2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 11:04:00 +08:00
linux-next/net/nfc/digital_core.c

846 lines
20 KiB
C
Raw Normal View History

NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
/*
* NFC Digital Protocol stack
* Copyright (c) 2013, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#define pr_fmt(fmt) "digital: %s: " fmt, __func__
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
#include <linux/module.h>
#include "digital.h"
#define DIGITAL_PROTO_NFCA_RF_TECH \
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
(NFC_PROTO_JEWEL_MASK | NFC_PROTO_MIFARE_MASK | NFC_PROTO_NFC_DEP_MASK)
#define DIGITAL_PROTO_NFCB_RF_TECH NFC_PROTO_ISO14443_B_MASK
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
#define DIGITAL_PROTO_NFCF_RF_TECH \
(NFC_PROTO_FELICA_MASK | NFC_PROTO_NFC_DEP_MASK)
#define DIGITAL_PROTO_ISO15693_RF_TECH NFC_PROTO_ISO15693_MASK
struct digital_cmd {
struct list_head queue;
u8 type;
u8 pending;
u16 timeout;
struct sk_buff *req;
struct sk_buff *resp;
struct digital_tg_mdaa_params *mdaa_params;
nfc_digital_cmd_complete_t cmd_cb;
void *cb_context;
};
struct sk_buff *digital_skb_alloc(struct nfc_digital_dev *ddev,
unsigned int len)
{
struct sk_buff *skb;
skb = alloc_skb(len + ddev->tx_headroom + ddev->tx_tailroom,
GFP_KERNEL);
if (skb)
skb_reserve(skb, ddev->tx_headroom);
return skb;
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
void digital_skb_add_crc(struct sk_buff *skb, crc_func_t crc_func, u16 init,
u8 bitwise_inv, u8 msb_first)
{
u16 crc;
crc = crc_func(init, skb->data, skb->len);
if (bitwise_inv)
crc = ~crc;
if (msb_first)
crc = __fswab16(crc);
*skb_put(skb, 1) = crc & 0xFF;
*skb_put(skb, 1) = (crc >> 8) & 0xFF;
}
int digital_skb_check_crc(struct sk_buff *skb, crc_func_t crc_func,
u16 crc_init, u8 bitwise_inv, u8 msb_first)
{
int rc;
u16 crc;
if (skb->len <= 2)
return -EIO;
crc = crc_func(crc_init, skb->data, skb->len - 2);
if (bitwise_inv)
crc = ~crc;
if (msb_first)
crc = __swab16(crc);
rc = (skb->data[skb->len - 2] - (crc & 0xFF)) +
(skb->data[skb->len - 1] - ((crc >> 8) & 0xFF));
if (rc)
return -EIO;
skb_trim(skb, skb->len - 2);
return 0;
}
static inline void digital_switch_rf(struct nfc_digital_dev *ddev, bool on)
{
ddev->ops->switch_rf(ddev, on);
}
static inline void digital_abort_cmd(struct nfc_digital_dev *ddev)
{
ddev->ops->abort_cmd(ddev);
}
static void digital_wq_cmd_complete(struct work_struct *work)
{
struct digital_cmd *cmd;
struct nfc_digital_dev *ddev = container_of(work,
struct nfc_digital_dev,
cmd_complete_work);
mutex_lock(&ddev->cmd_lock);
cmd = list_first_entry_or_null(&ddev->cmd_queue, struct digital_cmd,
queue);
if (!cmd) {
mutex_unlock(&ddev->cmd_lock);
return;
}
list_del(&cmd->queue);
mutex_unlock(&ddev->cmd_lock);
if (!IS_ERR(cmd->resp))
print_hex_dump_debug("DIGITAL RX: ", DUMP_PREFIX_NONE, 16, 1,
cmd->resp->data, cmd->resp->len, false);
cmd->cmd_cb(ddev, cmd->cb_context, cmd->resp);
kfree(cmd->mdaa_params);
kfree(cmd);
schedule_work(&ddev->cmd_work);
}
static void digital_send_cmd_complete(struct nfc_digital_dev *ddev,
void *arg, struct sk_buff *resp)
{
struct digital_cmd *cmd = arg;
cmd->resp = resp;
schedule_work(&ddev->cmd_complete_work);
}
static void digital_wq_cmd(struct work_struct *work)
{
int rc;
struct digital_cmd *cmd;
struct digital_tg_mdaa_params *params;
struct nfc_digital_dev *ddev = container_of(work,
struct nfc_digital_dev,
cmd_work);
mutex_lock(&ddev->cmd_lock);
cmd = list_first_entry_or_null(&ddev->cmd_queue, struct digital_cmd,
queue);
if (!cmd || cmd->pending) {
mutex_unlock(&ddev->cmd_lock);
return;
}
mutex_unlock(&ddev->cmd_lock);
if (cmd->req)
print_hex_dump_debug("DIGITAL TX: ", DUMP_PREFIX_NONE, 16, 1,
cmd->req->data, cmd->req->len, false);
switch (cmd->type) {
case DIGITAL_CMD_IN_SEND:
rc = ddev->ops->in_send_cmd(ddev, cmd->req, cmd->timeout,
digital_send_cmd_complete, cmd);
break;
case DIGITAL_CMD_TG_SEND:
rc = ddev->ops->tg_send_cmd(ddev, cmd->req, cmd->timeout,
digital_send_cmd_complete, cmd);
break;
case DIGITAL_CMD_TG_LISTEN:
rc = ddev->ops->tg_listen(ddev, cmd->timeout,
digital_send_cmd_complete, cmd);
break;
case DIGITAL_CMD_TG_LISTEN_MDAA:
params = cmd->mdaa_params;
rc = ddev->ops->tg_listen_mdaa(ddev, params, cmd->timeout,
digital_send_cmd_complete, cmd);
break;
case DIGITAL_CMD_TG_LISTEN_MD:
rc = ddev->ops->tg_listen_md(ddev, cmd->timeout,
digital_send_cmd_complete, cmd);
break;
default:
pr_err("Unknown cmd type %d\n", cmd->type);
return;
}
if (!rc)
return;
pr_err("in_send_command returned err %d\n", rc);
mutex_lock(&ddev->cmd_lock);
list_del(&cmd->queue);
mutex_unlock(&ddev->cmd_lock);
kfree_skb(cmd->req);
kfree(cmd->mdaa_params);
kfree(cmd);
schedule_work(&ddev->cmd_work);
}
int digital_send_cmd(struct nfc_digital_dev *ddev, u8 cmd_type,
struct sk_buff *skb, struct digital_tg_mdaa_params *params,
u16 timeout, nfc_digital_cmd_complete_t cmd_cb,
void *cb_context)
{
struct digital_cmd *cmd;
cmd = kzalloc(sizeof(struct digital_cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->type = cmd_type;
cmd->timeout = timeout;
cmd->req = skb;
cmd->mdaa_params = params;
cmd->cmd_cb = cmd_cb;
cmd->cb_context = cb_context;
INIT_LIST_HEAD(&cmd->queue);
mutex_lock(&ddev->cmd_lock);
list_add_tail(&cmd->queue, &ddev->cmd_queue);
mutex_unlock(&ddev->cmd_lock);
schedule_work(&ddev->cmd_work);
return 0;
}
int digital_in_configure_hw(struct nfc_digital_dev *ddev, int type, int param)
{
int rc;
rc = ddev->ops->in_configure_hw(ddev, type, param);
if (rc)
pr_err("in_configure_hw failed: %d\n", rc);
return rc;
}
int digital_tg_configure_hw(struct nfc_digital_dev *ddev, int type, int param)
{
int rc;
rc = ddev->ops->tg_configure_hw(ddev, type, param);
if (rc)
pr_err("tg_configure_hw failed: %d\n", rc);
return rc;
}
static int digital_tg_listen_mdaa(struct nfc_digital_dev *ddev, u8 rf_tech)
{
struct digital_tg_mdaa_params *params;
params = kzalloc(sizeof(struct digital_tg_mdaa_params), GFP_KERNEL);
if (!params)
return -ENOMEM;
params->sens_res = DIGITAL_SENS_RES_NFC_DEP;
get_random_bytes(params->nfcid1, sizeof(params->nfcid1));
params->sel_res = DIGITAL_SEL_RES_NFC_DEP;
params->nfcid2[0] = DIGITAL_SENSF_NFCID2_NFC_DEP_B1;
params->nfcid2[1] = DIGITAL_SENSF_NFCID2_NFC_DEP_B2;
get_random_bytes(params->nfcid2 + 2, NFC_NFCID2_MAXSIZE - 2);
params->sc = DIGITAL_SENSF_FELICA_SC;
return digital_send_cmd(ddev, DIGITAL_CMD_TG_LISTEN_MDAA, NULL, params,
500, digital_tg_recv_atr_req, NULL);
}
static int digital_tg_listen_md(struct nfc_digital_dev *ddev, u8 rf_tech)
{
return digital_send_cmd(ddev, DIGITAL_CMD_TG_LISTEN_MD, NULL, NULL, 500,
digital_tg_recv_md_req, NULL);
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
int digital_target_found(struct nfc_digital_dev *ddev,
struct nfc_target *target, u8 protocol)
{
int rc;
u8 framing;
u8 rf_tech;
u8 poll_tech_count;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
int (*check_crc)(struct sk_buff *skb);
void (*add_crc)(struct sk_buff *skb);
rf_tech = ddev->poll_techs[ddev->poll_tech_index].rf_tech;
switch (protocol) {
case NFC_PROTO_JEWEL:
framing = NFC_DIGITAL_FRAMING_NFCA_T1T;
check_crc = digital_skb_check_crc_b;
add_crc = digital_skb_add_crc_b;
break;
case NFC_PROTO_MIFARE:
framing = NFC_DIGITAL_FRAMING_NFCA_T2T;
check_crc = digital_skb_check_crc_a;
add_crc = digital_skb_add_crc_a;
break;
case NFC_PROTO_FELICA:
framing = NFC_DIGITAL_FRAMING_NFCF_T3T;
check_crc = digital_skb_check_crc_f;
add_crc = digital_skb_add_crc_f;
break;
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
case NFC_PROTO_NFC_DEP:
if (rf_tech == NFC_DIGITAL_RF_TECH_106A) {
framing = NFC_DIGITAL_FRAMING_NFCA_NFC_DEP;
check_crc = digital_skb_check_crc_a;
add_crc = digital_skb_add_crc_a;
} else {
framing = NFC_DIGITAL_FRAMING_NFCF_NFC_DEP;
check_crc = digital_skb_check_crc_f;
add_crc = digital_skb_add_crc_f;
}
break;
case NFC_PROTO_ISO15693:
framing = NFC_DIGITAL_FRAMING_ISO15693_T5T;
check_crc = digital_skb_check_crc_b;
add_crc = digital_skb_add_crc_b;
break;
case NFC_PROTO_ISO14443:
framing = NFC_DIGITAL_FRAMING_NFCA_T4T;
check_crc = digital_skb_check_crc_a;
add_crc = digital_skb_add_crc_a;
break;
case NFC_PROTO_ISO14443_B:
framing = NFC_DIGITAL_FRAMING_NFCB_T4T;
check_crc = digital_skb_check_crc_b;
add_crc = digital_skb_add_crc_b;
break;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
default:
pr_err("Invalid protocol %d\n", protocol);
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
return -EINVAL;
}
pr_debug("rf_tech=%d, protocol=%d\n", rf_tech, protocol);
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
ddev->curr_rf_tech = rf_tech;
if (DIGITAL_DRV_CAPS_IN_CRC(ddev)) {
ddev->skb_add_crc = digital_skb_add_crc_none;
ddev->skb_check_crc = digital_skb_check_crc_none;
} else {
ddev->skb_add_crc = add_crc;
ddev->skb_check_crc = check_crc;
}
rc = digital_in_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING, framing);
if (rc)
return rc;
target->supported_protocols = (1 << protocol);
poll_tech_count = ddev->poll_tech_count;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
ddev->poll_tech_count = 0;
rc = nfc_targets_found(ddev->nfc_dev, target, 1);
if (rc) {
ddev->poll_tech_count = poll_tech_count;
return rc;
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
return 0;
}
void digital_poll_next_tech(struct nfc_digital_dev *ddev)
{
u8 rand_mod;
digital_switch_rf(ddev, 0);
mutex_lock(&ddev->poll_lock);
if (!ddev->poll_tech_count) {
mutex_unlock(&ddev->poll_lock);
return;
}
get_random_bytes(&rand_mod, sizeof(rand_mod));
ddev->poll_tech_index = rand_mod % ddev->poll_tech_count;
mutex_unlock(&ddev->poll_lock);
schedule_work(&ddev->poll_work);
}
static void digital_wq_poll(struct work_struct *work)
{
int rc;
struct digital_poll_tech *poll_tech;
struct nfc_digital_dev *ddev = container_of(work,
struct nfc_digital_dev,
poll_work);
mutex_lock(&ddev->poll_lock);
if (!ddev->poll_tech_count) {
mutex_unlock(&ddev->poll_lock);
return;
}
poll_tech = &ddev->poll_techs[ddev->poll_tech_index];
mutex_unlock(&ddev->poll_lock);
rc = poll_tech->poll_func(ddev, poll_tech->rf_tech);
if (rc)
digital_poll_next_tech(ddev);
}
static void digital_add_poll_tech(struct nfc_digital_dev *ddev, u8 rf_tech,
digital_poll_t poll_func)
{
struct digital_poll_tech *poll_tech;
if (ddev->poll_tech_count >= NFC_DIGITAL_POLL_MODE_COUNT_MAX)
return;
poll_tech = &ddev->poll_techs[ddev->poll_tech_count++];
poll_tech->rf_tech = rf_tech;
poll_tech->poll_func = poll_func;
}
/**
* start_poll operation
*
* For every supported protocol, the corresponding polling function is added
* to the table of polling technologies (ddev->poll_techs[]) using
* digital_add_poll_tech().
* When a polling function fails (by timeout or protocol error) the next one is
* schedule by digital_poll_next_tech() on the poll workqueue (ddev->poll_work).
*/
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
static int digital_start_poll(struct nfc_dev *nfc_dev, __u32 im_protocols,
__u32 tm_protocols)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
u32 matching_im_protocols, matching_tm_protocols;
pr_debug("protocols: im 0x%x, tm 0x%x, supported 0x%x\n", im_protocols,
tm_protocols, ddev->protocols);
matching_im_protocols = ddev->protocols & im_protocols;
matching_tm_protocols = ddev->protocols & tm_protocols;
if (!matching_im_protocols && !matching_tm_protocols) {
pr_err("Unknown protocol\n");
return -EINVAL;
}
if (ddev->poll_tech_count) {
pr_err("Already polling\n");
return -EBUSY;
}
if (ddev->curr_protocol) {
pr_err("A target is already active\n");
return -EBUSY;
}
ddev->poll_tech_count = 0;
ddev->poll_tech_index = 0;
if (matching_im_protocols & DIGITAL_PROTO_NFCA_RF_TECH)
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_106A,
digital_in_send_sens_req);
if (matching_im_protocols & DIGITAL_PROTO_NFCB_RF_TECH)
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_106B,
digital_in_send_sensb_req);
if (matching_im_protocols & DIGITAL_PROTO_NFCF_RF_TECH) {
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_212F,
digital_in_send_sensf_req);
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_424F,
digital_in_send_sensf_req);
}
if (matching_im_protocols & DIGITAL_PROTO_ISO15693_RF_TECH)
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_ISO15693,
digital_in_send_iso15693_inv_req);
if (matching_tm_protocols & NFC_PROTO_NFC_DEP_MASK) {
if (ddev->ops->tg_listen_mdaa) {
digital_add_poll_tech(ddev, 0,
digital_tg_listen_mdaa);
} else if (ddev->ops->tg_listen_md) {
digital_add_poll_tech(ddev, 0,
digital_tg_listen_md);
} else {
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_106A,
digital_tg_listen_nfca);
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_212F,
digital_tg_listen_nfcf);
digital_add_poll_tech(ddev, NFC_DIGITAL_RF_TECH_424F,
digital_tg_listen_nfcf);
}
}
if (!ddev->poll_tech_count) {
pr_err("Unsupported protocols: im=0x%x, tm=0x%x\n",
matching_im_protocols, matching_tm_protocols);
return -EINVAL;
}
schedule_work(&ddev->poll_work);
return 0;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static void digital_stop_poll(struct nfc_dev *nfc_dev)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
mutex_lock(&ddev->poll_lock);
if (!ddev->poll_tech_count) {
pr_err("Polling operation was not running\n");
mutex_unlock(&ddev->poll_lock);
return;
}
ddev->poll_tech_count = 0;
mutex_unlock(&ddev->poll_lock);
cancel_work_sync(&ddev->poll_work);
digital_abort_cmd(ddev);
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static int digital_dev_up(struct nfc_dev *nfc_dev)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
digital_switch_rf(ddev, 1);
return 0;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static int digital_dev_down(struct nfc_dev *nfc_dev)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
digital_switch_rf(ddev, 0);
return 0;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static int digital_dep_link_up(struct nfc_dev *nfc_dev,
struct nfc_target *target,
__u8 comm_mode, __u8 *gb, size_t gb_len)
{
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
int rc;
rc = digital_in_send_atr_req(ddev, target, comm_mode, gb, gb_len);
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
if (!rc)
ddev->curr_protocol = NFC_PROTO_NFC_DEP;
return rc;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static int digital_dep_link_down(struct nfc_dev *nfc_dev)
{
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
ddev->curr_protocol = 0;
return 0;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static int digital_activate_target(struct nfc_dev *nfc_dev,
struct nfc_target *target, __u32 protocol)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
if (ddev->poll_tech_count) {
pr_err("Can't activate a target while polling\n");
return -EBUSY;
}
if (ddev->curr_protocol) {
pr_err("A target is already active\n");
return -EBUSY;
}
ddev->curr_protocol = protocol;
return 0;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static void digital_deactivate_target(struct nfc_dev *nfc_dev,
struct nfc_target *target)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
if (!ddev->curr_protocol) {
pr_err("No active target\n");
return;
}
ddev->curr_protocol = 0;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static int digital_tg_send(struct nfc_dev *dev, struct sk_buff *skb)
{
struct nfc_digital_dev *ddev = nfc_get_drvdata(dev);
return digital_tg_send_dep_res(ddev, skb);
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
static void digital_in_send_complete(struct nfc_digital_dev *ddev, void *arg,
struct sk_buff *resp)
{
struct digital_data_exch *data_exch = arg;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
resp = NULL;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
goto done;
}
if (ddev->curr_protocol == NFC_PROTO_MIFARE) {
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
rc = digital_in_recv_mifare_res(resp);
/* crc check is done in digital_in_recv_mifare_res() */
goto done;
}
if ((ddev->curr_protocol == NFC_PROTO_ISO14443) ||
(ddev->curr_protocol == NFC_PROTO_ISO14443_B)) {
rc = digital_in_iso_dep_pull_sod(ddev, resp);
if (rc)
goto done;
}
rc = ddev->skb_check_crc(resp);
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
done:
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
if (rc) {
kfree_skb(resp);
resp = NULL;
}
data_exch->cb(data_exch->cb_context, resp, rc);
kfree(data_exch);
}
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
static int digital_in_send(struct nfc_dev *nfc_dev, struct nfc_target *target,
struct sk_buff *skb, data_exchange_cb_t cb,
void *cb_context)
{
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
struct nfc_digital_dev *ddev = nfc_get_drvdata(nfc_dev);
struct digital_data_exch *data_exch;
int rc;
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
data_exch = kzalloc(sizeof(struct digital_data_exch), GFP_KERNEL);
if (!data_exch) {
pr_err("Failed to allocate data_exch struct\n");
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
return -ENOMEM;
}
data_exch->cb = cb;
data_exch->cb_context = cb_context;
if (ddev->curr_protocol == NFC_PROTO_NFC_DEP) {
rc = digital_in_send_dep_req(ddev, target, skb, data_exch);
goto exit;
}
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
if ((ddev->curr_protocol == NFC_PROTO_ISO14443) ||
(ddev->curr_protocol == NFC_PROTO_ISO14443_B)) {
rc = digital_in_iso_dep_push_sod(ddev, skb);
if (rc)
goto exit;
}
NFC Digital: Add NFC-A technology support This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:27 +08:00
ddev->skb_add_crc(skb);
rc = digital_in_send_cmd(ddev, skb, 500, digital_in_send_complete,
data_exch);
exit:
if (rc)
kfree(data_exch);
return rc;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
static struct nfc_ops digital_nfc_ops = {
.dev_up = digital_dev_up,
.dev_down = digital_dev_down,
.start_poll = digital_start_poll,
.stop_poll = digital_stop_poll,
.dep_link_up = digital_dep_link_up,
.dep_link_down = digital_dep_link_down,
.activate_target = digital_activate_target,
.deactivate_target = digital_deactivate_target,
.tm_send = digital_tg_send,
.im_transceive = digital_in_send,
};
struct nfc_digital_dev *nfc_digital_allocate_device(struct nfc_digital_ops *ops,
__u32 supported_protocols,
__u32 driver_capabilities,
int tx_headroom, int tx_tailroom)
{
struct nfc_digital_dev *ddev;
if (!ops->in_configure_hw || !ops->in_send_cmd || !ops->tg_listen ||
!ops->tg_configure_hw || !ops->tg_send_cmd || !ops->abort_cmd ||
!ops->switch_rf || (ops->tg_listen_md && !ops->tg_get_rf_tech))
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
return NULL;
ddev = kzalloc(sizeof(struct nfc_digital_dev), GFP_KERNEL);
if (!ddev)
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
return NULL;
ddev->driver_capabilities = driver_capabilities;
ddev->ops = ops;
mutex_init(&ddev->cmd_lock);
INIT_LIST_HEAD(&ddev->cmd_queue);
INIT_WORK(&ddev->cmd_work, digital_wq_cmd);
INIT_WORK(&ddev->cmd_complete_work, digital_wq_cmd_complete);
mutex_init(&ddev->poll_lock);
INIT_WORK(&ddev->poll_work, digital_wq_poll);
if (supported_protocols & NFC_PROTO_JEWEL_MASK)
ddev->protocols |= NFC_PROTO_JEWEL_MASK;
if (supported_protocols & NFC_PROTO_MIFARE_MASK)
ddev->protocols |= NFC_PROTO_MIFARE_MASK;
if (supported_protocols & NFC_PROTO_FELICA_MASK)
ddev->protocols |= NFC_PROTO_FELICA_MASK;
NFC Digital: Add initiator NFC-DEP support This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:29 +08:00
if (supported_protocols & NFC_PROTO_NFC_DEP_MASK)
ddev->protocols |= NFC_PROTO_NFC_DEP_MASK;
if (supported_protocols & NFC_PROTO_ISO15693_MASK)
ddev->protocols |= NFC_PROTO_ISO15693_MASK;
if (supported_protocols & NFC_PROTO_ISO14443_MASK)
ddev->protocols |= NFC_PROTO_ISO14443_MASK;
if (supported_protocols & NFC_PROTO_ISO14443_B_MASK)
ddev->protocols |= NFC_PROTO_ISO14443_B_MASK;
ddev->tx_headroom = tx_headroom + DIGITAL_MAX_HEADER_LEN;
ddev->tx_tailroom = tx_tailroom + DIGITAL_CRC_LEN;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
ddev->nfc_dev = nfc_allocate_device(&digital_nfc_ops, ddev->protocols,
ddev->tx_headroom,
ddev->tx_tailroom);
if (!ddev->nfc_dev) {
pr_err("nfc_allocate_device failed\n");
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
goto free_dev;
}
nfc_set_drvdata(ddev->nfc_dev, ddev);
return ddev;
free_dev:
kfree(ddev);
return NULL;
}
EXPORT_SYMBOL(nfc_digital_allocate_device);
void nfc_digital_free_device(struct nfc_digital_dev *ddev)
{
nfc_free_device(ddev->nfc_dev);
kfree(ddev);
}
EXPORT_SYMBOL(nfc_digital_free_device);
int nfc_digital_register_device(struct nfc_digital_dev *ddev)
{
return nfc_register_device(ddev->nfc_dev);
}
EXPORT_SYMBOL(nfc_digital_register_device);
void nfc_digital_unregister_device(struct nfc_digital_dev *ddev)
{
struct digital_cmd *cmd, *n;
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
nfc_unregister_device(ddev->nfc_dev);
mutex_lock(&ddev->poll_lock);
ddev->poll_tech_count = 0;
mutex_unlock(&ddev->poll_lock);
cancel_work_sync(&ddev->poll_work);
cancel_work_sync(&ddev->cmd_work);
cancel_work_sync(&ddev->cmd_complete_work);
list_for_each_entry_safe(cmd, n, &ddev->cmd_queue, queue) {
list_del(&cmd->queue);
kfree(cmd->mdaa_params);
kfree(cmd);
}
NFC: Digital Protocol stack implementation This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-19 23:55:25 +08:00
}
EXPORT_SYMBOL(nfc_digital_unregister_device);
MODULE_LICENSE("GPL");