2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 13:44:01 +08:00
linux-next/arch/x86/kernel/cpu/cpu_debug.c

786 lines
22 KiB
C
Raw Normal View History

/*
* CPU x86 architecture debug code
*
* Copyright(C) 2009 Jaswinder Singh Rajput
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/interrupt.h>
#include <linux/compiler.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/kprobes.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <asm/cpu_debug.h>
#include <asm/paravirt.h>
#include <asm/system.h>
#include <asm/traps.h>
#include <asm/apic.h>
#include <asm/desc.h>
static DEFINE_PER_CPU(struct cpu_cpuX_base, cpu_arr[CPU_REG_ALL_BIT]);
static DEFINE_PER_CPU(struct cpu_private *, priv_arr[MAX_CPU_FILES]);
static DEFINE_PER_CPU(unsigned, cpu_modelflag);
static DEFINE_PER_CPU(int, cpu_priv_count);
static DEFINE_PER_CPU(unsigned, cpu_model);
static DEFINE_MUTEX(cpu_debug_lock);
static struct dentry *cpu_debugfs_dir;
static struct cpu_debug_base cpu_base[] = {
{ "mc", CPU_MC }, /* Machine Check */
{ "monitor", CPU_MONITOR }, /* Monitor */
{ "time", CPU_TIME }, /* Time */
{ "pmc", CPU_PMC }, /* Performance Monitor */
{ "platform", CPU_PLATFORM }, /* Platform */
{ "apic", CPU_APIC }, /* APIC */
{ "poweron", CPU_POWERON }, /* Power-on */
{ "control", CPU_CONTROL }, /* Control */
{ "features", CPU_FEATURES }, /* Features control */
{ "lastbranch", CPU_LBRANCH }, /* Last Branch */
{ "bios", CPU_BIOS }, /* BIOS */
{ "freq", CPU_FREQ }, /* Frequency */
{ "mtrr", CPU_MTRR }, /* MTRR */
{ "perf", CPU_PERF }, /* Performance */
{ "cache", CPU_CACHE }, /* Cache */
{ "sysenter", CPU_SYSENTER }, /* Sysenter */
{ "therm", CPU_THERM }, /* Thermal */
{ "misc", CPU_MISC }, /* Miscellaneous */
{ "debug", CPU_DEBUG }, /* Debug */
{ "pat", CPU_PAT }, /* PAT */
{ "vmx", CPU_VMX }, /* VMX */
{ "call", CPU_CALL }, /* System Call */
{ "base", CPU_BASE }, /* BASE Address */
{ "smm", CPU_SMM }, /* System mgmt mode */
{ "svm", CPU_SVM }, /*Secure Virtial Machine*/
{ "osvm", CPU_OSVM }, /* OS-Visible Workaround*/
{ "tss", CPU_TSS }, /* Task Stack Segment */
{ "cr", CPU_CR }, /* Control Registers */
{ "dt", CPU_DT }, /* Descriptor Table */
{ "registers", CPU_REG_ALL }, /* Select all Registers */
};
static struct cpu_file_base cpu_file[] = {
{ "index", CPU_REG_ALL }, /* index */
{ "value", CPU_REG_ALL }, /* value */
};
/* Intel Registers Range */
static struct cpu_debug_range cpu_intel_range[] = {
{ 0x00000000, 0x00000001, CPU_MC, CPU_INTEL_ALL },
{ 0x00000006, 0x00000007, CPU_MONITOR, CPU_CX_AT_XE },
{ 0x00000010, 0x00000010, CPU_TIME, CPU_INTEL_ALL },
{ 0x00000011, 0x00000013, CPU_PMC, CPU_INTEL_PENTIUM },
{ 0x00000017, 0x00000017, CPU_PLATFORM, CPU_PX_CX_AT_XE },
{ 0x0000001B, 0x0000001B, CPU_APIC, CPU_P6_CX_AT_XE },
{ 0x0000002A, 0x0000002A, CPU_POWERON, CPU_PX_CX_AT_XE },
{ 0x0000002B, 0x0000002B, CPU_POWERON, CPU_INTEL_XEON },
{ 0x0000002C, 0x0000002C, CPU_FREQ, CPU_INTEL_XEON },
{ 0x0000003A, 0x0000003A, CPU_CONTROL, CPU_CX_AT_XE },
{ 0x00000040, 0x00000043, CPU_LBRANCH, CPU_PM_CX_AT_XE },
{ 0x00000044, 0x00000047, CPU_LBRANCH, CPU_PM_CO_AT },
{ 0x00000060, 0x00000063, CPU_LBRANCH, CPU_C2_AT },
{ 0x00000064, 0x00000067, CPU_LBRANCH, CPU_INTEL_ATOM },
{ 0x00000079, 0x00000079, CPU_BIOS, CPU_P6_CX_AT_XE },
{ 0x00000088, 0x0000008A, CPU_CACHE, CPU_INTEL_P6 },
{ 0x0000008B, 0x0000008B, CPU_BIOS, CPU_P6_CX_AT_XE },
{ 0x0000009B, 0x0000009B, CPU_MONITOR, CPU_INTEL_XEON },
{ 0x000000C1, 0x000000C2, CPU_PMC, CPU_P6_CX_AT },
{ 0x000000CD, 0x000000CD, CPU_FREQ, CPU_CX_AT },
{ 0x000000E7, 0x000000E8, CPU_PERF, CPU_CX_AT },
{ 0x000000FE, 0x000000FE, CPU_MTRR, CPU_P6_CX_XE },
{ 0x00000116, 0x00000116, CPU_CACHE, CPU_INTEL_P6 },
{ 0x00000118, 0x00000118, CPU_CACHE, CPU_INTEL_P6 },
{ 0x00000119, 0x00000119, CPU_CACHE, CPU_INTEL_PX },
{ 0x0000011A, 0x0000011B, CPU_CACHE, CPU_INTEL_P6 },
{ 0x0000011E, 0x0000011E, CPU_CACHE, CPU_PX_CX_AT },
{ 0x00000174, 0x00000176, CPU_SYSENTER, CPU_P6_CX_AT_XE },
{ 0x00000179, 0x0000017A, CPU_MC, CPU_PX_CX_AT_XE },
{ 0x0000017B, 0x0000017B, CPU_MC, CPU_P6_XE },
{ 0x00000186, 0x00000187, CPU_PMC, CPU_P6_CX_AT },
{ 0x00000198, 0x00000199, CPU_PERF, CPU_PM_CX_AT_XE },
{ 0x0000019A, 0x0000019A, CPU_TIME, CPU_PM_CX_AT_XE },
{ 0x0000019B, 0x0000019D, CPU_THERM, CPU_PM_CX_AT_XE },
{ 0x000001A0, 0x000001A0, CPU_MISC, CPU_PM_CX_AT_XE },
{ 0x000001C9, 0x000001C9, CPU_LBRANCH, CPU_PM_CX_AT },
{ 0x000001D7, 0x000001D8, CPU_LBRANCH, CPU_INTEL_XEON },
{ 0x000001D9, 0x000001D9, CPU_DEBUG, CPU_CX_AT_XE },
{ 0x000001DA, 0x000001DA, CPU_LBRANCH, CPU_INTEL_XEON },
{ 0x000001DB, 0x000001DB, CPU_LBRANCH, CPU_P6_XE },
{ 0x000001DC, 0x000001DC, CPU_LBRANCH, CPU_INTEL_P6 },
{ 0x000001DD, 0x000001DE, CPU_LBRANCH, CPU_PX_CX_AT_XE },
{ 0x000001E0, 0x000001E0, CPU_LBRANCH, CPU_INTEL_P6 },
{ 0x00000200, 0x0000020F, CPU_MTRR, CPU_P6_CX_XE },
{ 0x00000250, 0x00000250, CPU_MTRR, CPU_P6_CX_XE },
{ 0x00000258, 0x00000259, CPU_MTRR, CPU_P6_CX_XE },
{ 0x00000268, 0x0000026F, CPU_MTRR, CPU_P6_CX_XE },
{ 0x00000277, 0x00000277, CPU_PAT, CPU_C2_AT_XE },
{ 0x000002FF, 0x000002FF, CPU_MTRR, CPU_P6_CX_XE },
{ 0x00000300, 0x00000308, CPU_PMC, CPU_INTEL_XEON },
{ 0x00000309, 0x0000030B, CPU_PMC, CPU_C2_AT_XE },
{ 0x0000030C, 0x00000311, CPU_PMC, CPU_INTEL_XEON },
{ 0x00000345, 0x00000345, CPU_PMC, CPU_C2_AT },
{ 0x00000360, 0x00000371, CPU_PMC, CPU_INTEL_XEON },
{ 0x0000038D, 0x00000390, CPU_PMC, CPU_C2_AT },
{ 0x000003A0, 0x000003BE, CPU_PMC, CPU_INTEL_XEON },
{ 0x000003C0, 0x000003CD, CPU_PMC, CPU_INTEL_XEON },
{ 0x000003E0, 0x000003E1, CPU_PMC, CPU_INTEL_XEON },
{ 0x000003F0, 0x000003F0, CPU_PMC, CPU_INTEL_XEON },
{ 0x000003F1, 0x000003F1, CPU_PMC, CPU_C2_AT_XE },
{ 0x000003F2, 0x000003F2, CPU_PMC, CPU_INTEL_XEON },
{ 0x00000400, 0x00000402, CPU_MC, CPU_PM_CX_AT_XE },
{ 0x00000403, 0x00000403, CPU_MC, CPU_INTEL_XEON },
{ 0x00000404, 0x00000406, CPU_MC, CPU_PM_CX_AT_XE },
{ 0x00000407, 0x00000407, CPU_MC, CPU_INTEL_XEON },
{ 0x00000408, 0x0000040A, CPU_MC, CPU_PM_CX_AT_XE },
{ 0x0000040B, 0x0000040B, CPU_MC, CPU_INTEL_XEON },
{ 0x0000040C, 0x0000040E, CPU_MC, CPU_PM_CX_XE },
{ 0x0000040F, 0x0000040F, CPU_MC, CPU_INTEL_XEON },
{ 0x00000410, 0x00000412, CPU_MC, CPU_PM_CX_AT_XE },
{ 0x00000413, 0x00000417, CPU_MC, CPU_CX_AT_XE },
{ 0x00000480, 0x0000048B, CPU_VMX, CPU_CX_AT_XE },
{ 0x00000600, 0x00000600, CPU_DEBUG, CPU_PM_CX_AT_XE },
{ 0x00000680, 0x0000068F, CPU_LBRANCH, CPU_INTEL_XEON },
{ 0x000006C0, 0x000006CF, CPU_LBRANCH, CPU_INTEL_XEON },
{ 0x000107CC, 0x000107D3, CPU_PMC, CPU_INTEL_XEON_MP },
{ 0xC0000080, 0xC0000080, CPU_FEATURES, CPU_INTEL_XEON },
{ 0xC0000081, 0xC0000082, CPU_CALL, CPU_INTEL_XEON },
{ 0xC0000084, 0xC0000084, CPU_CALL, CPU_INTEL_XEON },
{ 0xC0000100, 0xC0000102, CPU_BASE, CPU_INTEL_XEON },
};
/* AMD Registers Range */
static struct cpu_debug_range cpu_amd_range[] = {
{ 0x00000010, 0x00000010, CPU_TIME, CPU_ALL, },
{ 0x0000001B, 0x0000001B, CPU_APIC, CPU_ALL, },
{ 0x000000FE, 0x000000FE, CPU_MTRR, CPU_ALL, },
{ 0x00000174, 0x00000176, CPU_SYSENTER, CPU_ALL, },
{ 0x00000179, 0x0000017A, CPU_MC, CPU_ALL, },
{ 0x0000017B, 0x0000017B, CPU_MC, CPU_ALL, },
{ 0x000001D9, 0x000001D9, CPU_DEBUG, CPU_ALL, },
{ 0x000001DB, 0x000001DE, CPU_LBRANCH, CPU_ALL, },
{ 0x00000200, 0x0000020F, CPU_MTRR, CPU_ALL, },
{ 0x00000250, 0x00000250, CPU_MTRR, CPU_ALL, },
{ 0x00000258, 0x00000259, CPU_MTRR, CPU_ALL, },
{ 0x00000268, 0x0000026F, CPU_MTRR, CPU_ALL, },
{ 0x00000277, 0x00000277, CPU_PAT, CPU_ALL, },
{ 0x000002FF, 0x000002FF, CPU_MTRR, CPU_ALL, },
{ 0x00000400, 0x00000417, CPU_MC, CPU_ALL, },
{ 0xC0000080, 0xC0000080, CPU_FEATURES, CPU_ALL, },
{ 0xC0000081, 0xC0000084, CPU_CALL, CPU_ALL, },
{ 0xC0000100, 0xC0000102, CPU_BASE, CPU_ALL, },
{ 0xC0000103, 0xC0000103, CPU_TIME, CPU_ALL, },
{ 0xC0000408, 0xC000040A, CPU_MC, CPU_ALL, },
{ 0xc0010000, 0xc0010007, CPU_PMC, CPU_ALL, },
{ 0xc0010010, 0xc0010010, CPU_MTRR, CPU_ALL, },
{ 0xc0010016, 0xc001001A, CPU_MTRR, CPU_ALL, },
{ 0xc001001D, 0xc001001D, CPU_MTRR, CPU_ALL, },
{ 0xc0010030, 0xc0010035, CPU_BIOS, CPU_ALL, },
{ 0xc0010056, 0xc0010056, CPU_SMM, CPU_ALL, },
{ 0xc0010061, 0xc0010063, CPU_SMM, CPU_ALL, },
{ 0xc0010074, 0xc0010074, CPU_MC, CPU_ALL, },
{ 0xc0010111, 0xc0010113, CPU_SMM, CPU_ALL, },
{ 0xc0010114, 0xc0010118, CPU_SVM, CPU_ALL, },
{ 0xc0010119, 0xc001011A, CPU_SMM, CPU_ALL, },
{ 0xc0010140, 0xc0010141, CPU_OSVM, CPU_ALL, },
{ 0xc0010156, 0xc0010156, CPU_SMM, CPU_ALL, },
};
static int get_cpu_modelflag(unsigned cpu)
{
int flag;
switch (per_cpu(cpu_model, cpu)) {
/* Intel */
case 0x0501:
case 0x0502:
case 0x0504:
flag = CPU_INTEL_PENTIUM;
break;
case 0x0601:
case 0x0603:
case 0x0605:
case 0x0607:
case 0x0608:
case 0x060A:
case 0x060B:
flag = CPU_INTEL_P6;
break;
case 0x0609:
case 0x060D:
flag = CPU_INTEL_PENTIUM_M;
break;
case 0x060E:
flag = CPU_INTEL_CORE;
break;
case 0x060F:
case 0x0617:
flag = CPU_INTEL_CORE2;
break;
case 0x061C:
flag = CPU_INTEL_ATOM;
break;
case 0x0F00:
case 0x0F01:
case 0x0F02:
case 0x0F03:
case 0x0F04:
flag = CPU_INTEL_XEON_P4;
break;
case 0x0F06:
flag = CPU_INTEL_XEON_MP;
break;
default:
flag = CPU_NONE;
break;
}
return flag;
}
static int get_cpu_range_count(unsigned cpu)
{
int index;
switch (per_cpu(cpu_model, cpu) >> 16) {
case X86_VENDOR_INTEL:
index = ARRAY_SIZE(cpu_intel_range);
break;
case X86_VENDOR_AMD:
index = ARRAY_SIZE(cpu_amd_range);
break;
default:
index = 0;
break;
}
return index;
}
static int is_typeflag_valid(unsigned cpu, unsigned flag)
{
unsigned vendor, modelflag;
int i, index;
/* Standard Registers should be always valid */
if (flag >= CPU_TSS)
return 1;
modelflag = per_cpu(cpu_modelflag, cpu);
vendor = per_cpu(cpu_model, cpu) >> 16;
index = get_cpu_range_count(cpu);
for (i = 0; i < index; i++) {
switch (vendor) {
case X86_VENDOR_INTEL:
if ((cpu_intel_range[i].model & modelflag) &&
(cpu_intel_range[i].flag & flag))
return 1;
break;
case X86_VENDOR_AMD:
if (cpu_amd_range[i].flag & flag)
return 1;
break;
}
}
/* Invalid */
return 0;
}
static unsigned get_cpu_range(unsigned cpu, unsigned *min, unsigned *max,
int index, unsigned flag)
{
unsigned modelflag;
modelflag = per_cpu(cpu_modelflag, cpu);
*max = 0;
switch (per_cpu(cpu_model, cpu) >> 16) {
case X86_VENDOR_INTEL:
if ((cpu_intel_range[index].model & modelflag) &&
(cpu_intel_range[index].flag & flag)) {
*min = cpu_intel_range[index].min;
*max = cpu_intel_range[index].max;
}
break;
case X86_VENDOR_AMD:
if (cpu_amd_range[index].flag & flag) {
*min = cpu_amd_range[index].min;
*max = cpu_amd_range[index].max;
}
break;
}
return *max;
}
/* This function can also be called with seq = NULL for printk */
static void print_cpu_data(struct seq_file *seq, unsigned type,
u32 low, u32 high)
{
struct cpu_private *priv;
u64 val = high;
if (seq) {
priv = seq->private;
if (priv->file) {
val = (val << 32) | low;
seq_printf(seq, "0x%llx\n", val);
} else
seq_printf(seq, " %08x: %08x_%08x\n",
type, high, low);
} else
printk(KERN_INFO " %08x: %08x_%08x\n", type, high, low);
}
/* This function can also be called with seq = NULL for printk */
static void print_msr(struct seq_file *seq, unsigned cpu, unsigned flag)
{
unsigned msr, msr_min, msr_max;
struct cpu_private *priv;
u32 low, high;
int i, range;
if (seq) {
priv = seq->private;
if (priv->file) {
if (!rdmsr_safe_on_cpu(priv->cpu, priv->reg,
&low, &high))
print_cpu_data(seq, priv->reg, low, high);
return;
}
}
range = get_cpu_range_count(cpu);
for (i = 0; i < range; i++) {
if (!get_cpu_range(cpu, &msr_min, &msr_max, i, flag))
continue;
for (msr = msr_min; msr <= msr_max; msr++) {
if (rdmsr_safe_on_cpu(cpu, msr, &low, &high))
continue;
print_cpu_data(seq, msr, low, high);
}
}
}
static void print_tss(void *arg)
{
struct pt_regs *regs = task_pt_regs(current);
struct seq_file *seq = arg;
unsigned int seg;
seq_printf(seq, " RAX\t: %016lx\n", regs->ax);
seq_printf(seq, " RBX\t: %016lx\n", regs->bx);
seq_printf(seq, " RCX\t: %016lx\n", regs->cx);
seq_printf(seq, " RDX\t: %016lx\n", regs->dx);
seq_printf(seq, " RSI\t: %016lx\n", regs->si);
seq_printf(seq, " RDI\t: %016lx\n", regs->di);
seq_printf(seq, " RBP\t: %016lx\n", regs->bp);
seq_printf(seq, " ESP\t: %016lx\n", regs->sp);
#ifdef CONFIG_X86_64
seq_printf(seq, " R08\t: %016lx\n", regs->r8);
seq_printf(seq, " R09\t: %016lx\n", regs->r9);
seq_printf(seq, " R10\t: %016lx\n", regs->r10);
seq_printf(seq, " R11\t: %016lx\n", regs->r11);
seq_printf(seq, " R12\t: %016lx\n", regs->r12);
seq_printf(seq, " R13\t: %016lx\n", regs->r13);
seq_printf(seq, " R14\t: %016lx\n", regs->r14);
seq_printf(seq, " R15\t: %016lx\n", regs->r15);
#endif
asm("movl %%cs,%0" : "=r" (seg));
seq_printf(seq, " CS\t: %04x\n", seg);
asm("movl %%ds,%0" : "=r" (seg));
seq_printf(seq, " DS\t: %04x\n", seg);
seq_printf(seq, " SS\t: %04lx\n", regs->ss & 0xffff);
asm("movl %%es,%0" : "=r" (seg));
seq_printf(seq, " ES\t: %04x\n", seg);
asm("movl %%fs,%0" : "=r" (seg));
seq_printf(seq, " FS\t: %04x\n", seg);
asm("movl %%gs,%0" : "=r" (seg));
seq_printf(seq, " GS\t: %04x\n", seg);
seq_printf(seq, " EFLAGS\t: %016lx\n", regs->flags);
seq_printf(seq, " EIP\t: %016lx\n", regs->ip);
}
static void print_cr(void *arg)
{
struct seq_file *seq = arg;
seq_printf(seq, " cr0\t: %016lx\n", read_cr0());
seq_printf(seq, " cr2\t: %016lx\n", read_cr2());
seq_printf(seq, " cr3\t: %016lx\n", read_cr3());
seq_printf(seq, " cr4\t: %016lx\n", read_cr4_safe());
#ifdef CONFIG_X86_64
seq_printf(seq, " cr8\t: %016lx\n", read_cr8());
#endif
}
static void print_desc_ptr(char *str, struct seq_file *seq, struct desc_ptr dt)
{
seq_printf(seq, " %s\t: %016llx\n", str, (u64)(dt.address | dt.size));
}
static void print_dt(void *seq)
{
struct desc_ptr dt;
unsigned long ldt;
/* IDT */
store_idt((struct desc_ptr *)&dt);
print_desc_ptr("IDT", seq, dt);
/* GDT */
store_gdt((struct desc_ptr *)&dt);
print_desc_ptr("GDT", seq, dt);
/* LDT */
store_ldt(ldt);
seq_printf(seq, " LDT\t: %016lx\n", ldt);
/* TR */
store_tr(ldt);
seq_printf(seq, " TR\t: %016lx\n", ldt);
}
static void print_dr(void *arg)
{
struct seq_file *seq = arg;
unsigned long dr;
int i;
for (i = 0; i < 8; i++) {
/* Ignore db4, db5 */
if ((i == 4) || (i == 5))
continue;
get_debugreg(dr, i);
seq_printf(seq, " dr%d\t: %016lx\n", i, dr);
}
seq_printf(seq, "\n MSR\t:\n");
}
static void print_apic(void *arg)
{
struct seq_file *seq = arg;
#ifdef CONFIG_X86_LOCAL_APIC
seq_printf(seq, " LAPIC\t:\n");
seq_printf(seq, " ID\t\t: %08x\n", apic_read(APIC_ID) >> 24);
seq_printf(seq, " LVR\t\t: %08x\n", apic_read(APIC_LVR));
seq_printf(seq, " TASKPRI\t: %08x\n", apic_read(APIC_TASKPRI));
seq_printf(seq, " ARBPRI\t\t: %08x\n", apic_read(APIC_ARBPRI));
seq_printf(seq, " PROCPRI\t: %08x\n", apic_read(APIC_PROCPRI));
seq_printf(seq, " LDR\t\t: %08x\n", apic_read(APIC_LDR));
seq_printf(seq, " DFR\t\t: %08x\n", apic_read(APIC_DFR));
seq_printf(seq, " SPIV\t\t: %08x\n", apic_read(APIC_SPIV));
seq_printf(seq, " ISR\t\t: %08x\n", apic_read(APIC_ISR));
seq_printf(seq, " ESR\t\t: %08x\n", apic_read(APIC_ESR));
seq_printf(seq, " ICR\t\t: %08x\n", apic_read(APIC_ICR));
seq_printf(seq, " ICR2\t\t: %08x\n", apic_read(APIC_ICR2));
seq_printf(seq, " LVTT\t\t: %08x\n", apic_read(APIC_LVTT));
seq_printf(seq, " LVTTHMR\t: %08x\n", apic_read(APIC_LVTTHMR));
seq_printf(seq, " LVTPC\t\t: %08x\n", apic_read(APIC_LVTPC));
seq_printf(seq, " LVT0\t\t: %08x\n", apic_read(APIC_LVT0));
seq_printf(seq, " LVT1\t\t: %08x\n", apic_read(APIC_LVT1));
seq_printf(seq, " LVTERR\t\t: %08x\n", apic_read(APIC_LVTERR));
seq_printf(seq, " TMICT\t\t: %08x\n", apic_read(APIC_TMICT));
seq_printf(seq, " TMCCT\t\t: %08x\n", apic_read(APIC_TMCCT));
seq_printf(seq, " TDCR\t\t: %08x\n", apic_read(APIC_TDCR));
#endif /* CONFIG_X86_LOCAL_APIC */
seq_printf(seq, "\n MSR\t:\n");
}
static int cpu_seq_show(struct seq_file *seq, void *v)
{
struct cpu_private *priv = seq->private;
if (priv == NULL)
return -EINVAL;
switch (cpu_base[priv->type].flag) {
case CPU_TSS:
smp_call_function_single(priv->cpu, print_tss, seq, 1);
break;
case CPU_CR:
smp_call_function_single(priv->cpu, print_cr, seq, 1);
break;
case CPU_DT:
smp_call_function_single(priv->cpu, print_dt, seq, 1);
break;
case CPU_DEBUG:
if (priv->file == CPU_INDEX_BIT)
smp_call_function_single(priv->cpu, print_dr, seq, 1);
print_msr(seq, priv->cpu, cpu_base[priv->type].flag);
break;
case CPU_APIC:
if (priv->file == CPU_INDEX_BIT)
smp_call_function_single(priv->cpu, print_apic, seq, 1);
print_msr(seq, priv->cpu, cpu_base[priv->type].flag);
break;
default:
print_msr(seq, priv->cpu, cpu_base[priv->type].flag);
break;
}
seq_printf(seq, "\n");
return 0;
}
static void *cpu_seq_start(struct seq_file *seq, loff_t *pos)
{
if (*pos == 0) /* One time is enough ;-) */
return seq;
return NULL;
}
static void *cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
(*pos)++;
return cpu_seq_start(seq, pos);
}
static void cpu_seq_stop(struct seq_file *seq, void *v)
{
}
static const struct seq_operations cpu_seq_ops = {
.start = cpu_seq_start,
.next = cpu_seq_next,
.stop = cpu_seq_stop,
.show = cpu_seq_show,
};
static int cpu_seq_open(struct inode *inode, struct file *file)
{
struct cpu_private *priv = inode->i_private;
struct seq_file *seq;
int err;
err = seq_open(file, &cpu_seq_ops);
if (!err) {
seq = file->private_data;
seq->private = priv;
}
return err;
}
static const struct file_operations cpu_fops = {
.open = cpu_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int cpu_create_file(unsigned cpu, unsigned type, unsigned reg,
unsigned file, struct dentry *dentry)
{
struct cpu_private *priv = NULL;
/* Already intialized */
if (file == CPU_INDEX_BIT)
if (per_cpu(cpu_arr[type].init, cpu))
return 0;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
priv->cpu = cpu;
priv->type = type;
priv->reg = reg;
priv->file = file;
mutex_lock(&cpu_debug_lock);
per_cpu(priv_arr[type], cpu) = priv;
per_cpu(cpu_priv_count, cpu)++;
mutex_unlock(&cpu_debug_lock);
if (file)
debugfs_create_file(cpu_file[file].name, S_IRUGO,
dentry, (void *)priv, &cpu_fops);
else {
debugfs_create_file(cpu_base[type].name, S_IRUGO,
per_cpu(cpu_arr[type].dentry, cpu),
(void *)priv, &cpu_fops);
mutex_lock(&cpu_debug_lock);
per_cpu(cpu_arr[type].init, cpu) = 1;
mutex_unlock(&cpu_debug_lock);
}
return 0;
}
static int cpu_init_regfiles(unsigned cpu, unsigned int type, unsigned reg,
struct dentry *dentry)
{
unsigned file;
int err = 0;
for (file = 0; file < ARRAY_SIZE(cpu_file); file++) {
err = cpu_create_file(cpu, type, reg, file, dentry);
if (err)
return err;
}
return err;
}
static int cpu_init_msr(unsigned cpu, unsigned type, struct dentry *dentry)
{
struct dentry *cpu_dentry = NULL;
unsigned reg, reg_min, reg_max;
int i, range, err = 0;
char reg_dir[12];
u32 low, high;
range = get_cpu_range_count(cpu);
for (i = 0; i < range; i++) {
if (!get_cpu_range(cpu, &reg_min, &reg_max, i,
cpu_base[type].flag))
continue;
for (reg = reg_min; reg <= reg_max; reg++) {
if (rdmsr_safe_on_cpu(cpu, reg, &low, &high))
continue;
sprintf(reg_dir, "0x%x", reg);
cpu_dentry = debugfs_create_dir(reg_dir, dentry);
err = cpu_init_regfiles(cpu, type, reg, cpu_dentry);
if (err)
return err;
}
}
return err;
}
static int cpu_init_allreg(unsigned cpu, struct dentry *dentry)
{
struct dentry *cpu_dentry = NULL;
unsigned type;
int err = 0;
for (type = 0; type < ARRAY_SIZE(cpu_base) - 1; type++) {
if (!is_typeflag_valid(cpu, cpu_base[type].flag))
continue;
cpu_dentry = debugfs_create_dir(cpu_base[type].name, dentry);
per_cpu(cpu_arr[type].dentry, cpu) = cpu_dentry;
if (type < CPU_TSS_BIT)
err = cpu_init_msr(cpu, type, cpu_dentry);
else
err = cpu_create_file(cpu, type, 0, CPU_INDEX_BIT,
cpu_dentry);
if (err)
return err;
}
return err;
}
static int cpu_init_cpu(void)
{
struct dentry *cpu_dentry = NULL;
struct cpuinfo_x86 *cpui;
char cpu_dir[12];
unsigned cpu;
int err = 0;
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
cpui = &cpu_data(cpu);
if (!cpu_has(cpui, X86_FEATURE_MSR))
continue;
per_cpu(cpu_model, cpu) = ((cpui->x86_vendor << 16) |
(cpui->x86 << 8) |
(cpui->x86_model));
per_cpu(cpu_modelflag, cpu) = get_cpu_modelflag(cpu);
sprintf(cpu_dir, "cpu%d", cpu);
cpu_dentry = debugfs_create_dir(cpu_dir, cpu_debugfs_dir);
err = cpu_init_allreg(cpu, cpu_dentry);
pr_info("cpu%d(%d) debug files %d\n",
cpu, nr_cpu_ids, per_cpu(cpu_priv_count, cpu));
if (per_cpu(cpu_priv_count, cpu) > MAX_CPU_FILES) {
pr_err("Register files count %d exceeds limit %d\n",
per_cpu(cpu_priv_count, cpu), MAX_CPU_FILES);
per_cpu(cpu_priv_count, cpu) = MAX_CPU_FILES;
err = -ENFILE;
}
if (err)
return err;
}
return err;
}
static int __init cpu_debug_init(void)
{
cpu_debugfs_dir = debugfs_create_dir("cpu", arch_debugfs_dir);
return cpu_init_cpu();
}
static void __exit cpu_debug_exit(void)
{
int i, cpu;
if (cpu_debugfs_dir)
debugfs_remove_recursive(cpu_debugfs_dir);
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
for (i = 0; i < per_cpu(cpu_priv_count, cpu); i++)
kfree(per_cpu(priv_arr[i], cpu));
}
module_init(cpu_debug_init);
module_exit(cpu_debug_exit);
MODULE_AUTHOR("Jaswinder Singh Rajput");
MODULE_DESCRIPTION("CPU Debug module");
MODULE_LICENSE("GPL");