2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-03 19:24:02 +08:00
linux-next/arch/x86/kernel/kvm.c

918 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* KVM paravirt_ops implementation
*
* Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright IBM Corporation, 2007
* Authors: Anthony Liguori <aliguori@us.ibm.com>
*/
#include <linux/context_tracking.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kvm_para.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hardirq.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/hash.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/kprobes.h>
#include <linux/nmi.h>
#include <linux/swait.h>
#include <asm/timer.h>
#include <asm/cpu.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
#include <asm/apic.h>
#include <asm/apicdef.h>
#include <asm/hypervisor.h>
#include <asm/tlb.h>
#include <asm/cpuidle_haltpoll.h>
DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
static int kvmapf = 1;
static int __init parse_no_kvmapf(char *arg)
{
kvmapf = 0;
return 0;
}
early_param("no-kvmapf", parse_no_kvmapf);
static int steal_acc = 1;
static int __init parse_no_stealacc(char *arg)
{
steal_acc = 0;
return 0;
}
early_param("no-steal-acc", parse_no_stealacc);
static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
static int has_steal_clock = 0;
/*
* No need for any "IO delay" on KVM
*/
static void kvm_io_delay(void)
{
}
#define KVM_TASK_SLEEP_HASHBITS 8
#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
struct kvm_task_sleep_node {
struct hlist_node link;
struct swait_queue_head wq;
u32 token;
int cpu;
};
static struct kvm_task_sleep_head {
raw_spinlock_t lock;
struct hlist_head list;
} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
u32 token)
{
struct hlist_node *p;
hlist_for_each(p, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->token == token)
return n;
}
return NULL;
}
static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
struct kvm_task_sleep_node *e;
raw_spin_lock(&b->lock);
e = _find_apf_task(b, token);
if (e) {
/* dummy entry exist -> wake up was delivered ahead of PF */
hlist_del(&e->link);
raw_spin_unlock(&b->lock);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
kfree(e);
return false;
}
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
n->token = token;
n->cpu = smp_processor_id();
init_swait_queue_head(&n->wq);
hlist_add_head(&n->link, &b->list);
raw_spin_unlock(&b->lock);
return true;
}
/*
* kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
* @token: Token to identify the sleep node entry
*
* Invoked from the async pagefault handling code or from the VM exit page
* fault handler. In both cases RCU is watching.
*/
void kvm_async_pf_task_wait_schedule(u32 token)
{
struct kvm_task_sleep_node n;
DECLARE_SWAITQUEUE(wait);
lockdep_assert_irqs_disabled();
if (!kvm_async_pf_queue_task(token, &n))
return;
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
for (;;) {
prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
if (hlist_unhashed(&n.link))
break;
local_irq_enable();
schedule();
local_irq_disable();
}
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
finish_swait(&n.wq, &wait);
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
static void apf_task_wake_one(struct kvm_task_sleep_node *n)
{
hlist_del_init(&n->link);
if (swq_has_sleeper(&n->wq))
swake_up_one(&n->wq);
}
static void apf_task_wake_all(void)
{
int i;
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
struct kvm_task_sleep_node *n;
struct hlist_node *p, *next;
raw_spin_lock(&b->lock);
hlist_for_each_safe(p, next, &b->list) {
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
n = hlist_entry(p, typeof(*n), link);
if (n->cpu == smp_processor_id())
apf_task_wake_one(n);
}
raw_spin_unlock(&b->lock);
}
}
void kvm_async_pf_task_wake(u32 token)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node *n;
if (token == ~0) {
apf_task_wake_all();
return;
}
again:
raw_spin_lock(&b->lock);
n = _find_apf_task(b, token);
if (!n) {
/*
* async PF was not yet handled.
* Add dummy entry for the token.
*/
n = kzalloc(sizeof(*n), GFP_ATOMIC);
if (!n) {
/*
* Allocation failed! Busy wait while other cpu
* handles async PF.
*/
raw_spin_unlock(&b->lock);
cpu_relax();
goto again;
}
n->token = token;
n->cpu = smp_processor_id();
init_swait_queue_head(&n->wq);
hlist_add_head(&n->link, &b->list);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
} else {
apf_task_wake_one(n);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
}
raw_spin_unlock(&b->lock);
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
noinstr u32 kvm_read_and_reset_apf_flags(void)
{
u32 flags = 0;
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
if (__this_cpu_read(apf_reason.enabled)) {
flags = __this_cpu_read(apf_reason.flags);
__this_cpu_write(apf_reason.flags, 0);
}
return flags;
}
EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
{
u32 reason = kvm_read_and_reset_apf_flags();
bool rcu_exit;
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
switch (reason) {
case KVM_PV_REASON_PAGE_NOT_PRESENT:
case KVM_PV_REASON_PAGE_READY:
break;
default:
return false;
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
}
rcu_exit = idtentry_enter_cond_rcu(regs);
instrumentation_begin();
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
/*
* If the host managed to inject an async #PF into an interrupt
* disabled region, then die hard as this is not going to end well
* and the host side is seriously broken.
*/
if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
panic("Host injected async #PF in interrupt disabled region\n");
if (reason == KVM_PV_REASON_PAGE_NOT_PRESENT) {
if (unlikely(!(user_mode(regs))))
panic("Host injected async #PF in kernel mode\n");
/* Page is swapped out by the host. */
kvm_async_pf_task_wait_schedule(token);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
} else {
kvm_async_pf_task_wake(token);
}
instrumentation_end();
idtentry_exit_cond_rcu(regs, rcu_exit);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
return true;
}
static void __init paravirt_ops_setup(void)
{
pv_info.name = "KVM";
if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
pv_ops.cpu.io_delay = kvm_io_delay;
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
}
static void kvm_register_steal_time(void)
{
int cpu = smp_processor_id();
struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
if (!has_steal_clock)
return;
x86, kvm: Fix kvm's use of __pa() on percpu areas In short, it is illegal to call __pa() on an address holding a percpu variable. This replaces those __pa() calls with slow_virt_to_phys(). All of the cases in this patch are in boot time (or CPU hotplug time at worst) code, so the slow pagetable walking in slow_virt_to_phys() is not expected to have a performance impact. The times when this actually matters are pretty obscure (certain 32-bit NUMA systems), but it _does_ happen. It is important to keep KVM guests working on these systems because the real hardware is getting harder and harder to find. This bug manifested first by me seeing a plain hang at boot after this message: CPU 0 irqstacks, hard=f3018000 soft=f301a000 or, sometimes, it would actually make it out to the console: [ 0.000000] BUG: unable to handle kernel paging request at ffffffff I eventually traced it down to the KVM async pagefault code. This can be worked around by disabling that code either at compile-time, or on the kernel command-line. The kvm async pagefault code was injecting page faults in to the guest which the guest misinterpreted because its "reason" was not being properly sent from the host. The guest passes a physical address of an per-cpu async page fault structure via an MSR to the host. Since __pa() is broken on percpu data, the physical address it sent was bascially bogus and the host went scribbling on random data. The guest never saw the real reason for the page fault (it was injected by the host), assumed that the kernel had taken a _real_ page fault, and panic()'d. The behavior varied, though, depending on what got corrupted by the bad write. Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20130122212435.4905663F@kernel.stglabs.ibm.com Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-23 05:24:35 +08:00
wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
pr_info("kvm-stealtime: cpu %d, msr %llx\n",
cpu, (unsigned long long) slow_virt_to_phys(st));
}
static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
x86/apic: Prevent tracing on apic_msr_write_eoi() The following RCU lockdep warning led to adding irq_enter()/irq_exit() into smp_reschedule_interrupt(): RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0 RCU used illegally from extended quiescent state! no locks held by swapper/1/0. do_trace_write_msr native_write_msr native_apic_msr_eoi_write smp_reschedule_interrupt reschedule_interrupt As Peterz pointed out: | So now we're making a very frequent interrupt slower because of debug | code. | | The thing is, many many smp_reschedule_interrupt() invocations don't | actually execute anything much at all and are only sent to tickle the | return to user path (which does the actual preemption). | | Having to do the whole irq_enter/irq_exit dance just for this unlikely | debug case totally blows. Use the wrmsr_notrace() variant in native_apic_msr_write_eoi, annotate the kvm variant with notrace and add a native_apic_eoi callback to the apic structure so KVM guests are covered as well. This allows to revert the irq_enter/irq_exit dance in smp_reschedule_interrupt(). Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: kvm@vger.kernel.org Cc: Mike Galbraith <efault@gmx.de> Cc: Borislav Petkov <bp@alien8.de> Link: http://lkml.kernel.org/r/1478488420-5982-3-git-send-email-wanpeng.li@hotmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-07 11:13:40 +08:00
static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
{
/**
* This relies on __test_and_clear_bit to modify the memory
* in a way that is atomic with respect to the local CPU.
* The hypervisor only accesses this memory from the local CPU so
* there's no need for lock or memory barriers.
* An optimization barrier is implied in apic write.
*/
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
return;
x86/apic: Prevent tracing on apic_msr_write_eoi() The following RCU lockdep warning led to adding irq_enter()/irq_exit() into smp_reschedule_interrupt(): RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0 RCU used illegally from extended quiescent state! no locks held by swapper/1/0. do_trace_write_msr native_write_msr native_apic_msr_eoi_write smp_reschedule_interrupt reschedule_interrupt As Peterz pointed out: | So now we're making a very frequent interrupt slower because of debug | code. | | The thing is, many many smp_reschedule_interrupt() invocations don't | actually execute anything much at all and are only sent to tickle the | return to user path (which does the actual preemption). | | Having to do the whole irq_enter/irq_exit dance just for this unlikely | debug case totally blows. Use the wrmsr_notrace() variant in native_apic_msr_write_eoi, annotate the kvm variant with notrace and add a native_apic_eoi callback to the apic structure so KVM guests are covered as well. This allows to revert the irq_enter/irq_exit dance in smp_reschedule_interrupt(). Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: kvm@vger.kernel.org Cc: Mike Galbraith <efault@gmx.de> Cc: Borislav Petkov <bp@alien8.de> Link: http://lkml.kernel.org/r/1478488420-5982-3-git-send-email-wanpeng.li@hotmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-07 11:13:40 +08:00
apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
}
static void kvm_guest_cpu_init(void)
{
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
u64 pa;
WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
pa |= KVM_ASYNC_PF_ENABLED;
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
__this_cpu_write(apf_reason.enabled, 1);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
pr_info("KVM setup async PF for cpu %d\n", smp_processor_id());
}
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
unsigned long pa;
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
/* Size alignment is implied but just to make it explicit. */
BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
__this_cpu_write(kvm_apic_eoi, 0);
pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
x86, kvm: Fix kvm's use of __pa() on percpu areas In short, it is illegal to call __pa() on an address holding a percpu variable. This replaces those __pa() calls with slow_virt_to_phys(). All of the cases in this patch are in boot time (or CPU hotplug time at worst) code, so the slow pagetable walking in slow_virt_to_phys() is not expected to have a performance impact. The times when this actually matters are pretty obscure (certain 32-bit NUMA systems), but it _does_ happen. It is important to keep KVM guests working on these systems because the real hardware is getting harder and harder to find. This bug manifested first by me seeing a plain hang at boot after this message: CPU 0 irqstacks, hard=f3018000 soft=f301a000 or, sometimes, it would actually make it out to the console: [ 0.000000] BUG: unable to handle kernel paging request at ffffffff I eventually traced it down to the KVM async pagefault code. This can be worked around by disabling that code either at compile-time, or on the kernel command-line. The kvm async pagefault code was injecting page faults in to the guest which the guest misinterpreted because its "reason" was not being properly sent from the host. The guest passes a physical address of an per-cpu async page fault structure via an MSR to the host. Since __pa() is broken on percpu data, the physical address it sent was bascially bogus and the host went scribbling on random data. The guest never saw the real reason for the page fault (it was injected by the host), assumed that the kernel had taken a _real_ page fault, and panic()'d. The behavior varied, though, depending on what got corrupted by the bad write. Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20130122212435.4905663F@kernel.stglabs.ibm.com Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-23 05:24:35 +08:00
| KVM_MSR_ENABLED;
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
wrmsrl(MSR_KVM_PV_EOI_EN, pa);
}
if (has_steal_clock)
kvm_register_steal_time();
}
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
static void kvm_pv_disable_apf(void)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
if (!__this_cpu_read(apf_reason.enabled))
return;
wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
__this_cpu_write(apf_reason.enabled, 0);
x86/kvm: Sanitize kvm_async_pf_task_wait() While working on the entry consolidation I stumbled over the KVM async page fault handler and kvm_async_pf_task_wait() in particular. It took me a while to realize that the randomly sprinkled around rcu_irq_enter()/exit() invocations are just cargo cult programming. Several patches "fixed" RCU splats by curing the symptoms without noticing that the code is flawed from a design perspective. The main problem is that this async injection is not based on a proper handshake mechanism and only respects the minimal requirement, i.e. the guest is not in a state where it has interrupts disabled. Aside of that the actual code is a convoluted one fits it all swiss army knife. It is invoked from different places with different RCU constraints: 1) Host side: vcpu_enter_guest() kvm_x86_ops->handle_exit() kvm_handle_page_fault() kvm_async_pf_task_wait() The invocation happens from fully preemptible context. 2) Guest side: The async page fault interrupted: a) user space b) preemptible kernel code which is not in a RCU read side critical section c) non-preemtible kernel code or a RCU read side critical section or kernel code with CONFIG_PREEMPTION=n which allows not to differentiate between #2b and #2c. RCU is watching for: #1 The vCPU exited and current is definitely not the idle task #2a The #PF entry code on the guest went through enter_from_user_mode() which reactivates RCU #2b There is no preemptible, interrupts enabled code in the kernel which can run with RCU looking away. (The idle task is always non preemptible). I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU voodoo at all. In #2c RCU is eventually not watching, but as that state cannot schedule anyway there is no point to worry about it so it has to invoke rcu_irq_enter() before running that code. This can be optimized, but this will be done as an extra step in course of the entry code consolidation work. So the proper solution for this is to: - Split kvm_async_pf_task_wait() into schedule and halt based waiting interfaces which share the enqueueing code. - Add comments (condensed form of this changelog) to spare others the time waste and pain of reverse engineering all of this with the help of uncomprehensible changelogs and code history. - Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(), user mode and schedulable kernel side async page faults (#1, #2a, #2b) - Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel case (#2c). For this case also remove the rcu_irq_exit()/enter() pair around the halt as it is just a pointless exercise: - vCPUs can VMEXIT at any random point and can be scheduled out for an arbitrary amount of time by the host and this is not any different except that it voluntary triggers the exit via halt. - The interrupted context could have RCU watching already. So the rcu_irq_exit() before the halt is not gaining anything aside of confusing the reader. Claiming that this might prevent RCU stalls is just an illusion. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
2020-03-07 07:42:06 +08:00
pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id());
}
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
static void kvm_pv_guest_cpu_reboot(void *unused)
{
/*
* We disable PV EOI before we load a new kernel by kexec,
* since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
* New kernel can re-enable when it boots.
*/
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
kvm_disable_steal_time();
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
}
static int kvm_pv_reboot_notify(struct notifier_block *nb,
unsigned long code, void *unused)
{
if (code == SYS_RESTART)
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
return NOTIFY_DONE;
}
static struct notifier_block kvm_pv_reboot_nb = {
.notifier_call = kvm_pv_reboot_notify,
};
static u64 kvm_steal_clock(int cpu)
{
u64 steal;
struct kvm_steal_time *src;
int version;
src = &per_cpu(steal_time, cpu);
do {
version = src->version;
virt_rmb();
steal = src->steal;
virt_rmb();
} while ((version & 1) || (version != src->version));
return steal;
}
void kvm_disable_steal_time(void)
{
if (!has_steal_clock)
return;
wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
}
static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
{
early_set_memory_decrypted((unsigned long) ptr, size);
}
/*
* Iterate through all possible CPUs and map the memory region pointed
* by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
*
* Note: we iterate through all possible CPUs to ensure that CPUs
* hotplugged will have their per-cpu variable already mapped as
* decrypted.
*/
static void __init sev_map_percpu_data(void)
{
int cpu;
if (!sev_active())
return;
for_each_possible_cpu(cpu) {
__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
}
}
static bool pv_tlb_flush_supported(void)
{
return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
}
static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
#ifdef CONFIG_SMP
static bool pv_ipi_supported(void)
{
return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
}
static bool pv_sched_yield_supported(void)
{
return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
}
#define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
static void __send_ipi_mask(const struct cpumask *mask, int vector)
{
unsigned long flags;
int cpu, apic_id, icr;
int min = 0, max = 0;
#ifdef CONFIG_X86_64
__uint128_t ipi_bitmap = 0;
#else
u64 ipi_bitmap = 0;
#endif
long ret;
if (cpumask_empty(mask))
return;
local_irq_save(flags);
switch (vector) {
default:
icr = APIC_DM_FIXED | vector;
break;
case NMI_VECTOR:
icr = APIC_DM_NMI;
break;
}
for_each_cpu(cpu, mask) {
apic_id = per_cpu(x86_cpu_to_apicid, cpu);
if (!ipi_bitmap) {
min = max = apic_id;
} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
ipi_bitmap <<= min - apic_id;
min = apic_id;
} else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
max = apic_id < max ? max : apic_id;
} else {
ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
WARN_ONCE(ret < 0, "KVM: failed to send PV IPI: %ld", ret);
min = max = apic_id;
ipi_bitmap = 0;
}
__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
}
if (ipi_bitmap) {
ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
WARN_ONCE(ret < 0, "KVM: failed to send PV IPI: %ld", ret);
}
local_irq_restore(flags);
}
static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
{
__send_ipi_mask(mask, vector);
}
static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
{
unsigned int this_cpu = smp_processor_id();
struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
const struct cpumask *local_mask;
cpumask_copy(new_mask, mask);
cpumask_clear_cpu(this_cpu, new_mask);
local_mask = new_mask;
__send_ipi_mask(local_mask, vector);
}
/*
* Set the IPI entry points
*/
static void kvm_setup_pv_ipi(void)
{
apic->send_IPI_mask = kvm_send_ipi_mask;
apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
pr_info("KVM setup pv IPIs\n");
}
static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
{
int cpu;
native_send_call_func_ipi(mask);
/* Make sure other vCPUs get a chance to run if they need to. */
for_each_cpu(cpu, mask) {
if (vcpu_is_preempted(cpu)) {
kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
break;
}
}
}
static void __init kvm_smp_prepare_cpus(unsigned int max_cpus)
{
native_smp_prepare_cpus(max_cpus);
if (kvm_para_has_hint(KVM_HINTS_REALTIME))
static_branch_disable(&virt_spin_lock_key);
}
static void __init kvm_smp_prepare_boot_cpu(void)
{
/*
* Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
* shares the guest physical address with the hypervisor.
*/
sev_map_percpu_data();
kvm_guest_cpu_init();
native_smp_prepare_boot_cpu();
kvm_spinlock_init();
}
static void kvm_guest_cpu_offline(void)
{
kvm_disable_steal_time();
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
apf_task_wake_all();
}
static int kvm_cpu_online(unsigned int cpu)
{
local_irq_disable();
kvm_guest_cpu_init();
local_irq_enable();
return 0;
}
static int kvm_cpu_down_prepare(unsigned int cpu)
{
local_irq_disable();
kvm_guest_cpu_offline();
local_irq_enable();
return 0;
}
#endif
static void kvm_flush_tlb_others(const struct cpumask *cpumask,
const struct flush_tlb_info *info)
{
u8 state;
int cpu;
struct kvm_steal_time *src;
struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
cpumask_copy(flushmask, cpumask);
/*
* We have to call flush only on online vCPUs. And
* queue flush_on_enter for pre-empted vCPUs
*/
for_each_cpu(cpu, flushmask) {
src = &per_cpu(steal_time, cpu);
state = READ_ONCE(src->preempted);
if ((state & KVM_VCPU_PREEMPTED)) {
if (try_cmpxchg(&src->preempted, &state,
state | KVM_VCPU_FLUSH_TLB))
__cpumask_clear_cpu(cpu, flushmask);
}
}
native_flush_tlb_others(flushmask, info);
}
static void __init kvm_guest_init(void)
{
int i;
paravirt_ops_setup();
register_reboot_notifier(&kvm_pv_reboot_nb);
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
raw_spin_lock_init(&async_pf_sleepers[i].lock);
if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
has_steal_clock = 1;
pv_ops.time.steal_clock = kvm_steal_clock;
}
if (pv_tlb_flush_supported()) {
pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others;
pv_ops.mmu.tlb_remove_table = tlb_remove_table;
pr_info("KVM setup pv remote TLB flush\n");
}
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
apic_set_eoi_write(kvm_guest_apic_eoi_write);
KVM guest: guest side for eoi avoidance The idea is simple: there's a bit, per APIC, in guest memory, that tells the guest that it does not need EOI. Guest tests it using a single est and clear operation - this is necessary so that host can detect interrupt nesting - and if set, it can skip the EOI MSR. I run a simple microbenchmark to show exit reduction (note: for testing, need to apply follow-up patch 'kvm: host side for eoi optimization' + a qemu patch I posted separately, on host): Before: Performance counter stats for 'sleep 1s': 47,357 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 5,001 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 22,124 kvm:kvm_apic [99.98%] 49,849 kvm:kvm_exit [99.98%] 21,115 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 22,937 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.98%] 22,207 kvm:kvm_apic_accept_irq [99.98%] 22,421 kvm:kvm_eoi [99.98%] 0 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 57 kvm:kvm_emulate_insn [99.99%] 0 kvm:vcpu_match_mmio [99.99%] 0 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 23,609 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [99.99%] 226 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002100578 seconds time elapsed After: Performance counter stats for 'sleep 1s': 28,354 kvm:kvm_entry [99.98%] 0 kvm:kvm_hypercall [99.98%] 0 kvm:kvm_hv_hypercall [99.98%] 1,347 kvm:kvm_pio [99.98%] 0 kvm:kvm_cpuid [99.98%] 1,931 kvm:kvm_apic [99.98%] 29,595 kvm:kvm_exit [99.98%] 24,884 kvm:kvm_inj_virq [99.98%] 0 kvm:kvm_inj_exception [99.98%] 0 kvm:kvm_page_fault [99.98%] 1,986 kvm:kvm_msr [99.98%] 0 kvm:kvm_cr [99.98%] 0 kvm:kvm_pic_set_irq [99.98%] 0 kvm:kvm_apic_ipi [99.99%] 25,953 kvm:kvm_apic_accept_irq [99.99%] 26,132 kvm:kvm_eoi [99.99%] 26,593 kvm:kvm_pv_eoi [99.99%] 0 kvm:kvm_nested_vmrun [99.99%] 0 kvm:kvm_nested_intercepts [99.99%] 0 kvm:kvm_nested_vmexit [99.99%] 0 kvm:kvm_nested_vmexit_inject [99.99%] 0 kvm:kvm_nested_intr_vmexit [99.99%] 0 kvm:kvm_invlpga [99.99%] 0 kvm:kvm_skinit [99.99%] 284 kvm:kvm_emulate_insn [99.99%] 68 kvm:vcpu_match_mmio [99.99%] 68 kvm:kvm_userspace_exit [99.99%] 2 kvm:kvm_set_irq [99.99%] 2 kvm:kvm_ioapic_set_irq [99.99%] 28,288 kvm:kvm_msi_set_irq [99.99%] 1 kvm:kvm_ack_irq [99.99%] 131 kvm:kvm_mmio [100.00%] 588 kvm:kvm_fpu [100.00%] 0 kvm:kvm_age_page [100.00%] 0 kvm:kvm_try_async_get_page [100.00%] 0 kvm:kvm_async_pf_doublefault [100.00%] 0 kvm:kvm_async_pf_not_present [100.00%] 0 kvm:kvm_async_pf_ready [100.00%] 0 kvm:kvm_async_pf_completed 1.002039622 seconds time elapsed We see that # of exits is almost halved. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 00:24:34 +08:00
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf)
static_branch_enable(&kvm_async_pf_enabled);
#ifdef CONFIG_SMP
smp_ops.smp_prepare_cpus = kvm_smp_prepare_cpus;
smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
if (pv_sched_yield_supported()) {
smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
pr_info("KVM setup pv sched yield\n");
}
if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
kvm_cpu_online, kvm_cpu_down_prepare) < 0)
pr_err("kvm_guest: Failed to install cpu hotplug callbacks\n");
#else
sev_map_percpu_data();
kvm_guest_cpu_init();
#endif
/*
* Hard lockup detection is enabled by default. Disable it, as guests
* can get false positives too easily, for example if the host is
* overcommitted.
*/
hardlockup_detector_disable();
}
static noinline uint32_t __kvm_cpuid_base(void)
{
if (boot_cpu_data.cpuid_level < 0)
return 0; /* So we don't blow up on old processors */
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
return 0;
}
static inline uint32_t kvm_cpuid_base(void)
{
static int kvm_cpuid_base = -1;
if (kvm_cpuid_base == -1)
kvm_cpuid_base = __kvm_cpuid_base();
return kvm_cpuid_base;
}
bool kvm_para_available(void)
{
return kvm_cpuid_base() != 0;
}
EXPORT_SYMBOL_GPL(kvm_para_available);
unsigned int kvm_arch_para_features(void)
{
return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
}
unsigned int kvm_arch_para_hints(void)
{
return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
}
EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
static uint32_t __init kvm_detect(void)
{
return kvm_cpuid_base();
}
static void __init kvm_apic_init(void)
{
#if defined(CONFIG_SMP)
if (pv_ipi_supported())
kvm_setup_pv_ipi();
#endif
}
static void __init kvm_init_platform(void)
{
Minor code cleanups for PPC. For x86 this brings in PCID emulation and CR3 caching for shadow page tables, nested VMX live migration, nested VMCS shadowing, an optimized IPI hypercall, and some optimizations. ARM will come next week. There is a semantic conflict because tip also added an .init_platform callback to kvm.c. Please keep the initializer from this branch, and add a call to kvmclock_init (added by tip) inside kvm_init_platform (added here). Also, there is a backmerge from 4.18-rc6. This is because of a refactoring that conflicted with a relatively late bugfix and resulted in a particularly hellish conflict. Because the conflict was only due to unfortunate timing of the bugfix, I backmerged and rebased the refactoring rather than force the resolution on you. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+ 2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I= =9Mgw -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull first set of KVM updates from Paolo Bonzini: "PPC: - minor code cleanups x86: - PCID emulation and CR3 caching for shadow page tables - nested VMX live migration - nested VMCS shadowing - optimized IPI hypercall - some optimizations ARM will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits) kvm: x86: Set highest physical address bits in non-present/reserved SPTEs KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c KVM: X86: Implement PV IPIs in linux guest KVM: X86: Add kvm hypervisor init time platform setup callback KVM: X86: Implement "send IPI" hypercall KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs() KVM: x86: Skip pae_root shadow allocation if tdp enabled KVM/MMU: Combine flushing remote tlb in mmu_set_spte() KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup KVM: vmx: move struct host_state usage to struct loaded_vmcs KVM: vmx: compute need to reload FS/GS/LDT on demand KVM: nVMX: remove a misleading comment regarding vmcs02 fields KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state() KVM: vmx: add dedicated utility to access guest's kernel_gs_base KVM: vmx: track host_state.loaded using a loaded_vmcs pointer KVM: vmx: refactor segmentation code in vmx_save_host_state() kvm: nVMX: Fix fault priority for VMX operations kvm: nVMX: Fix fault vector for VMX operation at CPL > 0 ...
2018-08-20 01:38:36 +08:00
kvmclock_init();
x86_platform.apic_post_init = kvm_apic_init;
}
const __initconst struct hypervisor_x86 x86_hyper_kvm = {
.name = "KVM",
.detect = kvm_detect,
.type = X86_HYPER_KVM,
.init.guest_late_init = kvm_guest_init,
.init.x2apic_available = kvm_para_available,
.init.init_platform = kvm_init_platform,
};
static __init int activate_jump_labels(void)
{
if (has_steal_clock) {
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static_key_slow_inc(&paravirt_steal_enabled);
if (steal_acc)
static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_slow_[inc|dec]() So here's a boot tested patch on top of Jason's series that does all the cleanups I talked about and turns jump labels into a more intuitive to use facility. It should also address the various misconceptions and confusions that surround jump labels. Typical usage scenarios: #include <linux/static_key.h> struct static_key key = STATIC_KEY_INIT_TRUE; if (static_key_false(&key)) do unlikely code else do likely code Or: if (static_key_true(&key)) do likely code else do unlikely code The static key is modified via: static_key_slow_inc(&key); ... static_key_slow_dec(&key); The 'slow' prefix makes it abundantly clear that this is an expensive operation. I've updated all in-kernel code to use this everywhere. Note that I (intentionally) have not pushed through the rename blindly through to the lowest levels: the actual jump-label patching arch facility should be named like that, so we want to decouple jump labels from the static-key facility a bit. On non-jump-label enabled architectures static keys default to likely()/unlikely() branches. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jason Baron <jbaron@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: a.p.zijlstra@chello.nl Cc: mathieu.desnoyers@efficios.com Cc: davem@davemloft.net Cc: ddaney.cavm@gmail.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-24 15:31:31 +08:00
static_key_slow_inc(&paravirt_steal_rq_enabled);
}
return 0;
}
arch_initcall(activate_jump_labels);
static __init int kvm_alloc_cpumask(void)
{
int cpu;
bool alloc = false;
if (!kvm_para_available() || nopv)
return 0;
if (pv_tlb_flush_supported())
alloc = true;
#if defined(CONFIG_SMP)
if (pv_ipi_supported())
alloc = true;
#endif
if (alloc)
for_each_possible_cpu(cpu) {
zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
GFP_KERNEL, cpu_to_node(cpu));
}
return 0;
}
arch_initcall(kvm_alloc_cpumask);
#ifdef CONFIG_PARAVIRT_SPINLOCKS
/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
static void kvm_kick_cpu(int cpu)
{
int apicid;
unsigned long flags = 0;
apicid = per_cpu(x86_cpu_to_apicid, cpu);
kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
}
#include <asm/qspinlock.h>
static void kvm_wait(u8 *ptr, u8 val)
{
unsigned long flags;
if (in_nmi())
return;
local_irq_save(flags);
if (READ_ONCE(*ptr) != val)
goto out;
/*
* halt until it's our turn and kicked. Note that we do safe halt
* for irq enabled case to avoid hang when lock info is overwritten
* in irq spinlock slowpath and no spurious interrupt occur to save us.
*/
if (arch_irqs_disabled_flags(flags))
halt();
else
safe_halt();
out:
local_irq_restore(flags);
}
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64 It was found when running fio sequential write test with a XFS ramdisk on a KVM guest running on a 2-socket x86-64 system, the %CPU times as reported by perf were as follows: 69.75% 0.59% fio [k] down_write 69.15% 0.01% fio [k] call_rwsem_down_write_failed 67.12% 1.12% fio [k] rwsem_down_write_failed 63.48% 52.77% fio [k] osq_lock 9.46% 7.88% fio [k] __raw_callee_save___kvm_vcpu_is_preempt 3.93% 3.93% fio [k] __kvm_vcpu_is_preempted Making vcpu_is_preempted() a callee-save function has a relatively high cost on x86-64 primarily due to at least one more cacheline of data access from the saving and restoring of registers (8 of them) to and from stack as well as one more level of function call. To reduce this performance overhead, an optimized assembly version of the the __raw_callee_save___kvm_vcpu_is_preempt() function is provided for x86-64. With this patch applied on a KVM guest on a 2-socket 16-core 32-thread system with 16 parallel jobs (8 on each socket), the aggregrate bandwidth of the fio test on an XFS ramdisk were as follows: I/O Type w/o patch with patch -------- --------- ---------- random read 8141.2 MB/s 8497.1 MB/s seq read 8229.4 MB/s 8304.2 MB/s random write 1675.5 MB/s 1701.5 MB/s seq write 1681.3 MB/s 1699.9 MB/s There are some increases in the aggregated bandwidth because of the patch. The perf data now became: 70.78% 0.58% fio [k] down_write 70.20% 0.01% fio [k] call_rwsem_down_write_failed 69.70% 1.17% fio [k] rwsem_down_write_failed 59.91% 55.42% fio [k] osq_lock 10.14% 10.14% fio [k] __kvm_vcpu_is_preempted The assembly code was verified by using a test kernel module to compare the output of C __kvm_vcpu_is_preempted() and that of assembly __raw_callee_save___kvm_vcpu_is_preempt() to verify that they matched. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-21 02:36:04 +08:00
#ifdef CONFIG_X86_32
__visible bool __kvm_vcpu_is_preempted(long cpu)
{
struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
return !!(src->preempted & KVM_VCPU_PREEMPTED);
}
PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64 It was found when running fio sequential write test with a XFS ramdisk on a KVM guest running on a 2-socket x86-64 system, the %CPU times as reported by perf were as follows: 69.75% 0.59% fio [k] down_write 69.15% 0.01% fio [k] call_rwsem_down_write_failed 67.12% 1.12% fio [k] rwsem_down_write_failed 63.48% 52.77% fio [k] osq_lock 9.46% 7.88% fio [k] __raw_callee_save___kvm_vcpu_is_preempt 3.93% 3.93% fio [k] __kvm_vcpu_is_preempted Making vcpu_is_preempted() a callee-save function has a relatively high cost on x86-64 primarily due to at least one more cacheline of data access from the saving and restoring of registers (8 of them) to and from stack as well as one more level of function call. To reduce this performance overhead, an optimized assembly version of the the __raw_callee_save___kvm_vcpu_is_preempt() function is provided for x86-64. With this patch applied on a KVM guest on a 2-socket 16-core 32-thread system with 16 parallel jobs (8 on each socket), the aggregrate bandwidth of the fio test on an XFS ramdisk were as follows: I/O Type w/o patch with patch -------- --------- ---------- random read 8141.2 MB/s 8497.1 MB/s seq read 8229.4 MB/s 8304.2 MB/s random write 1675.5 MB/s 1701.5 MB/s seq write 1681.3 MB/s 1699.9 MB/s There are some increases in the aggregated bandwidth because of the patch. The perf data now became: 70.78% 0.58% fio [k] down_write 70.20% 0.01% fio [k] call_rwsem_down_write_failed 69.70% 1.17% fio [k] rwsem_down_write_failed 59.91% 55.42% fio [k] osq_lock 10.14% 10.14% fio [k] __kvm_vcpu_is_preempted The assembly code was verified by using a test kernel module to compare the output of C __kvm_vcpu_is_preempted() and that of assembly __raw_callee_save___kvm_vcpu_is_preempt() to verify that they matched. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-21 02:36:04 +08:00
#else
#include <asm/asm-offsets.h>
extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
/*
* Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
* restoring to/from the stack.
*/
asm(
".pushsection .text;"
".global __raw_callee_save___kvm_vcpu_is_preempted;"
".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
"__raw_callee_save___kvm_vcpu_is_preempted:"
"movq __per_cpu_offset(,%rdi,8), %rax;"
"cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
"setne %al;"
"ret;"
".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64 It was found when running fio sequential write test with a XFS ramdisk on a KVM guest running on a 2-socket x86-64 system, the %CPU times as reported by perf were as follows: 69.75% 0.59% fio [k] down_write 69.15% 0.01% fio [k] call_rwsem_down_write_failed 67.12% 1.12% fio [k] rwsem_down_write_failed 63.48% 52.77% fio [k] osq_lock 9.46% 7.88% fio [k] __raw_callee_save___kvm_vcpu_is_preempt 3.93% 3.93% fio [k] __kvm_vcpu_is_preempted Making vcpu_is_preempted() a callee-save function has a relatively high cost on x86-64 primarily due to at least one more cacheline of data access from the saving and restoring of registers (8 of them) to and from stack as well as one more level of function call. To reduce this performance overhead, an optimized assembly version of the the __raw_callee_save___kvm_vcpu_is_preempt() function is provided for x86-64. With this patch applied on a KVM guest on a 2-socket 16-core 32-thread system with 16 parallel jobs (8 on each socket), the aggregrate bandwidth of the fio test on an XFS ramdisk were as follows: I/O Type w/o patch with patch -------- --------- ---------- random read 8141.2 MB/s 8497.1 MB/s seq read 8229.4 MB/s 8304.2 MB/s random write 1675.5 MB/s 1701.5 MB/s seq write 1681.3 MB/s 1699.9 MB/s There are some increases in the aggregated bandwidth because of the patch. The perf data now became: 70.78% 0.58% fio [k] down_write 70.20% 0.01% fio [k] call_rwsem_down_write_failed 69.70% 1.17% fio [k] rwsem_down_write_failed 59.91% 55.42% fio [k] osq_lock 10.14% 10.14% fio [k] __kvm_vcpu_is_preempted The assembly code was verified by using a test kernel module to compare the output of C __kvm_vcpu_is_preempted() and that of assembly __raw_callee_save___kvm_vcpu_is_preempt() to verify that they matched. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-02-21 02:36:04 +08:00
".popsection");
#endif
/*
* Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
*/
void __init kvm_spinlock_init(void)
{
/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
return;
if (kvm_para_has_hint(KVM_HINTS_REALTIME))
return;
/* Don't use the pvqspinlock code if there is only 1 vCPU. */
if (num_possible_cpus() == 1)
return;
__pv_init_lock_hash();
pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
pv_ops.lock.queued_spin_unlock =
PV_CALLEE_SAVE(__pv_queued_spin_unlock);
pv_ops.lock.wait = kvm_wait;
pv_ops.lock.kick = kvm_kick_cpu;
if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
pv_ops.lock.vcpu_is_preempted =
PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
}
}
#endif /* CONFIG_PARAVIRT_SPINLOCKS */
#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
static void kvm_disable_host_haltpoll(void *i)
{
wrmsrl(MSR_KVM_POLL_CONTROL, 0);
}
static void kvm_enable_host_haltpoll(void *i)
{
wrmsrl(MSR_KVM_POLL_CONTROL, 1);
}
void arch_haltpoll_enable(unsigned int cpu)
{
if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
pr_err_once("kvm: host does not support poll control\n");
pr_err_once("kvm: host upgrade recommended\n");
return;
}
/* Enable guest halt poll disables host halt poll */
smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
}
EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
void arch_haltpoll_disable(unsigned int cpu)
{
if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
return;
/* Enable guest halt poll disables host halt poll */
smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
}
EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
#endif