2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/include/linux/module.h

653 lines
18 KiB
C
Raw Normal View History

#ifndef _LINUX_MODULE_H
#define _LINUX_MODULE_H
/*
* Dynamic loading of modules into the kernel.
*
* Rewritten by Richard Henderson <rth@tamu.edu> Dec 1996
* Rewritten again by Rusty Russell, 2002
*/
#include <linux/list.h>
#include <linux/stat.h>
#include <linux/compiler.h>
#include <linux/cache.h>
#include <linux/kmod.h>
#include <linux/elf.h>
#include <linux/stringify.h>
#include <linux/kobject.h>
#include <linux/moduleparam.h>
#include <linux/jump_label.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <asm/module.h>
/* In stripped ARM and x86-64 modules, ~ is surprisingly rare. */
#define MODULE_SIG_STRING "~Module signature appended~\n"
/* Not Yet Implemented */
#define MODULE_SUPPORTED_DEVICE(name)
#define MODULE_NAME_LEN MAX_PARAM_PREFIX_LEN
struct modversion_info {
unsigned long crc;
char name[MODULE_NAME_LEN];
};
struct module;
struct module_kobject {
struct kobject kobj;
struct module *mod;
struct kobject *drivers_dir;
struct module_param_attrs *mp;
module: Fix mod->mkobj.kobj potentially freed too early DEBUG_KOBJECT_RELEASE helps to find the issue attached below. After some investigation, it seems the reason is: The mod->mkobj.kobj(ffffffffa01600d0 below) is freed together with mod itself in free_module(). However, its children still hold references to it, as the delay caused by DEBUG_KOBJECT_RELEASE. So when the child(holders below) tries to decrease the reference count to its parent in kobject_del(), BUG happens as it tries to access already freed memory. This patch tries to fix it by waiting for the mod->mkobj.kobj to be really released in the module removing process (and some error code paths). [ 1844.175287] kobject: 'holders' (ffff88007c1f1600): kobject_release, parent ffffffffa01600d0 (delayed) [ 1844.178991] kobject: 'notes' (ffff8800370b2a00): kobject_release, parent ffffffffa01600d0 (delayed) [ 1845.180118] kobject: 'holders' (ffff88007c1f1600): kobject_cleanup, parent ffffffffa01600d0 [ 1845.182130] kobject: 'holders' (ffff88007c1f1600): auto cleanup kobject_del [ 1845.184120] BUG: unable to handle kernel paging request at ffffffffa01601d0 [ 1845.185026] IP: [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] PGD 1a13067 PUD 1a14063 PMD 7bd30067 PTE 0 [ 1845.185026] Oops: 0000 [#1] PREEMPT [ 1845.185026] Modules linked in: xfs libcrc32c [last unloaded: kprobe_example] [ 1845.185026] CPU: 0 PID: 18 Comm: kworker/0:1 Tainted: G O 3.11.0-rc6-next-20130819+ #1 [ 1845.185026] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 1845.185026] Workqueue: events kobject_delayed_cleanup [ 1845.185026] task: ffff88007ca51f00 ti: ffff88007ca5c000 task.ti: ffff88007ca5c000 [ 1845.185026] RIP: 0010:[<ffffffff812cda81>] [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] RSP: 0018:ffff88007ca5dd08 EFLAGS: 00010282 [ 1845.185026] RAX: 0000000000002000 RBX: ffffffffa01600d0 RCX: ffffffff8177d638 [ 1845.185026] RDX: ffff88007ca5dc18 RSI: 0000000000000000 RDI: ffffffffa01600d0 [ 1845.185026] RBP: ffff88007ca5dd18 R08: ffffffff824e9810 R09: ffffffffffffffff [ 1845.185026] R10: ffff8800ffffffff R11: dead4ead00000001 R12: ffffffff81a95040 [ 1845.185026] R13: ffff88007b27a960 R14: ffff88007c1f1600 R15: 0000000000000000 [ 1845.185026] FS: 0000000000000000(0000) GS:ffffffff81a23000(0000) knlGS:0000000000000000 [ 1845.185026] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 1845.185026] CR2: ffffffffa01601d0 CR3: 0000000037207000 CR4: 00000000000006b0 [ 1845.185026] Stack: [ 1845.185026] ffff88007c1f1600 ffff88007c1f1600 ffff88007ca5dd38 ffffffff812cdb7e [ 1845.185026] 0000000000000000 ffff88007c1f1640 ffff88007ca5dd68 ffffffff812cdbfe [ 1845.185026] ffff88007c974800 ffff88007c1f1640 ffff88007ff61a00 0000000000000000 [ 1845.185026] Call Trace: [ 1845.185026] [<ffffffff812cdb7e>] kobject_del+0x2e/0x40 [ 1845.185026] [<ffffffff812cdbfe>] kobject_delayed_cleanup+0x6e/0x1d0 [ 1845.185026] [<ffffffff81063a45>] process_one_work+0x1e5/0x670 [ 1845.185026] [<ffffffff810639e3>] ? process_one_work+0x183/0x670 [ 1845.185026] [<ffffffff810642b3>] worker_thread+0x113/0x370 [ 1845.185026] [<ffffffff810641a0>] ? rescuer_thread+0x290/0x290 [ 1845.185026] [<ffffffff8106bfba>] kthread+0xda/0xe0 [ 1845.185026] [<ffffffff814ff0f0>] ? _raw_spin_unlock_irq+0x30/0x60 [ 1845.185026] [<ffffffff8106bee0>] ? kthread_create_on_node+0x130/0x130 [ 1845.185026] [<ffffffff8150751a>] ret_from_fork+0x7a/0xb0 [ 1845.185026] [<ffffffff8106bee0>] ? kthread_create_on_node+0x130/0x130 [ 1845.185026] Code: 81 48 c7 c7 28 95 ad 81 31 c0 e8 9b da 01 00 e9 4f ff ff ff 66 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb 48 83 ec 08 48 85 ff 74 1d <f6> 87 00 01 00 00 01 74 1e 48 8d 7b 38 83 6b 38 01 0f 94 c0 84 [ 1845.185026] RIP [<ffffffff812cda81>] kobject_put+0x11/0x60 [ 1845.185026] RSP <ffff88007ca5dd08> [ 1845.185026] CR2: ffffffffa01601d0 [ 1845.185026] ---[ end trace 49a70afd109f5653 ]--- Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2013-09-03 15:03:57 +08:00
struct completion *kobj_completion;
};
struct module_attribute {
struct attribute attr;
ssize_t (*show)(struct module_attribute *, struct module_kobject *,
char *);
ssize_t (*store)(struct module_attribute *, struct module_kobject *,
const char *, size_t count);
[PATCH] modules: add version and srcversion to sysfs This patch adds version and srcversion files to /sys/module/${modulename} containing the version and srcversion fields of the module's modinfo section (if present). /sys/module/e1000 |-- srcversion `-- version This patch differs slightly from the version posted in January, as it now uses the new kstrdup() call in -mm. Why put this in sysfs? a) Tools like DKMS, which deal with changing out individual kernel modules without replacing the whole kernel, can behave smarter if they can tell the version of a given module. The autoinstaller feature, for example, which determines if your system has a "good" version of a driver (i.e. if the one provided by DKMS has a newer verson than that provided by the kernel package installed), and to automatically compile and install a newer version if DKMS has it but your kernel doesn't yet have that version. b) Because sysadmins manually, or with tools like DKMS, can switch out modules on the file system, you can't count on 'modinfo foo.ko', which looks at /lib/modules/${kernelver}/... actually matching what is loaded into the kernel already. Hence asking sysfs for this. c) as the unbind-driver-from-device work takes shape, it will be possible to rebind a driver that's built-in (no .ko to modinfo for the version) to a newly loaded module. sysfs will have the currently-built-in version info, for comparison. d) tech support scripts can then easily grab the version info for what's running presently - a question I get often. There has been renewed interest in this patch on linux-scsi by driver authors. As the idea originated from GregKH, I leave his Signed-off-by: intact, though the implementation is nearly completely new. Compiled and run on x86 and x86_64. From: Matthew Dobson <colpatch@us.ibm.com> build fix From: Thierry Vignaud <tvignaud@mandriva.com> build fix From: Matthew Dobson <colpatch@us.ibm.com> warning fix Signed-off-by: Greg Kroah-Hartman <greg@kroah.com> Signed-off-by: Matt Domsch <Matt_Domsch@dell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 13:05:15 +08:00
void (*setup)(struct module *, const char *);
int (*test)(struct module *);
void (*free)(struct module *);
};
struct module_version_attribute {
struct module_attribute mattr;
const char *module_name;
const char *version;
} __attribute__ ((__aligned__(sizeof(void *))));
extern ssize_t __modver_version_show(struct module_attribute *,
struct module_kobject *, char *);
extern struct module_attribute module_uevent;
/* These are either module local, or the kernel's dummy ones. */
extern int init_module(void);
extern void cleanup_module(void);
/* Archs provide a method of finding the correct exception table. */
struct exception_table_entry;
const struct exception_table_entry *
search_extable(const struct exception_table_entry *first,
const struct exception_table_entry *last,
unsigned long value);
void sort_extable(struct exception_table_entry *start,
struct exception_table_entry *finish);
void sort_main_extable(void);
void trim_init_extable(struct module *m);
/* Generic info of form tag = "info" */
#define MODULE_INFO(tag, info) __MODULE_INFO(tag, tag, info)
/* For userspace: you can also call me... */
#define MODULE_ALIAS(_alias) MODULE_INFO(alias, _alias)
/* Soft module dependencies. See man modprobe.d for details.
* Example: MODULE_SOFTDEP("pre: module-foo module-bar post: module-baz")
*/
#define MODULE_SOFTDEP(_softdep) MODULE_INFO(softdep, _softdep)
/*
* The following license idents are currently accepted as indicating free
* software modules
*
* "GPL" [GNU Public License v2 or later]
* "GPL v2" [GNU Public License v2]
* "GPL and additional rights" [GNU Public License v2 rights and more]
* "Dual BSD/GPL" [GNU Public License v2
* or BSD license choice]
* "Dual MIT/GPL" [GNU Public License v2
* or MIT license choice]
* "Dual MPL/GPL" [GNU Public License v2
* or Mozilla license choice]
*
* The following other idents are available
*
* "Proprietary" [Non free products]
*
* There are dual licensed components, but when running with Linux it is the
* GPL that is relevant so this is a non issue. Similarly LGPL linked with GPL
* is a GPL combined work.
*
* This exists for several reasons
* 1. So modinfo can show license info for users wanting to vet their setup
* is free
* 2. So the community can ignore bug reports including proprietary modules
* 3. So vendors can do likewise based on their own policies
*/
#define MODULE_LICENSE(_license) MODULE_INFO(license, _license)
/*
* Author(s), use "Name <email>" or just "Name", for multiple
* authors use multiple MODULE_AUTHOR() statements/lines.
*/
#define MODULE_AUTHOR(_author) MODULE_INFO(author, _author)
/* What your module does. */
#define MODULE_DESCRIPTION(_description) MODULE_INFO(description, _description)
#ifdef MODULE
/* Creates an alias so file2alias.c can find device table. */
#define MODULE_DEVICE_TABLE(type, name) \
module: fix types of device tables aliases MODULE_DEVICE_TABLE() macro used to create aliases to device tables. Normally alias should have the same type as aliased symbol. Device tables are arrays, so they have 'struct type##_device_id[x]' types. Alias created by MODULE_DEVICE_TABLE() will have non-array type - 'struct type##_device_id'. This inconsistency confuses compiler, it could make a wrong assumption about variable's size which leads KASan to produce a false positive report about out of bounds access. For every global variable compiler calls __asan_register_globals() passing information about global variable (address, size, size with redzone, name ...) __asan_register_globals() poison symbols redzone to detect possible out of bounds accesses. When symbol has an alias __asan_register_globals() will be called as for symbol so for alias. Compiler determines size of variable by size of variable's type. Alias and symbol have the same address, so if alias have the wrong size part of memory that actually belongs to the symbol could be poisoned as redzone of alias symbol. By fixing type of alias symbol we will fix size of it, so __asan_register_globals() will not poison valid memory. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 06:40:13 +08:00
extern const typeof(name) __mod_##type##__##name##_device_table \
__attribute__ ((unused, alias(__stringify(name))))
#else /* !MODULE */
#define MODULE_DEVICE_TABLE(type, name)
#endif
/* Version of form [<epoch>:]<version>[-<extra-version>].
* Or for CVS/RCS ID version, everything but the number is stripped.
* <epoch>: A (small) unsigned integer which allows you to start versions
* anew. If not mentioned, it's zero. eg. "2:1.0" is after
* "1:2.0".
* <version>: The <version> may contain only alphanumerics and the
* character `.'. Ordered by numeric sort for numeric parts,
* ascii sort for ascii parts (as per RPM or DEB algorithm).
* <extraversion>: Like <version>, but inserted for local
* customizations, eg "rh3" or "rusty1".
* Using this automatically adds a checksum of the .c files and the
* local headers in "srcversion".
*/
#if defined(MODULE) || !defined(CONFIG_SYSFS)
#define MODULE_VERSION(_version) MODULE_INFO(version, _version)
#else
#define MODULE_VERSION(_version) \
static struct module_version_attribute ___modver_attr = { \
.mattr = { \
.attr = { \
.name = "version", \
.mode = S_IRUGO, \
}, \
.show = __modver_version_show, \
}, \
.module_name = KBUILD_MODNAME, \
.version = _version, \
}; \
static const struct module_version_attribute \
__used __attribute__ ((__section__ ("__modver"))) \
* __moduleparam_const __modver_attr = &___modver_attr
#endif
/* Optional firmware file (or files) needed by the module
* format is simply firmware file name. Multiple firmware
* files require multiple MODULE_FIRMWARE() specifiers */
#define MODULE_FIRMWARE(_firmware) MODULE_INFO(firmware, _firmware)
/* Given an address, look for it in the exception tables */
const struct exception_table_entry *search_exception_tables(unsigned long add);
struct notifier_block;
#ifdef CONFIG_MODULES
extern int modules_disabled; /* for sysctl */
/* Get/put a kernel symbol (calls must be symmetric) */
void *__symbol_get(const char *symbol);
void *__symbol_get_gpl(const char *symbol);
#define symbol_get(x) ((typeof(&x))(__symbol_get(VMLINUX_SYMBOL_STR(x))))
/* modules using other modules: kdb wants to see this. */
struct module_use {
struct list_head source_list;
struct list_head target_list;
struct module *source, *target;
};
enum module_state {
MODULE_STATE_LIVE, /* Normal state. */
MODULE_STATE_COMING, /* Full formed, running module_init. */
MODULE_STATE_GOING, /* Going away. */
MODULE_STATE_UNFORMED, /* Still setting it up. */
};
struct module {
enum module_state state;
/* Member of list of modules */
struct list_head list;
/* Unique handle for this module */
char name[MODULE_NAME_LEN];
/* Sysfs stuff. */
struct module_kobject mkobj;
struct module_attribute *modinfo_attrs;
[PATCH] modules: add version and srcversion to sysfs This patch adds version and srcversion files to /sys/module/${modulename} containing the version and srcversion fields of the module's modinfo section (if present). /sys/module/e1000 |-- srcversion `-- version This patch differs slightly from the version posted in January, as it now uses the new kstrdup() call in -mm. Why put this in sysfs? a) Tools like DKMS, which deal with changing out individual kernel modules without replacing the whole kernel, can behave smarter if they can tell the version of a given module. The autoinstaller feature, for example, which determines if your system has a "good" version of a driver (i.e. if the one provided by DKMS has a newer verson than that provided by the kernel package installed), and to automatically compile and install a newer version if DKMS has it but your kernel doesn't yet have that version. b) Because sysadmins manually, or with tools like DKMS, can switch out modules on the file system, you can't count on 'modinfo foo.ko', which looks at /lib/modules/${kernelver}/... actually matching what is loaded into the kernel already. Hence asking sysfs for this. c) as the unbind-driver-from-device work takes shape, it will be possible to rebind a driver that's built-in (no .ko to modinfo for the version) to a newly loaded module. sysfs will have the currently-built-in version info, for comparison. d) tech support scripts can then easily grab the version info for what's running presently - a question I get often. There has been renewed interest in this patch on linux-scsi by driver authors. As the idea originated from GregKH, I leave his Signed-off-by: intact, though the implementation is nearly completely new. Compiled and run on x86 and x86_64. From: Matthew Dobson <colpatch@us.ibm.com> build fix From: Thierry Vignaud <tvignaud@mandriva.com> build fix From: Matthew Dobson <colpatch@us.ibm.com> warning fix Signed-off-by: Greg Kroah-Hartman <greg@kroah.com> Signed-off-by: Matt Domsch <Matt_Domsch@dell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 13:05:15 +08:00
const char *version;
const char *srcversion;
struct kobject *holders_dir;
/* Exported symbols */
const struct kernel_symbol *syms;
const unsigned long *crcs;
unsigned int num_syms;
/* Kernel parameters. */
struct kernel_param *kp;
unsigned int num_kp;
/* GPL-only exported symbols. */
unsigned int num_gpl_syms;
const struct kernel_symbol *gpl_syms;
const unsigned long *gpl_crcs;
#ifdef CONFIG_UNUSED_SYMBOLS
/* unused exported symbols. */
const struct kernel_symbol *unused_syms;
const unsigned long *unused_crcs;
unsigned int num_unused_syms;
/* GPL-only, unused exported symbols. */
unsigned int num_unused_gpl_syms;
const struct kernel_symbol *unused_gpl_syms;
const unsigned long *unused_gpl_crcs;
#endif
#ifdef CONFIG_MODULE_SIG
/* Signature was verified. */
bool sig_ok;
#endif
/* symbols that will be GPL-only in the near future. */
const struct kernel_symbol *gpl_future_syms;
const unsigned long *gpl_future_crcs;
unsigned int num_gpl_future_syms;
/* Exception table */
unsigned int num_exentries;
struct exception_table_entry *extable;
/* Startup function. */
int (*init)(void);
/* If this is non-NULL, vfree after init() returns */
void *module_init;
/* Here is the actual code + data, vfree'd on unload. */
void *module_core;
/* Here are the sizes of the init and core sections */
unsigned int init_size, core_size;
/* The size of the executable code in each section. */
unsigned int init_text_size, core_text_size;
x86: Add RO/NX protection for loadable kernel modules This patch is a logical extension of the protection provided by CONFIG_DEBUG_RODATA to LKMs. The protection is provided by splitting module_core and module_init into three logical parts each and setting appropriate page access permissions for each individual section: 1. Code: RO+X 2. RO data: RO+NX 3. RW data: RW+NX In order to achieve proper protection, layout_sections() have been modified to align each of the three parts mentioned above onto page boundary. Next, the corresponding page access permissions are set right before successful exit from load_module(). Further, free_module() and sys_init_module have been modified to set module_core and module_init as RW+NX right before calling module_free(). By default, the original section layout and access flags are preserved. When compiled with CONFIG_DEBUG_SET_MODULE_RONX=y, the patch will page-align each group of sections to ensure that each page contains only one type of content and will enforce RO/NX for each group of pages. -v1: Initial proof-of-concept patch. -v2: The patch have been re-written to reduce the number of #ifdefs and to make it architecture-agnostic. Code formatting has also been corrected. -v3: Opportunistic RO/NX protection is now unconditional. Section page-alignment is enabled when CONFIG_DEBUG_RODATA=y. -v4: Removed most macros and improved coding style. -v5: Changed page-alignment and RO/NX section size calculation -v6: Fixed comments. Restricted RO/NX enforcement to x86 only -v7: Introduced CONFIG_DEBUG_SET_MODULE_RONX, added calls to set_all_modules_text_rw() and set_all_modules_text_ro() in ftrace -v8: updated for compatibility with linux 2.6.33-rc5 -v9: coding style fixes -v10: more coding style fixes -v11: minor adjustments for -tip -v12: minor adjustments for v2.6.35-rc2-tip -v13: minor adjustments for v2.6.37-rc1-tip Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com> Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: Andi Kleen <ak@muc.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dave Jones <davej@redhat.com> Cc: Kees Cook <kees.cook@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <4CE2F914.9070106@free.fr> [ minor cleanliness edits, -v14: build failure fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-17 05:35:16 +08:00
/* Size of RO sections of the module (text+rodata) */
unsigned int init_ro_size, core_ro_size;
/* Arch-specific module values */
struct mod_arch_specific arch;
unsigned int taints; /* same bits as kernel:tainted */
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
#ifdef CONFIG_GENERIC_BUG
/* Support for BUG */
unsigned num_bugs;
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
struct list_head bug_list;
struct bug_entry *bug_table;
#endif
#ifdef CONFIG_KALLSYMS
/*
* We keep the symbol and string tables for kallsyms.
* The core_* fields below are temporary, loader-only (they
* could really be discarded after module init).
*/
Elf_Sym *symtab, *core_symtab;
unsigned int num_symtab, core_num_syms;
char *strtab, *core_strtab;
/* Section attributes */
struct module_sect_attrs *sect_attrs;
/* Notes attributes */
struct module_notes_attrs *notes_attrs;
#endif
/* The command line arguments (may be mangled). People like
keeping pointers to this stuff */
char *args;
#ifdef CONFIG_SMP
/* Per-cpu data. */
void __percpu *percpu;
unsigned int percpu_size;
#endif
tracing: Kernel Tracepoints Implementation of kernel tracepoints. Inspired from the Linux Kernel Markers. Allows complete typing verification by declaring both tracing statement inline functions and probe registration/unregistration static inline functions within the same macro "DEFINE_TRACE". No format string is required. See the tracepoint Documentation and Samples patches for usage examples. Taken from the documentation patch : "A tracepoint placed in code provides a hook to call a function (probe) that you can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or "off" (no probe is attached). When a tracepoint is "off" it has no effect, except for adding a tiny time penalty (checking a condition for a branch) and space penalty (adding a few bytes for the function call at the end of the instrumented function and adds a data structure in a separate section). When a tracepoint is "on", the function you provide is called each time the tracepoint is executed, in the execution context of the caller. When the function provided ends its execution, it returns to the caller (continuing from the tracepoint site). You can put tracepoints at important locations in the code. They are lightweight hooks that can pass an arbitrary number of parameters, which prototypes are described in a tracepoint declaration placed in a header file." Addition and removal of tracepoints is synchronized by RCU using the scheduler (and preempt_disable) as guarantees to find a quiescent state (this is really RCU "classic"). The update side uses rcu_barrier_sched() with call_rcu_sched() and the read/execute side uses "preempt_disable()/preempt_enable()". We make sure the previous array containing probes, which has been scheduled for deletion by the rcu callback, is indeed freed before we proceed to the next update. It therefore limits the rate of modification of a single tracepoint to one update per RCU period. The objective here is to permit fast batch add/removal of probes on _different_ tracepoints. Changelog : - Use #name ":" #proto as string to identify the tracepoint in the tracepoint table. This will make sure not type mismatch happens due to connexion of a probe with the wrong type to a tracepoint declared with the same name in a different header. - Add tracepoint_entry_free_old. - Change __TO_TRACE to get rid of the 'i' iterator. Masami Hiramatsu <mhiramat@redhat.com> : Tested on x86-64. Performance impact of a tracepoint : same as markers, except that it adds about 70 bytes of instructions in an unlikely branch of each instrumented function (the for loop, the stack setup and the function call). It currently adds a memory read, a test and a conditional branch at the instrumentation site (in the hot path). Immediate values will eventually change this into a load immediate, test and branch, which removes the memory read which will make the i-cache impact smaller (changing the memory read for a load immediate removes 3-4 bytes per site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it also saves the d-cache hit). About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. Quoting Hideo Aoki about Markers : I evaluated overhead of kernel marker using linux-2.6-sched-fixes git tree, which includes several markers for LTTng, using an ia64 server. While the immediate trace mark feature isn't implemented on ia64, there is no major performance regression. So, I think that we don't have any issues to propose merging marker point patches into Linus's tree from the viewpoint of performance impact. I prepared two kernels to evaluate. The first one was compiled without CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS. I downloaded the original hackbench from the following URL: http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c I ran hackbench 5 times in each condition and calculated the average and difference between the kernels. The parameter of hackbench: every 50 from 50 to 800 The number of CPUs of the server: 2, 4, and 8 Below is the results. As you can see, major performance regression wasn't found in any case. Even if number of processes increases, differences between marker-enabled kernel and marker- disabled kernel doesn't increase. Moreover, if number of CPUs increases, the differences doesn't increase either. Curiously, marker-enabled kernel is better than marker-disabled kernel in more than half cases, although I guess it comes from the difference of memory access pattern. * 2 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 4.811 | 4.872 | +0.061 | +1.27 | 100 | 9.854 | 10.309 | +0.454 | +4.61 | 150 | 15.602 | 15.040 | -0.562 | -3.6 | 200 | 20.489 | 20.380 | -0.109 | -0.53 | 250 | 25.798 | 25.652 | -0.146 | -0.56 | 300 | 31.260 | 30.797 | -0.463 | -1.48 | 350 | 36.121 | 35.770 | -0.351 | -0.97 | 400 | 42.288 | 42.102 | -0.186 | -0.44 | 450 | 47.778 | 47.253 | -0.526 | -1.1 | 500 | 51.953 | 52.278 | +0.325 | +0.63 | 550 | 58.401 | 57.700 | -0.701 | -1.2 | 600 | 63.334 | 63.222 | -0.112 | -0.18 | 650 | 68.816 | 68.511 | -0.306 | -0.44 | 700 | 74.667 | 74.088 | -0.579 | -0.78 | 750 | 78.612 | 79.582 | +0.970 | +1.23 | 800 | 85.431 | 85.263 | -0.168 | -0.2 | -------------------------------------------------------------- * 4 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.586 | 2.584 | -0.003 | -0.1 | 100 | 5.254 | 5.283 | +0.030 | +0.56 | 150 | 8.012 | 8.074 | +0.061 | +0.76 | 200 | 11.172 | 11.000 | -0.172 | -1.54 | 250 | 13.917 | 14.036 | +0.119 | +0.86 | 300 | 16.905 | 16.543 | -0.362 | -2.14 | 350 | 19.901 | 20.036 | +0.135 | +0.68 | 400 | 22.908 | 23.094 | +0.186 | +0.81 | 450 | 26.273 | 26.101 | -0.172 | -0.66 | 500 | 29.554 | 29.092 | -0.461 | -1.56 | 550 | 32.377 | 32.274 | -0.103 | -0.32 | 600 | 35.855 | 35.322 | -0.533 | -1.49 | 650 | 39.192 | 38.388 | -0.804 | -2.05 | 700 | 41.744 | 41.719 | -0.025 | -0.06 | 750 | 45.016 | 44.496 | -0.520 | -1.16 | 800 | 48.212 | 47.603 | -0.609 | -1.26 | -------------------------------------------------------------- * 8 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.094 | 2.072 | -0.022 | -1.07 | 100 | 4.162 | 4.273 | +0.111 | +2.66 | 150 | 6.485 | 6.540 | +0.055 | +0.84 | 200 | 8.556 | 8.478 | -0.078 | -0.91 | 250 | 10.458 | 10.258 | -0.200 | -1.91 | 300 | 12.425 | 12.750 | +0.325 | +2.62 | 350 | 14.807 | 14.839 | +0.032 | +0.22 | 400 | 16.801 | 16.959 | +0.158 | +0.94 | 450 | 19.478 | 19.009 | -0.470 | -2.41 | 500 | 21.296 | 21.504 | +0.208 | +0.98 | 550 | 23.842 | 23.979 | +0.137 | +0.57 | 600 | 26.309 | 26.111 | -0.198 | -0.75 | 650 | 28.705 | 28.446 | -0.259 | -0.9 | 700 | 31.233 | 31.394 | +0.161 | +0.52 | 750 | 34.064 | 33.720 | -0.344 | -1.01 | 800 | 36.320 | 36.114 | -0.206 | -0.57 | -------------------------------------------------------------- Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: 'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-19 00:16:16 +08:00
#ifdef CONFIG_TRACEPOINTS
unsigned int num_tracepoints;
struct tracepoint * const *tracepoints_ptrs;
tracing: Kernel Tracepoints Implementation of kernel tracepoints. Inspired from the Linux Kernel Markers. Allows complete typing verification by declaring both tracing statement inline functions and probe registration/unregistration static inline functions within the same macro "DEFINE_TRACE". No format string is required. See the tracepoint Documentation and Samples patches for usage examples. Taken from the documentation patch : "A tracepoint placed in code provides a hook to call a function (probe) that you can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or "off" (no probe is attached). When a tracepoint is "off" it has no effect, except for adding a tiny time penalty (checking a condition for a branch) and space penalty (adding a few bytes for the function call at the end of the instrumented function and adds a data structure in a separate section). When a tracepoint is "on", the function you provide is called each time the tracepoint is executed, in the execution context of the caller. When the function provided ends its execution, it returns to the caller (continuing from the tracepoint site). You can put tracepoints at important locations in the code. They are lightweight hooks that can pass an arbitrary number of parameters, which prototypes are described in a tracepoint declaration placed in a header file." Addition and removal of tracepoints is synchronized by RCU using the scheduler (and preempt_disable) as guarantees to find a quiescent state (this is really RCU "classic"). The update side uses rcu_barrier_sched() with call_rcu_sched() and the read/execute side uses "preempt_disable()/preempt_enable()". We make sure the previous array containing probes, which has been scheduled for deletion by the rcu callback, is indeed freed before we proceed to the next update. It therefore limits the rate of modification of a single tracepoint to one update per RCU period. The objective here is to permit fast batch add/removal of probes on _different_ tracepoints. Changelog : - Use #name ":" #proto as string to identify the tracepoint in the tracepoint table. This will make sure not type mismatch happens due to connexion of a probe with the wrong type to a tracepoint declared with the same name in a different header. - Add tracepoint_entry_free_old. - Change __TO_TRACE to get rid of the 'i' iterator. Masami Hiramatsu <mhiramat@redhat.com> : Tested on x86-64. Performance impact of a tracepoint : same as markers, except that it adds about 70 bytes of instructions in an unlikely branch of each instrumented function (the for loop, the stack setup and the function call). It currently adds a memory read, a test and a conditional branch at the instrumentation site (in the hot path). Immediate values will eventually change this into a load immediate, test and branch, which removes the memory read which will make the i-cache impact smaller (changing the memory read for a load immediate removes 3-4 bytes per site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it also saves the d-cache hit). About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. Quoting Hideo Aoki about Markers : I evaluated overhead of kernel marker using linux-2.6-sched-fixes git tree, which includes several markers for LTTng, using an ia64 server. While the immediate trace mark feature isn't implemented on ia64, there is no major performance regression. So, I think that we don't have any issues to propose merging marker point patches into Linus's tree from the viewpoint of performance impact. I prepared two kernels to evaluate. The first one was compiled without CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS. I downloaded the original hackbench from the following URL: http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c I ran hackbench 5 times in each condition and calculated the average and difference between the kernels. The parameter of hackbench: every 50 from 50 to 800 The number of CPUs of the server: 2, 4, and 8 Below is the results. As you can see, major performance regression wasn't found in any case. Even if number of processes increases, differences between marker-enabled kernel and marker- disabled kernel doesn't increase. Moreover, if number of CPUs increases, the differences doesn't increase either. Curiously, marker-enabled kernel is better than marker-disabled kernel in more than half cases, although I guess it comes from the difference of memory access pattern. * 2 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 4.811 | 4.872 | +0.061 | +1.27 | 100 | 9.854 | 10.309 | +0.454 | +4.61 | 150 | 15.602 | 15.040 | -0.562 | -3.6 | 200 | 20.489 | 20.380 | -0.109 | -0.53 | 250 | 25.798 | 25.652 | -0.146 | -0.56 | 300 | 31.260 | 30.797 | -0.463 | -1.48 | 350 | 36.121 | 35.770 | -0.351 | -0.97 | 400 | 42.288 | 42.102 | -0.186 | -0.44 | 450 | 47.778 | 47.253 | -0.526 | -1.1 | 500 | 51.953 | 52.278 | +0.325 | +0.63 | 550 | 58.401 | 57.700 | -0.701 | -1.2 | 600 | 63.334 | 63.222 | -0.112 | -0.18 | 650 | 68.816 | 68.511 | -0.306 | -0.44 | 700 | 74.667 | 74.088 | -0.579 | -0.78 | 750 | 78.612 | 79.582 | +0.970 | +1.23 | 800 | 85.431 | 85.263 | -0.168 | -0.2 | -------------------------------------------------------------- * 4 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.586 | 2.584 | -0.003 | -0.1 | 100 | 5.254 | 5.283 | +0.030 | +0.56 | 150 | 8.012 | 8.074 | +0.061 | +0.76 | 200 | 11.172 | 11.000 | -0.172 | -1.54 | 250 | 13.917 | 14.036 | +0.119 | +0.86 | 300 | 16.905 | 16.543 | -0.362 | -2.14 | 350 | 19.901 | 20.036 | +0.135 | +0.68 | 400 | 22.908 | 23.094 | +0.186 | +0.81 | 450 | 26.273 | 26.101 | -0.172 | -0.66 | 500 | 29.554 | 29.092 | -0.461 | -1.56 | 550 | 32.377 | 32.274 | -0.103 | -0.32 | 600 | 35.855 | 35.322 | -0.533 | -1.49 | 650 | 39.192 | 38.388 | -0.804 | -2.05 | 700 | 41.744 | 41.719 | -0.025 | -0.06 | 750 | 45.016 | 44.496 | -0.520 | -1.16 | 800 | 48.212 | 47.603 | -0.609 | -1.26 | -------------------------------------------------------------- * 8 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.094 | 2.072 | -0.022 | -1.07 | 100 | 4.162 | 4.273 | +0.111 | +2.66 | 150 | 6.485 | 6.540 | +0.055 | +0.84 | 200 | 8.556 | 8.478 | -0.078 | -0.91 | 250 | 10.458 | 10.258 | -0.200 | -1.91 | 300 | 12.425 | 12.750 | +0.325 | +2.62 | 350 | 14.807 | 14.839 | +0.032 | +0.22 | 400 | 16.801 | 16.959 | +0.158 | +0.94 | 450 | 19.478 | 19.009 | -0.470 | -2.41 | 500 | 21.296 | 21.504 | +0.208 | +0.98 | 550 | 23.842 | 23.979 | +0.137 | +0.57 | 600 | 26.309 | 26.111 | -0.198 | -0.75 | 650 | 28.705 | 28.446 | -0.259 | -0.9 | 700 | 31.233 | 31.394 | +0.161 | +0.52 | 750 | 34.064 | 33.720 | -0.344 | -1.01 | 800 | 36.320 | 36.114 | -0.206 | -0.57 | -------------------------------------------------------------- Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: 'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-19 00:16:16 +08:00
#endif
#ifdef HAVE_JUMP_LABEL
struct jump_entry *jump_entries;
unsigned int num_jump_entries;
#endif
tracing/core: drop the old trace_printk() implementation in favour of trace_bprintk() Impact: faster and lighter tracing Now that we have trace_bprintk() which is faster and consume lesser memory than trace_printk() and has the same purpose, we can now drop the old implementation in favour of the binary one from trace_bprintk(), which means we move all the implementation of trace_bprintk() to trace_printk(), so the Api doesn't change except that we must now use trace_seq_bprintk() to print the TRACE_PRINT entries. Some changes result of this: - Previously, trace_bprintk depended of a single tracer and couldn't work without. This tracer has been dropped and the whole implementation of trace_printk() (like the module formats management) is now integrated in the tracing core (comes with CONFIG_TRACING), though we keep the file trace_printk (previously trace_bprintk.c) where we can find the module management. Thus we don't overflow trace.c - changes some parts to use trace_seq_bprintk() to print TRACE_PRINT entries. - change a bit trace_printk/trace_vprintk macros to support non-builtin formats constants, and fix 'const' qualifiers warnings. But this is all transparent for developers. - etc... V2: - Rebase against last changes - Fix mispell on the changelog V3: - Rebase against last changes (moving trace_printk() to kernel.h) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <1236356510-8381-5-git-send-email-fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-07 00:21:49 +08:00
#ifdef CONFIG_TRACING
unsigned int num_trace_bprintk_fmt;
const char **trace_bprintk_fmt_start;
#endif
#ifdef CONFIG_EVENT_TRACING
tracing: Replace trace_event struct array with pointer array Currently the trace_event structures are placed in the _ftrace_events section, and at link time, the linker makes one large array of all the trace_event structures. On boot up, this array is read (much like the initcall sections) and the events are processed. The problem is that there is no guarantee that gcc will place complex structures nicely together in an array format. Two structures in the same file may be placed awkwardly, because gcc has no clue that they are suppose to be in an array. A hack was used previous to force the alignment to 4, to pack the structures together. But this caused alignment issues with other architectures (sparc). Instead of packing the structures into an array, the structures' addresses are now put into the _ftrace_event section. As pointers are always the natural alignment, gcc should always pack them tightly together (otherwise initcall, extable, etc would also fail). By having the pointers to the structures in the section, we can still iterate the trace_events without causing unnecessary alignment problems with other architectures, or depending on the current behaviour of gcc that will likely change in the future just to tick us kernel developers off a little more. The _ftrace_event section is also moved into the .init.data section as it is now only needed at boot up. Suggested-by: David Miller <davem@davemloft.net> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-01-27 22:15:30 +08:00
struct ftrace_event_call **trace_events;
unsigned int num_trace_events;
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
unsigned int num_ftrace_callsites;
unsigned long *ftrace_callsites;
#endif
#ifdef CONFIG_MODULE_UNLOAD
/* What modules depend on me? */
struct list_head source_list;
/* What modules do I depend on? */
struct list_head target_list;
/* Destruction function. */
void (*exit)(void);
atomic_t refcnt;
#endif
#ifdef CONFIG_CONSTRUCTORS
/* Constructor functions. */
ctor_fn_t *ctors;
unsigned int num_ctors;
#endif
};
#ifndef MODULE_ARCH_INIT
#define MODULE_ARCH_INIT {}
#endif
extern struct mutex module_mutex;
/* FIXME: It'd be nice to isolate modules during init, too, so they
aren't used before they (may) fail. But presently too much code
(IDE & SCSI) require entry into the module during init.*/
static inline int module_is_live(struct module *mod)
{
return mod->state != MODULE_STATE_GOING;
}
struct module *__module_text_address(unsigned long addr);
struct module *__module_address(unsigned long addr);
bool is_module_address(unsigned long addr);
bool is_module_percpu_address(unsigned long addr);
bool is_module_text_address(unsigned long addr);
static inline bool within_module_core(unsigned long addr,
const struct module *mod)
module: add within_module_core() and within_module_init() This series of patches allows kprobes to probe module's __init and __exit functions. This means, you can probe driver initialization and terminating. Currently, kprobes can't probe __init function because these functions are freed after module initialization. And it also can't probe module __exit functions because kprobe increments reference count of target module and user can't unload it. this means __exit functions never be called unless removing probes from the module. To solve both cases, this series of patches introduces GONE flag and sets it when the target code is freed(for this purpose, kprobes hooks MODULE_STATE_* events). This also removes refcount incrementing for allowing user to unload target module. Users can check which probes are GONE by debugfs interface. For taking timing of freeing module's .init text, these also include a patch which adds module's notifier of MODULE_STATE_LIVE event. This patch: Add within_module_core() and within_module_init() for checking whether an address is in the module .init.text section or .text section, and replace within() local inline functions in kernel/module.c with them. kprobes uses these functions to check where the kprobe is inserted. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07 06:41:49 +08:00
{
return (unsigned long)mod->module_core <= addr &&
addr < (unsigned long)mod->module_core + mod->core_size;
}
static inline bool within_module_init(unsigned long addr,
const struct module *mod)
module: add within_module_core() and within_module_init() This series of patches allows kprobes to probe module's __init and __exit functions. This means, you can probe driver initialization and terminating. Currently, kprobes can't probe __init function because these functions are freed after module initialization. And it also can't probe module __exit functions because kprobe increments reference count of target module and user can't unload it. this means __exit functions never be called unless removing probes from the module. To solve both cases, this series of patches introduces GONE flag and sets it when the target code is freed(for this purpose, kprobes hooks MODULE_STATE_* events). This also removes refcount incrementing for allowing user to unload target module. Users can check which probes are GONE by debugfs interface. For taking timing of freeing module's .init text, these also include a patch which adds module's notifier of MODULE_STATE_LIVE event. This patch: Add within_module_core() and within_module_init() for checking whether an address is in the module .init.text section or .text section, and replace within() local inline functions in kernel/module.c with them. kprobes uses these functions to check where the kprobe is inserted. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07 06:41:49 +08:00
{
return (unsigned long)mod->module_init <= addr &&
addr < (unsigned long)mod->module_init + mod->init_size;
}
static inline bool within_module(unsigned long addr, const struct module *mod)
{
return within_module_init(addr, mod) || within_module_core(addr, mod);
}
/* Search for module by name: must hold module_mutex. */
struct module *find_module(const char *name);
struct symsearch {
const struct kernel_symbol *start, *stop;
const unsigned long *crcs;
enum {
NOT_GPL_ONLY,
GPL_ONLY,
WILL_BE_GPL_ONLY,
} licence;
bool unused;
};
/* Search for an exported symbol by name. */
const struct kernel_symbol *find_symbol(const char *name,
struct module **owner,
const unsigned long **crc,
bool gplok,
bool warn);
/* Walk the exported symbol table */
bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
struct module *owner,
void *data), void *data);
/* Returns 0 and fills in value, defined and namebuf, or -ERANGE if
symnum out of range. */
int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *name, char *module_name, int *exported);
/* Look for this name: can be of form module:name. */
unsigned long module_kallsyms_lookup_name(const char *name);
int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
struct module *, unsigned long),
void *data);
extern void __module_put_and_exit(struct module *mod, long code)
__attribute__((noreturn));
#define module_put_and_exit(code) __module_put_and_exit(THIS_MODULE, code)
#ifdef CONFIG_MODULE_UNLOAD
int module_refcount(struct module *mod);
void __symbol_put(const char *symbol);
#define symbol_put(x) __symbol_put(VMLINUX_SYMBOL_STR(x))
void symbol_put_addr(void *addr);
/* Sometimes we know we already have a refcount, and it's easier not
to handle the error case (which only happens with rmmod --wait). */
extern void __module_get(struct module *module);
/* This is the Right Way to get a module: if it fails, it's being removed,
* so pretend it's not there. */
extern bool try_module_get(struct module *module);
extern void module_put(struct module *module);
#else /*!CONFIG_MODULE_UNLOAD*/
static inline int try_module_get(struct module *module)
{
return !module || module_is_live(module);
}
static inline void module_put(struct module *module)
{
}
static inline void __module_get(struct module *module)
{
}
#define symbol_put(x) do { } while (0)
#define symbol_put_addr(p) do { } while (0)
#endif /* CONFIG_MODULE_UNLOAD */
int ref_module(struct module *a, struct module *b);
/* This is a #define so the string doesn't get put in every .o file */
#define module_name(mod) \
({ \
struct module *__mod = (mod); \
__mod ? __mod->name : "kernel"; \
})
/* For kallsyms to ask for address resolution. namebuf should be at
* least KSYM_NAME_LEN long: a pointer to namebuf is returned if
* found, otherwise NULL. */
const char *module_address_lookup(unsigned long addr,
unsigned long *symbolsize,
unsigned long *offset,
char **modname,
char *namebuf);
int lookup_module_symbol_name(unsigned long addr, char *symname);
int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name);
/* For extable.c to search modules' exception tables. */
const struct exception_table_entry *search_module_extables(unsigned long addr);
int register_module_notifier(struct notifier_block *nb);
int unregister_module_notifier(struct notifier_block *nb);
extern void print_modules(void);
#else /* !CONFIG_MODULES... */
/* Given an address, look for it in the exception tables. */
static inline const struct exception_table_entry *
search_module_extables(unsigned long addr)
{
return NULL;
}
static inline struct module *__module_address(unsigned long addr)
{
return NULL;
}
static inline struct module *__module_text_address(unsigned long addr)
{
return NULL;
}
static inline bool is_module_address(unsigned long addr)
{
return false;
}
static inline bool is_module_percpu_address(unsigned long addr)
{
return false;
}
static inline bool is_module_text_address(unsigned long addr)
{
return false;
}
/* Get/put a kernel symbol (calls should be symmetric) */
#define symbol_get(x) ({ extern typeof(x) x __attribute__((weak)); &(x); })
#define symbol_put(x) do { } while (0)
#define symbol_put_addr(x) do { } while (0)
static inline void __module_get(struct module *module)
{
}
static inline int try_module_get(struct module *module)
{
return 1;
}
static inline void module_put(struct module *module)
{
}
#define module_name(mod) "kernel"
/* For kallsyms to ask for address resolution. NULL means not found. */
static inline const char *module_address_lookup(unsigned long addr,
unsigned long *symbolsize,
unsigned long *offset,
char **modname,
char *namebuf)
{
return NULL;
}
static inline int lookup_module_symbol_name(unsigned long addr, char *symname)
{
return -ERANGE;
}
static inline int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name)
{
return -ERANGE;
}
static inline int module_get_kallsym(unsigned int symnum, unsigned long *value,
char *type, char *name,
char *module_name, int *exported)
{
return -ERANGE;
}
static inline unsigned long module_kallsyms_lookup_name(const char *name)
{
return 0;
}
static inline int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
struct module *,
unsigned long),
void *data)
{
return 0;
}
static inline int register_module_notifier(struct notifier_block *nb)
{
/* no events will happen anyway, so this can always succeed */
return 0;
}
static inline int unregister_module_notifier(struct notifier_block *nb)
{
return 0;
}
#define module_put_and_exit(code) do_exit(code)
static inline void print_modules(void)
{
}
#endif /* CONFIG_MODULES */
#ifdef CONFIG_SYSFS
extern struct kset *module_kset;
extern struct kobj_type module_ktype;
extern int module_sysfs_initialized;
#endif /* CONFIG_SYSFS */
#define symbol_request(x) try_then_request_module(symbol_get(x), "symbol:" #x)
/* BELOW HERE ALL THESE ARE OBSOLETE AND WILL VANISH */
#define __MODULE_STRING(x) __stringify(x)
x86: Add RO/NX protection for loadable kernel modules This patch is a logical extension of the protection provided by CONFIG_DEBUG_RODATA to LKMs. The protection is provided by splitting module_core and module_init into three logical parts each and setting appropriate page access permissions for each individual section: 1. Code: RO+X 2. RO data: RO+NX 3. RW data: RW+NX In order to achieve proper protection, layout_sections() have been modified to align each of the three parts mentioned above onto page boundary. Next, the corresponding page access permissions are set right before successful exit from load_module(). Further, free_module() and sys_init_module have been modified to set module_core and module_init as RW+NX right before calling module_free(). By default, the original section layout and access flags are preserved. When compiled with CONFIG_DEBUG_SET_MODULE_RONX=y, the patch will page-align each group of sections to ensure that each page contains only one type of content and will enforce RO/NX for each group of pages. -v1: Initial proof-of-concept patch. -v2: The patch have been re-written to reduce the number of #ifdefs and to make it architecture-agnostic. Code formatting has also been corrected. -v3: Opportunistic RO/NX protection is now unconditional. Section page-alignment is enabled when CONFIG_DEBUG_RODATA=y. -v4: Removed most macros and improved coding style. -v5: Changed page-alignment and RO/NX section size calculation -v6: Fixed comments. Restricted RO/NX enforcement to x86 only -v7: Introduced CONFIG_DEBUG_SET_MODULE_RONX, added calls to set_all_modules_text_rw() and set_all_modules_text_ro() in ftrace -v8: updated for compatibility with linux 2.6.33-rc5 -v9: coding style fixes -v10: more coding style fixes -v11: minor adjustments for -tip -v12: minor adjustments for v2.6.35-rc2-tip -v13: minor adjustments for v2.6.37-rc1-tip Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com> Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: Andi Kleen <ak@muc.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dave Jones <davej@redhat.com> Cc: Kees Cook <kees.cook@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <4CE2F914.9070106@free.fr> [ minor cleanliness edits, -v14: build failure fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-17 05:35:16 +08:00
#ifdef CONFIG_DEBUG_SET_MODULE_RONX
extern void set_all_modules_text_rw(void);
extern void set_all_modules_text_ro(void);
#else
static inline void set_all_modules_text_rw(void) { }
static inline void set_all_modules_text_ro(void) { }
#endif
#ifdef CONFIG_GENERIC_BUG
2010-10-06 02:29:27 +08:00
void module_bug_finalize(const Elf_Ehdr *, const Elf_Shdr *,
struct module *);
void module_bug_cleanup(struct module *);
#else /* !CONFIG_GENERIC_BUG */
2010-10-06 02:29:27 +08:00
static inline void module_bug_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *mod)
{
}
static inline void module_bug_cleanup(struct module *mod) {}
#endif /* CONFIG_GENERIC_BUG */
#endif /* _LINUX_MODULE_H */