2019-05-27 14:55:01 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
2011-01-24 15:42:41 +08:00
|
|
|
/*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* Copyright 2018, IBM Corporation.
|
2011-01-24 15:42:41 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* This file contains general idle entry/exit functions to save
|
|
|
|
* and restore stack and NVGPRs which allows C code to call idle
|
|
|
|
* states that lose GPRs, and it will return transparently with
|
|
|
|
* SRR1 wakeup reason return value.
|
|
|
|
*
|
|
|
|
* The platform / CPU caller must ensure SPRs and any other non-GPR
|
|
|
|
* state is saved and restored correctly, handle KVM, interrupts, etc.
|
2011-01-24 15:42:41 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <asm/ppc_asm.h>
|
|
|
|
#include <asm/asm-offsets.h>
|
|
|
|
#include <asm/ppc-opcode.h>
|
2014-12-10 02:56:52 +08:00
|
|
|
#include <asm/cpuidle.h>
|
2019-07-11 10:24:03 +08:00
|
|
|
#include <asm/thread_info.h> /* TLF_NAPPING */
|
2014-12-10 02:56:53 +08:00
|
|
|
|
2019-07-11 10:24:03 +08:00
|
|
|
#ifdef CONFIG_PPC_P7_NAP
|
powerpc/powernv: Save/Restore additional SPRs for stop4 cpuidle
The stop4 idle state on POWER9 is a deep idle state which loses
hypervisor resources, but whose latency is low enough that it can be
exposed via cpuidle.
Until now, the deep idle states which lose hypervisor resources (eg:
winkle) were only exposed via CPU-Hotplug. Hence currently on wakeup
from such states, barring a few SPRs which need to be restored to
their older value, rest of the SPRS are reinitialized to their values
corresponding to that at boot time.
When stop4 is used in the context of cpuidle, we want these additional
SPRs to be restored to their older value, to ensure that the context
on the CPU coming back from idle is same as it was before going idle.
In this patch, we define a SPR save area in PACA (since we have used
up the volatile register space in the stack) and on POWER9, we restore
SPRN_PID, SPRN_LDBAR, SPRN_FSCR, SPRN_HFSCR, SPRN_MMCRA, SPRN_MMCR1,
SPRN_MMCR2 to the values they had before entering stop.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-07-21 18:41:37 +08:00
|
|
|
/*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* Desired PSSCR in r3
|
powerpc/powernv: Save/Restore additional SPRs for stop4 cpuidle
The stop4 idle state on POWER9 is a deep idle state which loses
hypervisor resources, but whose latency is low enough that it can be
exposed via cpuidle.
Until now, the deep idle states which lose hypervisor resources (eg:
winkle) were only exposed via CPU-Hotplug. Hence currently on wakeup
from such states, barring a few SPRs which need to be restored to
their older value, rest of the SPRS are reinitialized to their values
corresponding to that at boot time.
When stop4 is used in the context of cpuidle, we want these additional
SPRs to be restored to their older value, to ensure that the context
on the CPU coming back from idle is same as it was before going idle.
In this patch, we define a SPR save area in PACA (since we have used
up the volatile register space in the stack) and on POWER9, we restore
SPRN_PID, SPRN_LDBAR, SPRN_FSCR, SPRN_HFSCR, SPRN_MMCRA, SPRN_MMCR1,
SPRN_MMCR2 to the values they had before entering stop.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-07-21 18:41:37 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* No state will be lost regardless of wakeup mechanism (interrupt or NIA).
|
|
|
|
*
|
|
|
|
* An EC=0 type wakeup will return with a value of 0. SRESET wakeup (which can
|
|
|
|
* happen with xscom SRESET and possibly MCE) may clobber volatiles except LR,
|
|
|
|
* and must blr, to return to caller with r3 set according to caller's expected
|
|
|
|
* return code (for Book3S/64 that is SRR1).
|
powerpc/powernv: Save/Restore additional SPRs for stop4 cpuidle
The stop4 idle state on POWER9 is a deep idle state which loses
hypervisor resources, but whose latency is low enough that it can be
exposed via cpuidle.
Until now, the deep idle states which lose hypervisor resources (eg:
winkle) were only exposed via CPU-Hotplug. Hence currently on wakeup
from such states, barring a few SPRs which need to be restored to
their older value, rest of the SPRS are reinitialized to their values
corresponding to that at boot time.
When stop4 is used in the context of cpuidle, we want these additional
SPRs to be restored to their older value, to ensure that the context
on the CPU coming back from idle is same as it was before going idle.
In this patch, we define a SPR save area in PACA (since we have used
up the volatile register space in the stack) and on POWER9, we restore
SPRN_PID, SPRN_LDBAR, SPRN_FSCR, SPRN_HFSCR, SPRN_MMCRA, SPRN_MMCR1,
SPRN_MMCR2 to the values they had before entering stop.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-07-21 18:41:37 +08:00
|
|
|
*/
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
_GLOBAL(isa300_idle_stop_noloss)
|
|
|
|
mtspr SPRN_PSSCR,r3
|
|
|
|
PPC_STOP
|
|
|
|
li r3,0
|
2016-07-08 14:20:48 +08:00
|
|
|
blr
|
|
|
|
|
powerpc/powernv: Fix race in updating core_idle_state
core_idle_state is maintained for each core. It uses 0-7 bits to track
whether a thread in the core has entered fastsleep or winkle. 8th bit is
used as a lock bit.
The lock bit is set in these 2 scenarios-
- The thread is first in subcore to wakeup from sleep/winkle.
- If its the last thread in the core about to enter sleep/winkle
While the lock bit is set, if any other thread in the core wakes up, it
loops until the lock bit is cleared before proceeding in the wakeup
path. This helps prevent race conditions w.r.t fastsleep workaround and
prevents threads from switching to process context before core/subcore
resources are restored.
But, in the path to sleep/winkle entry, we currently don't check for
lock-bit. This exposes us to following race when running with subcore
on-
First thread in the subcorea Another thread in the same
waking up core entering sleep/winkle
lwarx r15,0,r14
ori r15,r15,PNV_CORE_IDLE_LOCK_BIT
stwcx. r15,0,r14
[Code to restore subcore state]
lwarx r15,0,r14
[clear thread bit]
stwcx. r15,0,r14
andi. r15,r15,PNV_CORE_IDLE_THREAD_BITS
stw r15,0(r14)
Here, after the thread entering sleep clears its thread bit in
core_idle_state, the value is overwritten by the thread waking up.
In such cases when the core enters fastsleep, code mistakes an idle
thread as running. Because of this, the first thread waking up from
fastsleep which is supposed to resync timebase skips it. So we can
end up having a core with stale timebase value.
This patch fixes the above race by looping on the lock bit even while
entering the idle states.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Fixes: 7b54e9f213f76 'powernv/powerpc: Add winkle support for offline cpus'
Cc: stable@vger.kernel.org # 3.19+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-07-07 04:09:23 +08:00
|
|
|
/*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* Desired PSSCR in r3
|
|
|
|
*
|
|
|
|
* GPRs may be lost, so they are saved here. Wakeup is by interrupt only.
|
|
|
|
* The SRESET wakeup returns to this function's caller by calling
|
|
|
|
* idle_return_gpr_loss with r3 set to desired return value.
|
|
|
|
*
|
|
|
|
* A wakeup without GPR loss may alteratively be handled as in
|
|
|
|
* isa300_idle_stop_noloss and blr directly, as an optimisation.
|
|
|
|
*
|
|
|
|
* The caller is responsible for saving/restoring SPRs, MSR, timebase,
|
|
|
|
* etc.
|
powerpc/powernv: Fix race in updating core_idle_state
core_idle_state is maintained for each core. It uses 0-7 bits to track
whether a thread in the core has entered fastsleep or winkle. 8th bit is
used as a lock bit.
The lock bit is set in these 2 scenarios-
- The thread is first in subcore to wakeup from sleep/winkle.
- If its the last thread in the core about to enter sleep/winkle
While the lock bit is set, if any other thread in the core wakes up, it
loops until the lock bit is cleared before proceeding in the wakeup
path. This helps prevent race conditions w.r.t fastsleep workaround and
prevents threads from switching to process context before core/subcore
resources are restored.
But, in the path to sleep/winkle entry, we currently don't check for
lock-bit. This exposes us to following race when running with subcore
on-
First thread in the subcorea Another thread in the same
waking up core entering sleep/winkle
lwarx r15,0,r14
ori r15,r15,PNV_CORE_IDLE_LOCK_BIT
stwcx. r15,0,r14
[Code to restore subcore state]
lwarx r15,0,r14
[clear thread bit]
stwcx. r15,0,r14
andi. r15,r15,PNV_CORE_IDLE_THREAD_BITS
stw r15,0(r14)
Here, after the thread entering sleep clears its thread bit in
core_idle_state, the value is overwritten by the thread waking up.
In such cases when the core enters fastsleep, code mistakes an idle
thread as running. Because of this, the first thread waking up from
fastsleep which is supposed to resync timebase skips it. So we can
end up having a core with stale timebase value.
This patch fixes the above race by looping on the lock bit even while
entering the idle states.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Fixes: 7b54e9f213f76 'powernv/powerpc: Add winkle support for offline cpus'
Cc: stable@vger.kernel.org # 3.19+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-07-07 04:09:23 +08:00
|
|
|
*/
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
_GLOBAL(isa300_idle_stop_mayloss)
|
|
|
|
mtspr SPRN_PSSCR,r3
|
|
|
|
std r1,PACAR1(r13)
|
|
|
|
mflr r4
|
|
|
|
mfcr r5
|
|
|
|
/* use stack red zone rather than a new frame for saving regs */
|
|
|
|
std r2,-8*0(r1)
|
|
|
|
std r14,-8*1(r1)
|
|
|
|
std r15,-8*2(r1)
|
|
|
|
std r16,-8*3(r1)
|
|
|
|
std r17,-8*4(r1)
|
|
|
|
std r18,-8*5(r1)
|
|
|
|
std r19,-8*6(r1)
|
|
|
|
std r20,-8*7(r1)
|
|
|
|
std r21,-8*8(r1)
|
|
|
|
std r22,-8*9(r1)
|
|
|
|
std r23,-8*10(r1)
|
|
|
|
std r24,-8*11(r1)
|
|
|
|
std r25,-8*12(r1)
|
|
|
|
std r26,-8*13(r1)
|
|
|
|
std r27,-8*14(r1)
|
|
|
|
std r28,-8*15(r1)
|
|
|
|
std r29,-8*16(r1)
|
|
|
|
std r30,-8*17(r1)
|
|
|
|
std r31,-8*18(r1)
|
|
|
|
std r4,-8*19(r1)
|
|
|
|
std r5,-8*20(r1)
|
|
|
|
/* 168 bytes */
|
|
|
|
PPC_STOP
|
|
|
|
b . /* catch bugs */
|
powerpc/powernv: Fix race in updating core_idle_state
core_idle_state is maintained for each core. It uses 0-7 bits to track
whether a thread in the core has entered fastsleep or winkle. 8th bit is
used as a lock bit.
The lock bit is set in these 2 scenarios-
- The thread is first in subcore to wakeup from sleep/winkle.
- If its the last thread in the core about to enter sleep/winkle
While the lock bit is set, if any other thread in the core wakes up, it
loops until the lock bit is cleared before proceeding in the wakeup
path. This helps prevent race conditions w.r.t fastsleep workaround and
prevents threads from switching to process context before core/subcore
resources are restored.
But, in the path to sleep/winkle entry, we currently don't check for
lock-bit. This exposes us to following race when running with subcore
on-
First thread in the subcorea Another thread in the same
waking up core entering sleep/winkle
lwarx r15,0,r14
ori r15,r15,PNV_CORE_IDLE_LOCK_BIT
stwcx. r15,0,r14
[Code to restore subcore state]
lwarx r15,0,r14
[clear thread bit]
stwcx. r15,0,r14
andi. r15,r15,PNV_CORE_IDLE_THREAD_BITS
stw r15,0(r14)
Here, after the thread entering sleep clears its thread bit in
core_idle_state, the value is overwritten by the thread waking up.
In such cases when the core enters fastsleep, code mistakes an idle
thread as running. Because of this, the first thread waking up from
fastsleep which is supposed to resync timebase skips it. So we can
end up having a core with stale timebase value.
This patch fixes the above race by looping on the lock bit even while
entering the idle states.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Fixes: 7b54e9f213f76 'powernv/powerpc: Add winkle support for offline cpus'
Cc: stable@vger.kernel.org # 3.19+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-07-07 04:09:23 +08:00
|
|
|
|
2014-02-26 08:08:25 +08:00
|
|
|
/*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* Desired return value in r3
|
|
|
|
*
|
|
|
|
* The idle wakeup SRESET interrupt can call this after calling
|
|
|
|
* to return to the idle sleep function caller with r3 as the return code.
|
2014-05-23 16:15:26 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* This must not be used if idle was entered via a _noloss function (use
|
|
|
|
* a simple blr instead).
|
2014-02-26 08:08:25 +08:00
|
|
|
*/
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
_GLOBAL(idle_return_gpr_loss)
|
|
|
|
ld r1,PACAR1(r13)
|
|
|
|
ld r4,-8*19(r1)
|
|
|
|
ld r5,-8*20(r1)
|
|
|
|
mtlr r4
|
|
|
|
mtcr r5
|
|
|
|
/*
|
|
|
|
* KVM nap requires r2 to be saved, rather than just restoring it
|
|
|
|
* from PACATOC. This could be avoided for that less common case
|
|
|
|
* if KVM saved its r2.
|
|
|
|
*/
|
|
|
|
ld r2,-8*0(r1)
|
|
|
|
ld r14,-8*1(r1)
|
|
|
|
ld r15,-8*2(r1)
|
|
|
|
ld r16,-8*3(r1)
|
|
|
|
ld r17,-8*4(r1)
|
|
|
|
ld r18,-8*5(r1)
|
|
|
|
ld r19,-8*6(r1)
|
|
|
|
ld r20,-8*7(r1)
|
|
|
|
ld r21,-8*8(r1)
|
|
|
|
ld r22,-8*9(r1)
|
|
|
|
ld r23,-8*10(r1)
|
|
|
|
ld r24,-8*11(r1)
|
|
|
|
ld r25,-8*12(r1)
|
|
|
|
ld r26,-8*13(r1)
|
|
|
|
ld r27,-8*14(r1)
|
|
|
|
ld r28,-8*15(r1)
|
|
|
|
ld r29,-8*16(r1)
|
|
|
|
ld r30,-8*17(r1)
|
|
|
|
ld r31,-8*18(r1)
|
|
|
|
blr
|
powerpc/powernv: Switch off MMU before entering nap/sleep/rvwinkle mode
Currently, when going idle, we set the flag indicating that we are in
nap mode (paca->kvm_hstate.hwthread_state) and then execute the nap
(or sleep or rvwinkle) instruction, all with the MMU on. This is bad
for two reasons: (a) the architecture specifies that those instructions
must be executed with the MMU off, and in fact with only the SF, HV, ME
and possibly RI bits set, and (b) this introduces a race, because as
soon as we set the flag, another thread can switch the MMU to a guest
context. If the race is lost, this thread will typically start looping
on relocation-on ISIs at 0xc...4400.
This fixes it by setting the MSR as required by the architecture before
setting the flag or executing the nap/sleep/rvwinkle instruction.
Cc: stable@vger.kernel.org
[ shreyas@linux.vnet.ibm.com: Edited to handle LE ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-10 02:56:50 +08:00
|
|
|
|
2017-08-29 19:36:35 +08:00
|
|
|
/*
|
|
|
|
* This is the sequence required to execute idle instructions, as
|
|
|
|
* specified in ISA v2.07 (and earlier). MSR[IR] and MSR[DR] must be 0.
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
*
|
|
|
|
* The 0(r1) slot is used to save r2 in isa206, so use that here.
|
2017-08-29 19:36:35 +08:00
|
|
|
*/
|
2017-08-29 19:40:35 +08:00
|
|
|
#define IDLE_STATE_ENTER_SEQ_NORET(IDLE_INST) \
|
2017-08-29 19:36:35 +08:00
|
|
|
/* Magic NAP/SLEEP/WINKLE mode enter sequence */ \
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
std r2,0(r1); \
|
2017-08-29 19:36:35 +08:00
|
|
|
ptesync; \
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
ld r2,0(r1); \
|
|
|
|
236: cmpd cr0,r2,r2; \
|
2017-08-29 19:36:35 +08:00
|
|
|
bne 236b; \
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
IDLE_INST; \
|
|
|
|
b . /* catch bugs */
|
2017-07-10 14:19:38 +08:00
|
|
|
|
2016-07-08 14:20:49 +08:00
|
|
|
/*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* Desired instruction type in r3
|
2018-04-04 07:01:08 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* GPRs may be lost, so they are saved here. Wakeup is by interrupt only.
|
|
|
|
* The SRESET wakeup returns to this function's caller by calling
|
|
|
|
* idle_return_gpr_loss with r3 set to desired return value.
|
2017-04-19 21:05:47 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* A wakeup without GPR loss may alteratively be handled as in
|
|
|
|
* isa300_idle_stop_noloss and blr directly, as an optimisation.
|
2016-07-08 14:20:44 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* The caller is responsible for saving/restoring SPRs, MSR, timebase,
|
|
|
|
* etc.
|
2017-04-19 21:05:50 +08:00
|
|
|
*
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
* This must be called in real-mode (MSR_IDLE).
|
2016-07-08 14:20:49 +08:00
|
|
|
*/
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
_GLOBAL(isa206_idle_insn_mayloss)
|
|
|
|
std r1,PACAR1(r13)
|
|
|
|
mflr r4
|
|
|
|
mfcr r5
|
|
|
|
/* use stack red zone rather than a new frame for saving regs */
|
|
|
|
std r2,-8*0(r1)
|
|
|
|
std r14,-8*1(r1)
|
|
|
|
std r15,-8*2(r1)
|
|
|
|
std r16,-8*3(r1)
|
|
|
|
std r17,-8*4(r1)
|
|
|
|
std r18,-8*5(r1)
|
|
|
|
std r19,-8*6(r1)
|
|
|
|
std r20,-8*7(r1)
|
|
|
|
std r21,-8*8(r1)
|
|
|
|
std r22,-8*9(r1)
|
|
|
|
std r23,-8*10(r1)
|
|
|
|
std r24,-8*11(r1)
|
|
|
|
std r25,-8*12(r1)
|
|
|
|
std r26,-8*13(r1)
|
|
|
|
std r27,-8*14(r1)
|
|
|
|
std r28,-8*15(r1)
|
|
|
|
std r29,-8*16(r1)
|
|
|
|
std r30,-8*17(r1)
|
|
|
|
std r31,-8*18(r1)
|
|
|
|
std r4,-8*19(r1)
|
|
|
|
std r5,-8*20(r1)
|
|
|
|
cmpwi r3,PNV_THREAD_NAP
|
|
|
|
bne 1f
|
|
|
|
IDLE_STATE_ENTER_SEQ_NORET(PPC_NAP)
|
|
|
|
1: cmpwi r3,PNV_THREAD_SLEEP
|
2017-04-19 21:05:50 +08:00
|
|
|
bne 2f
|
powerpc/64s: Reimplement book3s idle code in C
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-12 22:30:52 +08:00
|
|
|
IDLE_STATE_ENTER_SEQ_NORET(PPC_SLEEP)
|
|
|
|
2: IDLE_STATE_ENTER_SEQ_NORET(PPC_WINKLE)
|
2019-07-11 10:24:03 +08:00
|
|
|
#endif
|
2011-01-24 15:42:41 +08:00
|
|
|
|
2019-07-11 10:24:03 +08:00
|
|
|
#ifdef CONFIG_PPC_970_NAP
|
|
|
|
_GLOBAL(power4_idle_nap)
|
|
|
|
LOAD_REG_IMMEDIATE(r7, MSR_KERNEL|MSR_EE|MSR_POW)
|
|
|
|
ld r9,PACA_THREAD_INFO(r13)
|
|
|
|
ld r8,TI_LOCAL_FLAGS(r9)
|
|
|
|
ori r8,r8,_TLF_NAPPING
|
|
|
|
std r8,TI_LOCAL_FLAGS(r9)
|
|
|
|
/*
|
|
|
|
* NAPPING bit is set, from this point onward power4_fixup_nap
|
|
|
|
* will cause exceptions to return to power4_idle_nap_return.
|
|
|
|
*/
|
|
|
|
1: sync
|
|
|
|
isync
|
|
|
|
mtmsrd r7
|
|
|
|
isync
|
|
|
|
b 1b
|
|
|
|
#endif
|