2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/drivers/net/ks8851.c

1737 lines
44 KiB
C
Raw Normal View History

/* drivers/net/ks8851.c
*
* Copyright 2009 Simtec Electronics
* http://www.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DEBUG
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/spi/spi.h>
#include "ks8851.h"
/**
* struct ks8851_rxctrl - KS8851 driver rx control
* @mchash: Multicast hash-table data.
* @rxcr1: KS_RXCR1 register setting
* @rxcr2: KS_RXCR2 register setting
*
* Representation of the settings needs to control the receive filtering
* such as the multicast hash-filter and the receive register settings. This
* is used to make the job of working out if the receive settings change and
* then issuing the new settings to the worker that will send the necessary
* commands.
*/
struct ks8851_rxctrl {
u16 mchash[4];
u16 rxcr1;
u16 rxcr2;
};
/**
* union ks8851_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks8851_tx_hdr {
u8 txb[6];
__le16 txw[3];
};
/**
* struct ks8851_net - KS8851 driver private data
* @netdev: The network device we're bound to
* @spidev: The spi device we're bound to.
* @lock: Lock to ensure that the device is not accessed when busy.
* @statelock: Lock on this structure for tx list.
* @mii: The MII state information for the mii calls.
* @rxctrl: RX settings for @rxctrl_work.
* @tx_work: Work queue for tx packets
* @irq_work: Work queue for servicing interrupts
* @rxctrl_work: Work queue for updating RX mode and multicast lists
* @txq: Queue of packets for transmission.
* @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
* @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
* @txh: Space for generating packet TX header in DMA-able data
* @rxd: Space for receiving SPI data, in DMA-able space.
* @txd: Space for transmitting SPI data, in DMA-able space.
* @msg_enable: The message flags controlling driver output (see ethtool).
* @fid: Incrementing frame id tag.
* @rc_ier: Cached copy of KS_IER.
* @rc_ccr: Cached copy of KS_CCR.
* @rc_rxqcr: Cached copy of KS_RXQCR.
* @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not ccessible until the transfer is finished and
* the DMA has been de-asserted.
*
* The @statelock is used to protect information in the structure which may
* need to be accessed via several sources, such as the network driver layer
* or one of the work queues.
*
* We align the buffers we may use for rx/tx to ensure that if the SPI driver
* wants to DMA map them, it will not have any problems with data the driver
* modifies.
*/
struct ks8851_net {
struct net_device *netdev;
struct spi_device *spidev;
struct mutex lock;
spinlock_t statelock;
union ks8851_tx_hdr txh ____cacheline_aligned;
u8 rxd[8];
u8 txd[8];
u32 msg_enable ____cacheline_aligned;
u16 tx_space;
u8 fid;
u16 rc_ier;
u16 rc_rxqcr;
u16 rc_ccr;
u16 eeprom_size;
struct mii_if_info mii;
struct ks8851_rxctrl rxctrl;
struct work_struct tx_work;
struct work_struct irq_work;
struct work_struct rxctrl_work;
struct sk_buff_head txq;
struct spi_message spi_msg1;
struct spi_message spi_msg2;
struct spi_transfer spi_xfer1;
struct spi_transfer spi_xfer2[2];
};
static int msg_enable;
/* shift for byte-enable data */
#define BYTE_EN(_x) ((_x) << 2)
/* turn register number and byte-enable mask into data for start of packet */
#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
/* SPI register read/write calls.
*
* All these calls issue SPI transactions to access the chip's registers. They
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transfering packet data (RX/TX FIFO accesses).
*/
/**
* ks8851_wrreg16 - write 16bit register value to chip
* @ks: The chip state
* @reg: The register address
* @val: The value to write
*
* Issue a write to put the value @val into the register specified in @reg.
*/
static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
{
struct spi_transfer *xfer = &ks->spi_xfer1;
struct spi_message *msg = &ks->spi_msg1;
__le16 txb[2];
int ret;
txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
txb[1] = cpu_to_le16(val);
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 4;
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "spi_sync() failed\n");
}
/**
* ks8851_wrreg8 - write 8bit register value to chip
* @ks: The chip state
* @reg: The register address
* @val: The value to write
*
* Issue a write to put the value @val into the register specified in @reg.
*/
static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
{
struct spi_transfer *xfer = &ks->spi_xfer1;
struct spi_message *msg = &ks->spi_msg1;
__le16 txb[2];
int ret;
int bit;
bit = 1 << (reg & 3);
txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
txb[1] = val;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 3;
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "spi_sync() failed\n");
}
/**
* ks8851_rx_1msg - select whether to use one or two messages for spi read
* @ks: The device structure
*
* Return whether to generate a single message with a tx and rx buffer
* supplied to spi_sync(), or alternatively send the tx and rx buffers
* as separate messages.
*
* Depending on the hardware in use, a single message may be more efficient
* on interrupts or work done by the driver.
*
* This currently always returns true until we add some per-device data passed
* from the platform code to specify which mode is better.
*/
static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
{
return true;
}
/**
* ks8851_rdreg - issue read register command and return the data
* @ks: The device state
* @op: The register address and byte enables in message format.
* @rxb: The RX buffer to return the result into
* @rxl: The length of data expected.
*
* This is the low level read call that issues the necessary spi message(s)
* to read data from the register specified in @op.
*/
static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
u8 *rxb, unsigned rxl)
{
struct spi_transfer *xfer;
struct spi_message *msg;
__le16 *txb = (__le16 *)ks->txd;
u8 *trx = ks->rxd;
int ret;
txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
if (ks8851_rx_1msg(ks)) {
msg = &ks->spi_msg1;
xfer = &ks->spi_xfer1;
xfer->tx_buf = txb;
xfer->rx_buf = trx;
xfer->len = rxl + 2;
} else {
msg = &ks->spi_msg2;
xfer = ks->spi_xfer2;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 2;
xfer++;
xfer->tx_buf = NULL;
xfer->rx_buf = trx;
xfer->len = rxl;
}
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "read: spi_sync() failed\n");
else if (ks8851_rx_1msg(ks))
memcpy(rxb, trx + 2, rxl);
else
memcpy(rxb, trx, rxl);
}
/**
* ks8851_rdreg8 - read 8 bit register from device
* @ks: The chip information
* @reg: The register address
*
* Read a 8bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
{
u8 rxb[1];
ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
return rxb[0];
}
/**
* ks8851_rdreg16 - read 16 bit register from device
* @ks: The chip information
* @reg: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
{
__le16 rx = 0;
ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
return le16_to_cpu(rx);
}
/**
* ks8851_rdreg32 - read 32 bit register from device
* @ks: The chip information
* @reg: The register address
*
* Read a 32bit register from the chip.
*
* Note, this read requires the address be aligned to 4 bytes.
*/
static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
{
__le32 rx = 0;
WARN_ON(reg & 3);
ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
return le32_to_cpu(rx);
}
/**
* ks8851_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
{
ks8851_wrreg16(ks, KS_GRR, op);
mdelay(1); /* wait a short time to effect reset */
ks8851_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
/**
* ks8851_write_mac_addr - write mac address to device registers
* @dev: The network device
*
* Update the KS8851 MAC address registers from the address in @dev.
*
* This call assumes that the chip is not running, so there is no need to
* shutdown the RXQ process whilst setting this.
*/
static int ks8851_write_mac_addr(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
int i;
mutex_lock(&ks->lock);
for (i = 0; i < ETH_ALEN; i++)
ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
mutex_unlock(&ks->lock);
return 0;
}
/**
* ks8851_init_mac - initialise the mac address
* @ks: The device structure
*
* Get or create the initial mac address for the device and then set that
* into the station address register. Currently we assume that the device
* does not have a valid mac address in it, and so we use random_ether_addr()
* to create a new one.
*
* In future, the driver should check to see if the device has an EEPROM
* attached and whether that has a valid ethernet address in it.
*/
static void ks8851_init_mac(struct ks8851_net *ks)
{
struct net_device *dev = ks->netdev;
random_ether_addr(dev->dev_addr);
ks8851_write_mac_addr(dev);
}
/**
* ks8851_irq - device interrupt handler
* @irq: Interrupt number passed from the IRQ hnalder.
* @pw: The private word passed to register_irq(), our struct ks8851_net.
*
* Disable the interrupt from happening again until we've processed the
* current status by scheduling ks8851_irq_work().
*/
static irqreturn_t ks8851_irq(int irq, void *pw)
{
struct ks8851_net *ks = pw;
disable_irq_nosync(irq);
schedule_work(&ks->irq_work);
return IRQ_HANDLED;
}
/**
* ks8851_rdfifo - read data from the receive fifo
* @ks: The device state.
* @buff: The buffer address
* @len: The length of the data to read
*
* Issue an RXQ FIFO read command and read the @len amount of data from
* the FIFO into the buffer specified by @buff.
*/
static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
{
struct spi_transfer *xfer = ks->spi_xfer2;
struct spi_message *msg = &ks->spi_msg2;
u8 txb[1];
int ret;
netif_dbg(ks, rx_status, ks->netdev,
"%s: %d@%p\n", __func__, len, buff);
/* set the operation we're issuing */
txb[0] = KS_SPIOP_RXFIFO;
xfer->tx_buf = txb;
xfer->rx_buf = NULL;
xfer->len = 1;
xfer++;
xfer->rx_buf = buff;
xfer->tx_buf = NULL;
xfer->len = len;
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
}
/**
* ks8851_dbg_dumpkkt - dump initial packet contents to debug
* @ks: The device state
* @rxpkt: The data for the received packet
*
* Dump the initial data from the packet to dev_dbg().
*/
static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
{
netdev_dbg(ks->netdev,
"pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
}
/**
* ks8851_rx_pkts - receive packets from the host
* @ks: The device information.
*
* This is called from the IRQ work queue when the system detects that there
* are packets in the receive queue. Find out how many packets there are and
* read them from the FIFO.
*/
static void ks8851_rx_pkts(struct ks8851_net *ks)
{
struct sk_buff *skb;
unsigned rxfc;
unsigned rxlen;
unsigned rxstat;
u32 rxh;
u8 *rxpkt;
rxfc = ks8851_rdreg8(ks, KS_RXFC);
netif_dbg(ks, rx_status, ks->netdev,
"%s: %d packets\n", __func__, rxfc);
/* Currently we're issuing a read per packet, but we could possibly
* improve the code by issuing a single read, getting the receive
* header, allocating the packet and then reading the packet data
* out in one go.
*
* This form of operation would require us to hold the SPI bus'
* chipselect low during the entie transaction to avoid any
* reset to the data stream comming from the chip.
*/
for (; rxfc != 0; rxfc--) {
rxh = ks8851_rdreg32(ks, KS_RXFHSR);
rxstat = rxh & 0xffff;
rxlen = rxh >> 16;
netif_dbg(ks, rx_status, ks->netdev,
"rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
/* the length of the packet includes the 32bit CRC */
/* set dma read address */
ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
/* start the packet dma process, and set auto-dequeue rx */
ks8851_wrreg16(ks, KS_RXQCR,
ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
if (rxlen > 4) {
unsigned int rxalign;
rxlen -= 4;
rxalign = ALIGN(rxlen, 4);
skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
if (skb) {
/* 4 bytes of status header + 4 bytes of
* garbage: we put them before ethernet
* header, so that they are copied,
* but ignored.
*/
rxpkt = skb_put(skb, rxlen) - 8;
ks8851_rdfifo(ks, rxpkt, rxalign + 8);
if (netif_msg_pktdata(ks))
ks8851_dbg_dumpkkt(ks, rxpkt);
skb->protocol = eth_type_trans(skb, ks->netdev);
netif_rx(skb);
ks->netdev->stats.rx_packets++;
ks->netdev->stats.rx_bytes += rxlen;
}
}
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
}
}
/**
* ks8851_irq_work - work queue handler for dealing with interrupt requests
* @work: The work structure that was scheduled by schedule_work()
*
* This is the handler invoked when the ks8851_irq() is called to find out
* what happened, as we cannot allow ourselves to sleep whilst waiting for
* anything other process has the chip's lock.
*
* Read the interrupt status, work out what needs to be done and then clear
* any of the interrupts that are not needed.
*/
static void ks8851_irq_work(struct work_struct *work)
{
struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
unsigned status;
unsigned handled = 0;
mutex_lock(&ks->lock);
status = ks8851_rdreg16(ks, KS_ISR);
netif_dbg(ks, intr, ks->netdev,
"%s: status 0x%04x\n", __func__, status);
if (status & IRQ_LCI) {
/* should do something about checking link status */
handled |= IRQ_LCI;
}
if (status & IRQ_LDI) {
u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
handled |= IRQ_LDI;
}
if (status & IRQ_RXPSI)
handled |= IRQ_RXPSI;
if (status & IRQ_TXI) {
handled |= IRQ_TXI;
/* no lock here, tx queue should have been stopped */
/* update our idea of how much tx space is available to the
* system */
ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
netif_dbg(ks, intr, ks->netdev,
"%s: txspace %d\n", __func__, ks->tx_space);
}
if (status & IRQ_RXI)
handled |= IRQ_RXI;
if (status & IRQ_SPIBEI) {
dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
handled |= IRQ_SPIBEI;
}
ks8851_wrreg16(ks, KS_ISR, handled);
if (status & IRQ_RXI) {
/* the datasheet says to disable the rx interrupt during
* packet read-out, however we're masking the interrupt
* from the device so do not bother masking just the RX
* from the device. */
ks8851_rx_pkts(ks);
}
/* if something stopped the rx process, probably due to wanting
* to change the rx settings, then do something about restarting
* it. */
if (status & IRQ_RXPSI) {
struct ks8851_rxctrl *rxc = &ks->rxctrl;
/* update the multicast hash table */
ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
}
mutex_unlock(&ks->lock);
if (status & IRQ_TXI)
netif_wake_queue(ks->netdev);
enable_irq(ks->netdev->irq);
}
/**
* calc_txlen - calculate size of message to send packet
* @len: Lenght of data
*
* Returns the size of the TXFIFO message needed to send
* this packet.
*/
static inline unsigned calc_txlen(unsigned len)
{
return ALIGN(len + 4, 4);
}
/**
* ks8851_wrpkt - write packet to TX FIFO
* @ks: The device state.
* @txp: The sk_buff to transmit.
* @irq: IRQ on completion of the packet.
*
* Send the @txp to the chip. This means creating the relevant packet header
* specifying the length of the packet and the other information the chip
* needs, such as IRQ on completion. Send the header and the packet data to
* the device.
*/
static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
{
struct spi_transfer *xfer = ks->spi_xfer2;
struct spi_message *msg = &ks->spi_msg2;
unsigned fid = 0;
int ret;
netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
__func__, txp, txp->len, txp->data, irq);
fid = ks->fid++;
fid &= TXFR_TXFID_MASK;
if (irq)
fid |= TXFR_TXIC; /* irq on completion */
/* start header at txb[1] to align txw entries */
ks->txh.txb[1] = KS_SPIOP_TXFIFO;
ks->txh.txw[1] = cpu_to_le16(fid);
ks->txh.txw[2] = cpu_to_le16(txp->len);
xfer->tx_buf = &ks->txh.txb[1];
xfer->rx_buf = NULL;
xfer->len = 5;
xfer++;
xfer->tx_buf = txp->data;
xfer->rx_buf = NULL;
xfer->len = ALIGN(txp->len, 4);
ret = spi_sync(ks->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
}
/**
* ks8851_done_tx - update and then free skbuff after transmitting
* @ks: The device state
* @txb: The buffer transmitted
*/
static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
{
struct net_device *dev = ks->netdev;
dev->stats.tx_bytes += txb->len;
dev->stats.tx_packets++;
dev_kfree_skb(txb);
}
/**
* ks8851_tx_work - process tx packet(s)
* @work: The work strucutre what was scheduled.
*
* This is called when a number of packets have been scheduled for
* transmission and need to be sent to the device.
*/
static void ks8851_tx_work(struct work_struct *work)
{
struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
struct sk_buff *txb;
bool last = skb_queue_empty(&ks->txq);
mutex_lock(&ks->lock);
while (!last) {
txb = skb_dequeue(&ks->txq);
last = skb_queue_empty(&ks->txq);
if (txb != NULL) {
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
ks8851_wrpkt(ks, txb, last);
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
ks8851_done_tx(ks, txb);
}
}
mutex_unlock(&ks->lock);
}
/**
* ks8851_set_powermode - set power mode of the device
* @ks: The device state
* @pwrmode: The power mode value to write to KS_PMECR.
*
* Change the power mode of the chip.
*/
static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
{
unsigned pmecr;
netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
pmecr = ks8851_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks8851_wrreg16(ks, KS_PMECR, pmecr);
}
/**
* ks8851_net_open - open network device
* @dev: The network device being opened.
*
* Called when the network device is marked active, such as a user executing
* 'ifconfig up' on the device.
*/
static int ks8851_net_open(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
/* lock the card, even if we may not actually be doing anything
* else at the moment */
mutex_lock(&ks->lock);
netif_dbg(ks, ifup, ks->netdev, "opening\n");
/* bring chip out of any power saving mode it was in */
ks8851_set_powermode(ks, PMECR_PM_NORMAL);
/* issue a soft reset to the RX/TX QMU to put it into a known
* state. */
ks8851_soft_reset(ks, GRR_QMU);
/* setup transmission parameters */
ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
TXCR_TXPE | /* pad to min length */
TXCR_TXCRC | /* add CRC */
TXCR_TXFCE)); /* enable flow control */
/* auto-increment tx data, reset tx pointer */
ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* setup receiver control */
ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
RXCR1_RXFCE | /* enable flow control */
RXCR1_RXBE | /* broadcast enable */
RXCR1_RXUE | /* unicast enable */
RXCR1_RXE)); /* enable rx block */
/* transfer entire frames out in one go */
ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
/* set receive counter timeouts */
ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
RXQCR_RXDTTE); /* IRQ on time exceeded */
ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/* clear then enable interrupts */
#define STD_IRQ (IRQ_LCI | /* Link Change */ \
IRQ_TXI | /* TX done */ \
IRQ_RXI | /* RX done */ \
IRQ_SPIBEI | /* SPI bus error */ \
IRQ_TXPSI | /* TX process stop */ \
IRQ_RXPSI) /* RX process stop */
ks->rc_ier = STD_IRQ;
ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
ks8851_wrreg16(ks, KS_IER, STD_IRQ);
netif_start_queue(ks->netdev);
netif_dbg(ks, ifup, ks->netdev, "network device up\n");
mutex_unlock(&ks->lock);
return 0;
}
/**
* ks8851_net_stop - close network device
* @dev: The device being closed.
*
* Called to close down a network device which has been active. Cancell any
* work, shutdown the RX and TX process and then place the chip into a low
* power state whilst it is not being used.
*/
static int ks8851_net_stop(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
netif_info(ks, ifdown, dev, "shutting down\n");
netif_stop_queue(dev);
mutex_lock(&ks->lock);
/* stop any outstanding work */
flush_work(&ks->irq_work);
flush_work(&ks->tx_work);
flush_work(&ks->rxctrl_work);
/* turn off the IRQs and ack any outstanding */
ks8851_wrreg16(ks, KS_IER, 0x0000);
ks8851_wrreg16(ks, KS_ISR, 0xffff);
/* shutdown RX process */
ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
/* shutdown TX process */
ks8851_wrreg16(ks, KS_TXCR, 0x0000);
/* set powermode to soft power down to save power */
ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
/* ensure any queued tx buffers are dumped */
while (!skb_queue_empty(&ks->txq)) {
struct sk_buff *txb = skb_dequeue(&ks->txq);
netif_dbg(ks, ifdown, ks->netdev,
"%s: freeing txb %p\n", __func__, txb);
dev_kfree_skb(txb);
}
mutex_unlock(&ks->lock);
return 0;
}
/**
* ks8851_start_xmit - transmit packet
* @skb: The buffer to transmit
* @dev: The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb. Queue the packet for
* the device and schedule the necessary work to transmit the packet when
* it is free.
*
* We do this to firstly avoid sleeping with the network device locked,
* and secondly so we can round up more than one packet to transmit which
* means we can try and avoid generating too many transmit done interrupts.
*/
static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
unsigned needed = calc_txlen(skb->len);
netdev_tx_t ret = NETDEV_TX_OK;
netif_dbg(ks, tx_queued, ks->netdev,
"%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
spin_lock(&ks->statelock);
if (needed > ks->tx_space) {
netif_stop_queue(dev);
ret = NETDEV_TX_BUSY;
} else {
ks->tx_space -= needed;
skb_queue_tail(&ks->txq, skb);
}
spin_unlock(&ks->statelock);
schedule_work(&ks->tx_work);
return ret;
}
/**
* ks8851_rxctrl_work - work handler to change rx mode
* @work: The work structure this belongs to.
*
* Lock the device and issue the necessary changes to the receive mode from
* the network device layer. This is done so that we can do this without
* having to sleep whilst holding the network device lock.
*
* Since the recommendation from Micrel is that the RXQ is shutdown whilst the
* receive parameters are programmed, we issue a write to disable the RXQ and
* then wait for the interrupt handler to be triggered once the RXQ shutdown is
* complete. The interrupt handler then writes the new values into the chip.
*/
static void ks8851_rxctrl_work(struct work_struct *work)
{
struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
mutex_lock(&ks->lock);
/* need to shutdown RXQ before modifying filter parameters */
ks8851_wrreg16(ks, KS_RXCR1, 0x00);
mutex_unlock(&ks->lock);
}
static void ks8851_set_rx_mode(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
struct ks8851_rxctrl rxctrl;
memset(&rxctrl, 0, sizeof(rxctrl));
if (dev->flags & IFF_PROMISC) {
/* interface to receive everything */
rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
} else if (dev->flags & IFF_ALLMULTI) {
/* accept all multicast packets */
rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
RXCR1_RXPAFMA | RXCR1_RXMAFMA);
} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
u32 crc;
/* accept some multicast */
netdev_for_each_mc_addr(ha, dev) {
crc = ether_crc(ETH_ALEN, ha->addr);
crc >>= (32 - 6); /* get top six bits */
rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
}
rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
} else {
/* just accept broadcast / unicast */
rxctrl.rxcr1 = RXCR1_RXPAFMA;
}
rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
RXCR1_RXBE | /* broadcast enable */
RXCR1_RXE | /* RX process enable */
RXCR1_RXFCE); /* enable flow control */
rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
/* schedule work to do the actual set of the data if needed */
spin_lock(&ks->statelock);
if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
schedule_work(&ks->rxctrl_work);
}
spin_unlock(&ks->statelock);
}
static int ks8851_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
if (netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(sa->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
return ks8851_write_mac_addr(dev);
}
static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct ks8851_net *ks = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}
static const struct net_device_ops ks8851_netdev_ops = {
.ndo_open = ks8851_net_open,
.ndo_stop = ks8851_net_stop,
.ndo_do_ioctl = ks8851_net_ioctl,
.ndo_start_xmit = ks8851_start_xmit,
.ndo_set_mac_address = ks8851_set_mac_address,
.ndo_set_rx_mode = ks8851_set_rx_mode,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
/* Companion eeprom access */
enum { /* EEPROM programming states */
EEPROM_CONTROL,
EEPROM_ADDRESS,
EEPROM_DATA,
EEPROM_COMPLETE
};
/**
* ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
* @dev: The network device the PHY is on.
* @addr: EEPROM address to read
*
* eeprom_size: used to define the data coding length. Can be changed
* through debug-fs.
*
* Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
* Warning: The READ feature is not supported on ks8851 revision 0.
*
* Rough programming model:
* - on period start: set clock high and read value on bus
* - on period / 2: set clock low and program value on bus
* - start on period / 2
*/
unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
{
struct ks8851_net *ks = netdev_priv(dev);
int eepcr;
int ctrl = EEPROM_OP_READ;
int state = EEPROM_CONTROL;
int bit_count = EEPROM_OP_LEN - 1;
unsigned int data = 0;
int dummy;
unsigned int addr_len;
addr_len = (ks->eeprom_size == 128) ? 6 : 8;
/* start transaction: chip select high, authorize write */
mutex_lock(&ks->lock);
eepcr = EEPCR_EESA | EEPCR_EESRWA;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
eepcr |= EEPCR_EECS;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
while (state != EEPROM_COMPLETE) {
/* falling clock period starts... */
/* set EED_IO pin for control and address */
eepcr &= ~EEPCR_EEDO;
switch (state) {
case EEPROM_CONTROL:
eepcr |= ((ctrl >> bit_count) & 1) << 2;
if (bit_count-- <= 0) {
bit_count = addr_len - 1;
state = EEPROM_ADDRESS;
}
break;
case EEPROM_ADDRESS:
eepcr |= ((addr >> bit_count) & 1) << 2;
bit_count--;
break;
case EEPROM_DATA:
/* Change to receive mode */
eepcr &= ~EEPCR_EESRWA;
break;
}
/* lower clock */
eepcr &= ~EEPCR_EESCK;
mutex_lock(&ks->lock);
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
/* waitread period / 2 */
udelay(EEPROM_SK_PERIOD / 2);
/* rising clock period starts... */
/* raise clock */
mutex_lock(&ks->lock);
eepcr |= EEPCR_EESCK;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
/* Manage read */
switch (state) {
case EEPROM_ADDRESS:
if (bit_count < 0) {
bit_count = EEPROM_DATA_LEN - 1;
state = EEPROM_DATA;
}
break;
case EEPROM_DATA:
mutex_lock(&ks->lock);
dummy = ks8851_rdreg16(ks, KS_EEPCR);
mutex_unlock(&ks->lock);
data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
if (bit_count-- <= 0)
state = EEPROM_COMPLETE;
break;
}
/* wait period / 2 */
udelay(EEPROM_SK_PERIOD / 2);
}
/* close transaction */
mutex_lock(&ks->lock);
eepcr &= ~EEPCR_EECS;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
eepcr = 0;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
return data;
}
/**
* ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
* @dev: The network device the PHY is on.
* @op: operand (can be WRITE, EWEN, EWDS)
* @addr: EEPROM address to write
* @data: data to write
*
* eeprom_size: used to define the data coding length. Can be changed
* through debug-fs.
*
* Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
*
* Note that a write enable is required before writing data.
*
* Rough programming model:
* - on period start: set clock high
* - on period / 2: set clock low and program value on bus
* - start on period / 2
*/
void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
unsigned int addr, unsigned int data)
{
struct ks8851_net *ks = netdev_priv(dev);
int eepcr;
int state = EEPROM_CONTROL;
int bit_count = EEPROM_OP_LEN - 1;
unsigned int addr_len;
addr_len = (ks->eeprom_size == 128) ? 6 : 8;
switch (op) {
case EEPROM_OP_EWEN:
addr = 0x30;
break;
case EEPROM_OP_EWDS:
addr = 0;
break;
}
/* start transaction: chip select high, authorize write */
mutex_lock(&ks->lock);
eepcr = EEPCR_EESA | EEPCR_EESRWA;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
eepcr |= EEPCR_EECS;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
while (state != EEPROM_COMPLETE) {
/* falling clock period starts... */
/* set EED_IO pin for control and address */
eepcr &= ~EEPCR_EEDO;
switch (state) {
case EEPROM_CONTROL:
eepcr |= ((op >> bit_count) & 1) << 2;
if (bit_count-- <= 0) {
bit_count = addr_len - 1;
state = EEPROM_ADDRESS;
}
break;
case EEPROM_ADDRESS:
eepcr |= ((addr >> bit_count) & 1) << 2;
if (bit_count-- <= 0) {
if (op == EEPROM_OP_WRITE) {
bit_count = EEPROM_DATA_LEN - 1;
state = EEPROM_DATA;
} else {
state = EEPROM_COMPLETE;
}
}
break;
case EEPROM_DATA:
eepcr |= ((data >> bit_count) & 1) << 2;
if (bit_count-- <= 0)
state = EEPROM_COMPLETE;
break;
}
/* lower clock */
eepcr &= ~EEPCR_EESCK;
mutex_lock(&ks->lock);
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
/* wait period / 2 */
udelay(EEPROM_SK_PERIOD / 2);
/* rising clock period starts... */
/* raise clock */
eepcr |= EEPCR_EESCK;
mutex_lock(&ks->lock);
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
/* wait period / 2 */
udelay(EEPROM_SK_PERIOD / 2);
}
/* close transaction */
mutex_lock(&ks->lock);
eepcr &= ~EEPCR_EECS;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
eepcr = 0;
ks8851_wrreg16(ks, KS_EEPCR, eepcr);
mutex_unlock(&ks->lock);
}
/* ethtool support */
static void ks8851_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *di)
{
strlcpy(di->driver, "KS8851", sizeof(di->driver));
strlcpy(di->version, "1.00", sizeof(di->version));
strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
}
static u32 ks8851_get_msglevel(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return ks->msg_enable;
}
static void ks8851_set_msglevel(struct net_device *dev, u32 to)
{
struct ks8851_net *ks = netdev_priv(dev);
ks->msg_enable = to;
}
static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_ethtool_gset(&ks->mii, cmd);
}
static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_ethtool_sset(&ks->mii, cmd);
}
static u32 ks8851_get_link(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_link_ok(&ks->mii);
}
static int ks8851_nway_reset(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return mii_nway_restart(&ks->mii);
}
static int ks8851_get_eeprom_len(struct net_device *dev)
{
struct ks8851_net *ks = netdev_priv(dev);
return ks->eeprom_size;
}
static int ks8851_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct ks8851_net *ks = netdev_priv(dev);
u16 *eeprom_buff;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EINVAL;
if (eeprom->len > ks->eeprom_size)
return -EINVAL;
eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(u16) *
(last_word - first_word + 1), GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
/* Device's eeprom is little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int ks8851_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct ks8851_net *ks = netdev_priv(dev);
u16 *eeprom_buff;
void *ptr;
int max_len;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->len > ks->eeprom_size)
return -EINVAL;
if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
return -EFAULT;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
max_len = (last_word - first_word + 1) * 2;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
if (eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
ptr++;
}
if ((eeprom->offset + eeprom->len) & 1)
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
eeprom_buff[last_word - first_word] =
ks8851_eeprom_read(dev, last_word);
/* Device's eeprom is little-endian, word addressable */
le16_to_cpus(&eeprom_buff[0]);
le16_to_cpus(&eeprom_buff[last_word - first_word]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
for (i = 0; i < last_word - first_word + 1; i++) {
ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
eeprom_buff[i]);
mdelay(EEPROM_WRITE_TIME);
}
ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
kfree(eeprom_buff);
return ret_val;
}
static const struct ethtool_ops ks8851_ethtool_ops = {
.get_drvinfo = ks8851_get_drvinfo,
.get_msglevel = ks8851_get_msglevel,
.set_msglevel = ks8851_set_msglevel,
.get_settings = ks8851_get_settings,
.set_settings = ks8851_set_settings,
.get_link = ks8851_get_link,
.nway_reset = ks8851_nway_reset,
.get_eeprom_len = ks8851_get_eeprom_len,
.get_eeprom = ks8851_get_eeprom,
.set_eeprom = ks8851_set_eeprom,
};
/* MII interface controls */
/**
* ks8851_phy_reg - convert MII register into a KS8851 register
* @reg: MII register number.
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible. Return zero if the MII register has no direct mapping to the
* KS8851 register set.
*/
static int ks8851_phy_reg(int reg)
{
switch (reg) {
case MII_BMCR:
return KS_P1MBCR;
case MII_BMSR:
return KS_P1MBSR;
case MII_PHYSID1:
return KS_PHY1ILR;
case MII_PHYSID2:
return KS_PHY1IHR;
case MII_ADVERTISE:
return KS_P1ANAR;
case MII_LPA:
return KS_P1ANLPR;
}
return 0x0;
}
/**
* ks8851_phy_read - MII interface PHY register read.
* @dev: The network device the PHY is on.
* @phy_addr: Address of PHY (ignored as we only have one)
* @reg: The register to read.
*
* This call reads data from the PHY register specified in @reg. Since the
* device does not support all the MII registers, the non-existant values
* are always returned as zero.
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status, and simply returns it to the
* caller. The mii-tool that the driver was tested with takes any -ve error
* as real PHY capabilities, thus displaying incorrect data to the user.
*/
static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
{
struct ks8851_net *ks = netdev_priv(dev);
int ksreg;
int result;
ksreg = ks8851_phy_reg(reg);
if (!ksreg)
return 0x0; /* no error return allowed, so use zero */
mutex_lock(&ks->lock);
result = ks8851_rdreg16(ks, ksreg);
mutex_unlock(&ks->lock);
return result;
}
static void ks8851_phy_write(struct net_device *dev,
int phy, int reg, int value)
{
struct ks8851_net *ks = netdev_priv(dev);
int ksreg;
ksreg = ks8851_phy_reg(reg);
if (ksreg) {
mutex_lock(&ks->lock);
ks8851_wrreg16(ks, ksreg, value);
mutex_unlock(&ks->lock);
}
}
/**
* ks8851_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks8851_read_selftest(struct ks8851_net *ks)
{
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
int ret = 0;
unsigned rd;
rd = ks8851_rdreg16(ks, KS_MBIR);
if ((rd & both_done) != both_done) {
netdev_warn(ks->netdev, "Memory selftest not finished\n");
return 0;
}
if (rd & MBIR_TXMBFA) {
netdev_err(ks->netdev, "TX memory selftest fail\n");
ret |= 1;
}
if (rd & MBIR_RXMBFA) {
netdev_err(ks->netdev, "RX memory selftest fail\n");
ret |= 2;
}
return 0;
}
/* driver bus management functions */
#ifdef CONFIG_PM
static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
{
struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
struct net_device *dev = ks->netdev;
if (netif_running(dev)) {
netif_device_detach(dev);
ks8851_net_stop(dev);
}
return 0;
}
static int ks8851_resume(struct spi_device *spi)
{
struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
struct net_device *dev = ks->netdev;
if (netif_running(dev)) {
ks8851_net_open(dev);
netif_device_attach(dev);
}
return 0;
}
#else
#define ks8851_suspend NULL
#define ks8851_resume NULL
#endif
static int __devinit ks8851_probe(struct spi_device *spi)
{
struct net_device *ndev;
struct ks8851_net *ks;
int ret;
ndev = alloc_etherdev(sizeof(struct ks8851_net));
if (!ndev) {
dev_err(&spi->dev, "failed to alloc ethernet device\n");
return -ENOMEM;
}
spi->bits_per_word = 8;
ks = netdev_priv(ndev);
ks->netdev = ndev;
ks->spidev = spi;
ks->tx_space = 6144;
mutex_init(&ks->lock);
spin_lock_init(&ks->statelock);
INIT_WORK(&ks->tx_work, ks8851_tx_work);
INIT_WORK(&ks->irq_work, ks8851_irq_work);
INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
/* initialise pre-made spi transfer messages */
spi_message_init(&ks->spi_msg1);
spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
spi_message_init(&ks->spi_msg2);
spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
/* setup mii state */
ks->mii.dev = ndev;
ks->mii.phy_id = 1,
ks->mii.phy_id_mask = 1;
ks->mii.reg_num_mask = 0xf;
ks->mii.mdio_read = ks8851_phy_read;
ks->mii.mdio_write = ks8851_phy_write;
dev_info(&spi->dev, "message enable is %d\n", msg_enable);
/* set the default message enable */
ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK));
skb_queue_head_init(&ks->txq);
SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
SET_NETDEV_DEV(ndev, &spi->dev);
dev_set_drvdata(&spi->dev, ks);
ndev->if_port = IF_PORT_100BASET;
ndev->netdev_ops = &ks8851_netdev_ops;
ndev->irq = spi->irq;
/* issue a global soft reset to reset the device. */
ks8851_soft_reset(ks, GRR_GSR);
/* simple check for a valid chip being connected to the bus */
if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
dev_err(&spi->dev, "failed to read device ID\n");
ret = -ENODEV;
goto err_id;
}
/* cache the contents of the CCR register for EEPROM, etc. */
ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
if (ks->rc_ccr & CCR_EEPROM)
ks->eeprom_size = 128;
else
ks->eeprom_size = 0;
ks8851_read_selftest(ks);
ks8851_init_mac(ks);
ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
ndev->name, ks);
if (ret < 0) {
dev_err(&spi->dev, "failed to get irq\n");
goto err_irq;
}
ret = register_netdev(ndev);
if (ret) {
dev_err(&spi->dev, "failed to register network device\n");
goto err_netdev;
}
netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
ndev->dev_addr, ndev->irq);
return 0;
err_netdev:
free_irq(ndev->irq, ndev);
err_id:
err_irq:
free_netdev(ndev);
return ret;
}
static int __devexit ks8851_remove(struct spi_device *spi)
{
struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
if (netif_msg_drv(priv))
dev_info(&spi->dev, "remove\n");
unregister_netdev(priv->netdev);
free_irq(spi->irq, priv);
free_netdev(priv->netdev);
return 0;
}
static struct spi_driver ks8851_driver = {
.driver = {
.name = "ks8851",
.owner = THIS_MODULE,
},
.probe = ks8851_probe,
.remove = __devexit_p(ks8851_remove),
.suspend = ks8851_suspend,
.resume = ks8851_resume,
};
static int __init ks8851_init(void)
{
return spi_register_driver(&ks8851_driver);
}
static void __exit ks8851_exit(void)
{
spi_unregister_driver(&ks8851_driver);
}
module_init(ks8851_init);
module_exit(ks8851_exit);
MODULE_DESCRIPTION("KS8851 Network driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
MODULE_ALIAS("spi:ks8851");