Go to file
2016-06-14 13:46:11 +02:00
build Renamed vs_ prefix to msuild_, added SETLOCAL 2016-06-12 15:20:40 +02:00
images updated readme for 0.6.0 2016-04-12 23:58:52 +02:00
lib fixed corruption with inter-blocks repeated offsets 2016-06-14 13:46:11 +02:00
programs Merge pull request #205 from inikep/dev 2016-06-10 17:13:07 +02:00
projects project updated for legacy decoder zstd_v06.c 2016-06-09 18:12:06 +02:00
tests Merge pull request #208 from inikep/dev 2016-06-13 11:17:40 +02:00
zlibWrapper fixed zlib wrapper for new .h strategy 2016-06-04 19:52:06 +02:00
.gitattributes Fixed visual projects 2016-05-30 18:28:29 +02:00
.gitignore Added build commands for various versions of Visual Studio 2016-06-07 11:36:13 +02:00
.travis.yml Moved versionsTest on Travis to Ubuntu Server VM 2016-06-12 23:19:14 +02:00
appveyor.yml zlibWrapper: Z_DEFAULT_COMPRESSION is translated to ZWRAP_DEFAULT_CLEVEL for zstd 2016-06-01 10:50:17 +02:00
Makefile attempt to re-enable msan tests 2016-06-06 18:00:00 +02:00
NEWS Added command --rm : remove source file after successful de/compression 2016-06-09 23:01:19 +02:00
README.md updated readme for 0.6.0 2016-04-12 23:58:52 +02:00

Zstd, short for Zstandard, is a fast lossless compression algorithm, targeting real-time compression scenarios at zlib-level compression ratio.

It is provided as a BSD-license package, hosted on Github.

Branch Status
master Build Status
dev Build Status

As a reference, several fast compression algorithms were tested and compared to zlib on a Core i7-3930K CPU @ 4.5GHz, using lzbench, an open-source in-memory benchmark by @inikep compiled with gcc 5.2.1, on the Silesia compression corpus.

Name Ratio C.speed D.speed
MB/s MB/s
zstd 0.6.0 -1 2.877 330 915
zlib 1.2.8 -1 2.730 95 360
brotli -0 2.708 220 430
QuickLZ 1.5 2.237 510 605
LZO 2.09 2.106 610 870
LZ4 r131 2.101 620 3100
Snappy 1.1.3 2.091 480 1600
LZF 3.6 2.077 375 790

Zstd can also offer stronger compression ratio at the cost of compression speed. Speed vs Compression trade-off is configurable by small increment. Decompression speed is preserved and remain roughly the same at all settings, a property shared by most LZ compression algorithms, such as zlib.

The following test is run on a Core i7-3930K CPU @ 4.5GHz, using lzbench, an open-source in-memory benchmark by @inikep compiled with gcc 5.2.1, on the Silesia compression corpus.

Compression Speed vs Ratio Decompression Speed
Compression Speed vs Ratio Decompression Speed

Several algorithms can produce higher compression ratio at slower speed, falling outside of the graph. For a larger picture including very slow modes, click on this link .

The case for Small Data compression

Previous charts provide results applicable to typical files and streams scenarios (several MB). Small data come with different perspectives. The smaller the amount of data to compress, the more difficult it is to achieve any significant compression.

This problem is common to any compression algorithm. The reason is, compression algorithms learn from past data how to compress future data. But at the beginning of a new file, there is no "past" to build upon.

To solve this situation, Zstd offers a training mode, which can be used to tune the algorithm for a selected type of data, by providing it with a few samples. The result of the training is stored in a file called "dictionary", which can be loaded before compression and decompression. Using this dictionary, the compression ratio achievable on small data improves dramatically :

Compressing Small Data

These compression gains are achieved while simultaneously providing faster compression and decompression speeds.

Dictionary work if there is some correlation in a family of small data (there is no universal dictionary). Hence, deploying one dictionary per type of data will provide the greater benefits. Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm will rely more and more on previously decoded content to compress the rest of the file.

Dictionary compression How To :

Using the Command Line Utility :
  1. Create the dictionary

zstd --train FullPathToTrainingSet/* -o dictionaryName

  1. Compress with dictionary

zstd FILE -D dictionaryName

  1. Decompress with dictionary

zstd --decompress FILE.zst -D dictionaryName

Status

Zstd is in development. The internal format evolves to reach better performance. "Final Format" is projected H1 2016, and will be tagged v1.0. Zstd offers legacy support, meaning any data compressed by any version >= 0.1 (therefore including current one) remain decodable in the future. The library is also quite robust, able to withstand hazards situations, including invalid inputs. Library reliability has been tested using Fuzz Testing, with both internal tools and external ones. Therefore, Zstandard is considered safe for production environments.

Branch Policy

The "dev" branch is the one where all contributions will be merged before reaching "master". If you plan to propose a patch, please commit into the "dev" branch or its own feature branch. Direct commit to "master" are not permitted.

Miscellaneous

Zstd entropy stage is provided by Huff0 and FSE, from Finite State Entropy library.