_prog(struct bpf_raw_tracepoint_args *ctx) { // program can read args[N] where N depends on tracepoint // and statically verified at program load+attach time } kprobe+bpf infrastructure allows programs access function arguments. This feature allows programs access raw tracepoint arguments. Similar to proposed 'dynamic ftrace events' there are no abi guarantees to what the tracepoints arguments are and what their meaning is. The program needs to type cast args properly and use bpf_probe_read() helper to access struct fields when argument is a pointer. For every tracepoint __bpf_trace_##call function is prepared. In assembler it looks like: (gdb) disassemble __bpf_trace_xdp_exception Dump of assembler code for function __bpf_trace_xdp_exception: 0xffffffff81132080 <+0>: mov %ecx,%ecx 0xffffffff81132082 <+2>: jmpq 0xffffffff811231f0 <bpf_trace_run3> where TRACE_EVENT(xdp_exception, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, u32 act), The above assembler snippet is casting 32-bit 'act' field into 'u64' to pass into bpf_trace_run3(), while 'dev' and 'xdp' args are passed as-is. All of ~500 of __bpf_trace_*() functions are only 5-10 byte long and in total this approach adds 7k bytes to .text. This approach gives the lowest possible overhead while calling trace_xdp_exception() from kernel C code and transitioning into bpf land. Since tracepoint+bpf are used at speeds of 1M+ events per second this is valuable optimization. The new BPF_RAW_TRACEPOINT_OPEN sys_bpf command is introduced that returns anon_inode FD of 'bpf-raw-tracepoint' object. The user space looks like: // load bpf prog with BPF_PROG_TYPE_RAW_TRACEPOINT type prog_fd = bpf_prog_load(...); // receive anon_inode fd for given bpf_raw_tracepoint with prog attached raw_tp_fd = bpf_raw_tracepoint_open("xdp_exception", prog_fd); Ctrl-C of tracing daemon or cmdline tool that uses this feature will automatically detach bpf program, unload it and unregister tracepoint probe. On the kernel side the __bpf_raw_tp_map section of pointers to tracepoint definition and to __bpf_trace_*() probe function is used to find a tracepoint with "xdp_exception" name and corresponding __bpf_trace_xdp_exception() probe function which are passed to tracepoint_probe_register() to connect probe with tracepoint. Addition of bpf_raw_tracepoint doesn't interfere with ftrace and perf tracepoint mechanisms. perf_event_open() can be used in parallel on the same tracepoint. Multiple bpf_raw_tracepoint_open("xdp_exception", prog_fd) are permitted. Each with its own bpf program. The kernel will execute all tracepoint probes and all attached bpf programs. In the future bpf_raw_tracepoints can be extended with query/introspection logic. __bpf_raw_tp_map section logic was contributed by Steven Rostedt Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-29 03:05:37 +08:00
struct bpf_raw_event_map {
struct tracepoint *tp;
void *bpf_func;
u32 num_args;
u32 writable_size;
bpf: introduce BPF_RAW_TRACEPOINT Introduce BPF_PROG_TYPE_RAW_TRACEPOINT bpf program type to access kernel internal arguments of the tracepoints in their raw form. >From bpf program point of view the access to the arguments look like: struct bpf_raw_tracepoint_args { __u64 args[0]; }; int bpf_prog(struct bpf_raw_tracepoint_args *ctx) { // program can read args[N] where N depends on tracepoint // and statically verified at program load+attach time } kprobe+bpf infrastructure allows programs access function arguments. This feature allows programs access raw tracepoint arguments. Similar to proposed 'dynamic ftrace events' there are no abi guarantees to what the tracepoints arguments are and what their meaning is. The program needs to type cast args properly and use bpf_probe_read() helper to access struct fields when argument is a pointer. For every tracepoint __bpf_trace_##call function is prepared. In assembler it looks like: (gdb) disassemble __bpf_trace_xdp_exception Dump of assembler code for function __bpf_trace_xdp_exception: 0xffffffff81132080 <+0>: mov %ecx,%ecx 0xffffffff81132082 <+2>: jmpq 0xffffffff811231f0 <bpf_trace_run3> where TRACE_EVENT(xdp_exception, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, u32 act), The above assembler snippet is casting 32-bit 'act' field into 'u64' to pass into bpf_trace_run3(), while 'dev' and 'xdp' args are passed as-is. All of ~500 of __bpf_trace_*() functions are only 5-10 byte long and in total this approach adds 7k bytes to .text. This approach gives the lowest possible overhead while calling trace_xdp_exception() from kernel C code and transitioning into bpf land. Since tracepoint+bpf are used at speeds of 1M+ events per second this is valuable optimization. The new BPF_RAW_TRACEPOINT_OPEN sys_bpf command is introduced that returns anon_inode FD of 'bpf-raw-tracepoint' object. The user space looks like: // load bpf prog with BPF_PROG_TYPE_RAW_TRACEPOINT type prog_fd = bpf_prog_load(...); // receive anon_inode fd for given bpf_raw_tracepoint with prog attached raw_tp_fd = bpf_raw_tracepoint_open("xdp_exception", prog_fd); Ctrl-C of tracing daemon or cmdline tool that uses this feature will automatically detach bpf program, unload it and unregister tracepoint probe. On the kernel side the __bpf_raw_tp_map section of pointers to tracepoint definition and to __bpf_trace_*() probe function is used to find a tracepoint with "xdp_exception" name and corresponding __bpf_trace_xdp_exception() probe function which are passed to tracepoint_probe_register() to connect probe with tracepoint. Addition of bpf_raw_tracepoint doesn't interfere with ftrace and perf tracepoint mechanisms. perf_event_open() can be used in parallel on the same tracepoint. Multiple bpf_raw_tracepoint_open("xdp_exception", prog_fd) are permitted. Each with its own bpf program. The kernel will execute all tracepoint probes and all attached bpf programs. In the future bpf_raw_tracepoints can be extended with query/introspection logic. __bpf_raw_tp_map section logic was contributed by Steven Rostedt Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-29 03:05:37 +08:00
} __aligned(32);
/*
* If a tracepoint needs to be called from a header file, it is not
* recommended to call it directly, as tracepoints in header files
* may cause side-effects and bloat the kernel. Instead, use
* tracepoint_enabled() to test if the tracepoint is enabled, then if
* it is, call a wrapper function defined in a C file that will then
* call the tracepoint.
*
* For "trace_foo_bar()", you would need to create a wrapper function
* in a C file to call trace_foo_bar():
* void do_trace_foo_bar(args) { trace_foo_bar(args); }
* Then in the header file, declare the tracepoint:
* DECLARE_TRACEPOINT(foo_bar);
* And call your wrapper:
* static inline void some_inlined_function() {
* [..]
* if (tracepoint_enabled(foo_bar))
* do_trace_foo_bar(args);
* [..]
* }
*
* Note: tracepoint_enabled(foo_bar) is equivalent to trace_foo_bar_enabled()
* but is safe to have in headers, where trace_foo_bar_enabled() is not.
*/
#define DECLARE_TRACEPOINT(tp) \
extern struct tracepoint __tracepoint_##tp
#ifdef CONFIG_TRACEPOINTS
# define tracepoint_enabled(tp) \
static_key_false(&(__tracepoint_##tp).key)
#else
# define tracepoint_enabled(tracepoint) false
#endif
#endif