u-boot/drivers/tsec.c

1186 lines
28 KiB
C

/*
* tsec.c
* Freescale Three Speed Ethernet Controller driver
*
* This software may be used and distributed according to the
* terms of the GNU Public License, Version 2, incorporated
* herein by reference.
*
* Copyright 2004 Freescale Semiconductor.
* (C) Copyright 2003, Motorola, Inc.
* author Andy Fleming
*
*/
#include <config.h>
#include <mpc85xx.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <command.h>
#if defined(CONFIG_TSEC_ENET)
#include "tsec.h"
#include "miiphy.h"
DECLARE_GLOBAL_DATA_PTR;
#define TX_BUF_CNT 2
static uint rxIdx; /* index of the current RX buffer */
static uint txIdx; /* index of the current TX buffer */
typedef volatile struct rtxbd {
txbd8_t txbd[TX_BUF_CNT];
rxbd8_t rxbd[PKTBUFSRX];
} RTXBD;
struct tsec_info_struct {
unsigned int phyaddr;
u32 flags;
unsigned int phyregidx;
};
/* The tsec_info structure contains 3 values which the
* driver uses to determine how to operate a given ethernet
* device. For now, the structure is initialized with the
* knowledge that all current implementations have 2 TSEC
* devices, and one FEC. The information needed is:
* phyaddr - The address of the PHY which is attached to
* the given device.
*
* flags - This variable indicates whether the device
* supports gigabit speed ethernet, and whether it should be
* in reduced mode.
*
* phyregidx - This variable specifies which ethernet device
* controls the MII Management registers which are connected
* to the PHY. For 8540/8560, only TSEC1 (index 0) has
* access to the PHYs, so all of the entries have "0".
*
* The values specified in the table are taken from the board's
* config file in include/configs/. When implementing a new
* board with ethernet capability, it is necessary to define:
* TSEC1_PHY_ADDR
* TSEC1_PHYIDX
* TSEC2_PHY_ADDR
* TSEC2_PHYIDX
*
* and for 8560:
* FEC_PHY_ADDR
* FEC_PHYIDX
*/
static struct tsec_info_struct tsec_info[] = {
#if defined(CONFIG_MPC85XX_TSEC1) || defined(CONFIG_MPC83XX_TSEC1)
{TSEC1_PHY_ADDR, TSEC_GIGABIT, TSEC1_PHYIDX},
#else
{ 0, 0, 0},
#endif
#if defined(CONFIG_MPC85XX_TSEC2) || defined(CONFIG_MPC83XX_TSEC2)
{TSEC2_PHY_ADDR, TSEC_GIGABIT, TSEC2_PHYIDX},
#else
{ 0, 0, 0},
#endif
#ifdef CONFIG_MPC85XX_FEC
{FEC_PHY_ADDR, 0, FEC_PHYIDX},
#else
# if defined(CONFIG_MPC85XX_TSEC3) || defined(CONFIG_MPC83XX_TSEC3)
{TSEC3_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC3_PHYIDX},
# else
{ 0, 0, 0},
# endif
# if defined(CONFIG_MPC85XX_TSEC4) || defined(CONFIG_MPC83XX_TSEC4)
{TSEC4_PHY_ADDR, TSEC_REDUCED, TSEC4_PHYIDX},
# else
{ 0, 0, 0},
# endif
#endif
};
#define MAXCONTROLLERS (4)
static int relocated = 0;
static struct tsec_private *privlist[MAXCONTROLLERS];
#ifdef __GNUC__
static RTXBD rtx __attribute__ ((aligned(8)));
#else
#error "rtx must be 64-bit aligned"
#endif
static int tsec_send(struct eth_device* dev, volatile void *packet, int length);
static int tsec_recv(struct eth_device* dev);
static int tsec_init(struct eth_device* dev, bd_t * bd);
static void tsec_halt(struct eth_device* dev);
static void init_registers(volatile tsec_t *regs);
static void startup_tsec(struct eth_device *dev);
static int init_phy(struct eth_device *dev);
void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
uint read_phy_reg(struct tsec_private *priv, uint regnum);
struct phy_info * get_phy_info(struct eth_device *dev);
void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
static void adjust_link(struct eth_device *dev);
static void relocate_cmds(void);
static int tsec_miiphy_write(char *devname, unsigned char addr,
unsigned char reg, unsigned short value);
static int tsec_miiphy_read(char *devname, unsigned char addr,
unsigned char reg, unsigned short *value);
/* Initialize device structure. Returns success if PHY
* initialization succeeded (i.e. if it recognizes the PHY)
*/
int tsec_initialize(bd_t *bis, int index, char *devname)
{
struct eth_device* dev;
int i;
struct tsec_private *priv;
dev = (struct eth_device*) malloc(sizeof *dev);
if(NULL == dev)
return 0;
memset(dev, 0, sizeof *dev);
priv = (struct tsec_private *) malloc(sizeof(*priv));
if(NULL == priv)
return 0;
privlist[index] = priv;
priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index*TSEC_SIZE);
priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
tsec_info[index].phyregidx*TSEC_SIZE);
priv->phyaddr = tsec_info[index].phyaddr;
priv->flags = tsec_info[index].flags;
sprintf(dev->name, devname);
dev->iobase = 0;
dev->priv = priv;
dev->init = tsec_init;
dev->halt = tsec_halt;
dev->send = tsec_send;
dev->recv = tsec_recv;
/* Tell u-boot to get the addr from the env */
for(i=0;i<6;i++)
dev->enetaddr[i] = 0;
eth_register(dev);
/* Reset the MAC */
priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
#if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) \
&& !defined(BITBANGMII)
miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
#endif
/* Try to initialize PHY here, and return */
return init_phy(dev);
}
/* Initializes data structures and registers for the controller,
* and brings the interface up. Returns the link status, meaning
* that it returns success if the link is up, failure otherwise.
* This allows u-boot to find the first active controller. */
int tsec_init(struct eth_device* dev, bd_t * bd)
{
uint tempval;
char tmpbuf[MAC_ADDR_LEN];
int i;
struct tsec_private *priv = (struct tsec_private *)dev->priv;
volatile tsec_t *regs = priv->regs;
/* Make sure the controller is stopped */
tsec_halt(dev);
/* Init MACCFG2. Defaults to GMII */
regs->maccfg2 = MACCFG2_INIT_SETTINGS;
/* Init ECNTRL */
regs->ecntrl = ECNTRL_INIT_SETTINGS;
/* Copy the station address into the address registers.
* Backwards, because little endian MACS are dumb */
for(i=0;i<MAC_ADDR_LEN;i++) {
tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
}
regs->macstnaddr1 = *((uint *)(tmpbuf));
tempval = *((uint *)(tmpbuf +4));
regs->macstnaddr2 = tempval;
/* reset the indices to zero */
rxIdx = 0;
txIdx = 0;
/* Clear out (for the most part) the other registers */
init_registers(regs);
/* Ready the device for tx/rx */
startup_tsec(dev);
/* If there's no link, fail */
return priv->link;
}
/* Write value to the device's PHY through the registers
* specified in priv, modifying the register specified in regnum.
* It will wait for the write to be done (or for a timeout to
* expire) before exiting
*/
void write_phy_reg(struct tsec_private *priv, uint regnum, uint value)
{
volatile tsec_t *regbase = priv->phyregs;
uint phyid = priv->phyaddr;
int timeout=1000000;
regbase->miimadd = (phyid << 8) | regnum;
regbase->miimcon = value;
asm("sync");
timeout=1000000;
while((regbase->miimind & MIIMIND_BUSY) && timeout--);
}
/* Reads register regnum on the device's PHY through the
* registers specified in priv. It lowers and raises the read
* command, and waits for the data to become valid (miimind
* notvalid bit cleared), and the bus to cease activity (miimind
* busy bit cleared), and then returns the value
*/
uint read_phy_reg(struct tsec_private *priv, uint regnum)
{
uint value;
volatile tsec_t *regbase = priv->phyregs;
uint phyid = priv->phyaddr;
/* Put the address of the phy, and the register
* number into MIIMADD */
regbase->miimadd = (phyid << 8) | regnum;
/* Clear the command register, and wait */
regbase->miimcom = 0;
asm("sync");
/* Initiate a read command, and wait */
regbase->miimcom = MIIM_READ_COMMAND;
asm("sync");
/* Wait for the the indication that the read is done */
while((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY)));
/* Grab the value read from the PHY */
value = regbase->miimstat;
return value;
}
/* Discover which PHY is attached to the device, and configure it
* properly. If the PHY is not recognized, then return 0
* (failure). Otherwise, return 1
*/
static int init_phy(struct eth_device *dev)
{
struct tsec_private *priv = (struct tsec_private *)dev->priv;
struct phy_info *curphy;
/* Assign a Physical address to the TBI */
{
volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
regs->tbipa = TBIPA_VALUE;
regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
regs->tbipa = TBIPA_VALUE;
asm("sync");
}
/* Reset MII (due to new addresses) */
priv->phyregs->miimcfg = MIIMCFG_RESET;
asm("sync");
priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
asm("sync");
while(priv->phyregs->miimind & MIIMIND_BUSY);
if(0 == relocated)
relocate_cmds();
/* Get the cmd structure corresponding to the attached
* PHY */
curphy = get_phy_info(dev);
if(NULL == curphy) {
printf("%s: No PHY found\n", dev->name);
return 0;
}
priv->phyinfo = curphy;
phy_run_commands(priv, priv->phyinfo->config);
return 1;
}
/* Returns which value to write to the control register. */
/* For 10/100, the value is slightly different */
uint mii_cr_init(uint mii_reg, struct tsec_private *priv)
{
if(priv->flags & TSEC_GIGABIT)
return MIIM_CONTROL_INIT;
else
return MIIM_CR_INIT;
}
/* Parse the status register for link, and then do
* auto-negotiation */
uint mii_parse_sr(uint mii_reg, struct tsec_private *priv)
{
/*
* Wait if PHY is capable of autonegotiation and autonegotiation is not complete
*/
mii_reg = read_phy_reg(priv, MIIM_STATUS);
if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
int i = 0;
puts ("Waiting for PHY auto negotiation to complete");
while (!((mii_reg & PHY_BMSR_AUTN_COMP) && (mii_reg & MIIM_STATUS_LINK))) {
/*
* Timeout reached ?
*/
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts (" TIMEOUT !\n");
priv->link = 0;
break;
}
if ((i++ % 1000) == 0) {
putc ('.');
}
udelay (1000); /* 1 ms */
mii_reg = read_phy_reg(priv, MIIM_STATUS);
}
puts (" done\n");
priv->link = 1;
udelay (500000); /* another 500 ms (results in faster booting) */
} else {
priv->link = 1;
}
return 0;
}
/* Parse the 88E1011's status register for speed and duplex
* information */
uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private *priv)
{
uint speed;
mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
if (!((mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE) &&
(mii_reg & MIIM_88E1011_PHYSTAT_LINK))) {
int i = 0;
puts ("Waiting for PHY realtime link");
while (!((mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE) &&
(mii_reg & MIIM_88E1011_PHYSTAT_LINK))) {
/*
* Timeout reached ?
*/
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts (" TIMEOUT !\n");
priv->link = 0;
break;
}
if ((i++ % 1000) == 0) {
putc ('.');
}
udelay (1000); /* 1 ms */
mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
}
puts (" done\n");
udelay (500000); /* another 500 ms (results in faster booting) */
}
if(mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
priv->duplexity = 1;
else
priv->duplexity = 0;
speed = (mii_reg &MIIM_88E1011_PHYSTAT_SPEED);
switch(speed) {
case MIIM_88E1011_PHYSTAT_GBIT:
priv->speed = 1000;
break;
case MIIM_88E1011_PHYSTAT_100:
priv->speed = 100;
break;
default:
priv->speed = 10;
}
return 0;
}
/* Parse the cis8201's status register for speed and duplex
* information */
uint mii_parse_cis8201(uint mii_reg, struct tsec_private *priv)
{
uint speed;
if(mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
priv->duplexity = 1;
else
priv->duplexity = 0;
speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
switch(speed) {
case MIIM_CIS8201_AUXCONSTAT_GBIT:
priv->speed = 1000;
break;
case MIIM_CIS8201_AUXCONSTAT_100:
priv->speed = 100;
break;
default:
priv->speed = 10;
break;
}
return 0;
}
/* Parse the DM9161's status register for speed and duplex
* information */
uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private *priv)
{
if(mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
priv->speed = 100;
else
priv->speed = 10;
if(mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
priv->duplexity = 1;
else
priv->duplexity = 0;
return 0;
}
/* Hack to write all 4 PHYs with the LED values */
uint mii_cis8204_fixled(uint mii_reg, struct tsec_private *priv)
{
uint phyid;
volatile tsec_t *regbase = priv->phyregs;
int timeout=1000000;
for(phyid=0;phyid<4;phyid++) {
regbase->miimadd = (phyid << 8) | mii_reg;
regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
asm("sync");
timeout=1000000;
while((regbase->miimind & MIIMIND_BUSY) && timeout--);
}
return MIIM_CIS8204_SLEDCON_INIT;
}
uint mii_cis8204_setmode(uint mii_reg, struct tsec_private *priv)
{
if (priv->flags & TSEC_REDUCED)
return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
else
return MIIM_CIS8204_EPHYCON_INIT;
}
/* Initialized required registers to appropriate values, zeroing
* those we don't care about (unless zero is bad, in which case,
* choose a more appropriate value) */
static void init_registers(volatile tsec_t *regs)
{
/* Clear IEVENT */
regs->ievent = IEVENT_INIT_CLEAR;
regs->imask = IMASK_INIT_CLEAR;
regs->hash.iaddr0 = 0;
regs->hash.iaddr1 = 0;
regs->hash.iaddr2 = 0;
regs->hash.iaddr3 = 0;
regs->hash.iaddr4 = 0;
regs->hash.iaddr5 = 0;
regs->hash.iaddr6 = 0;
regs->hash.iaddr7 = 0;
regs->hash.gaddr0 = 0;
regs->hash.gaddr1 = 0;
regs->hash.gaddr2 = 0;
regs->hash.gaddr3 = 0;
regs->hash.gaddr4 = 0;
regs->hash.gaddr5 = 0;
regs->hash.gaddr6 = 0;
regs->hash.gaddr7 = 0;
regs->rctrl = 0x00000000;
/* Init RMON mib registers */
memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
regs->rmon.cam1 = 0xffffffff;
regs->rmon.cam2 = 0xffffffff;
regs->mrblr = MRBLR_INIT_SETTINGS;
regs->minflr = MINFLR_INIT_SETTINGS;
regs->attr = ATTR_INIT_SETTINGS;
regs->attreli = ATTRELI_INIT_SETTINGS;
}
/* Configure maccfg2 based on negotiated speed and duplex
* reported by PHY handling code */
static void adjust_link(struct eth_device *dev)
{
struct tsec_private *priv = (struct tsec_private *)dev->priv;
volatile tsec_t *regs = priv->regs;
if(priv->link) {
if(priv->duplexity != 0)
regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
else
regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
switch(priv->speed) {
case 1000:
regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF))
| MACCFG2_GMII);
break;
case 100:
case 10:
regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF))
| MACCFG2_MII);
/* If We're in reduced mode, we need
* to say whether we're 10 or 100 MB.
*/
if ((priv->speed == 100)
&& (priv->flags & TSEC_REDUCED))
regs->ecntrl |= ECNTRL_R100;
else
regs->ecntrl &= ~(ECNTRL_R100);
break;
default:
printf("%s: Speed was bad\n", dev->name);
break;
}
printf("Speed: %d, %s duplex\n", priv->speed,
(priv->duplexity) ? "full" : "half");
} else {
printf("%s: No link.\n", dev->name);
}
}
/* Set up the buffers and their descriptors, and bring up the
* interface */
static void startup_tsec(struct eth_device *dev)
{
int i;
struct tsec_private *priv = (struct tsec_private *)dev->priv;
volatile tsec_t *regs = priv->regs;
/* Point to the buffer descriptors */
regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
/* Initialize the Rx Buffer descriptors */
for (i = 0; i < PKTBUFSRX; i++) {
rtx.rxbd[i].status = RXBD_EMPTY;
rtx.rxbd[i].length = 0;
rtx.rxbd[i].bufPtr = (uint)NetRxPackets[i];
}
rtx.rxbd[PKTBUFSRX -1].status |= RXBD_WRAP;
/* Initialize the TX Buffer Descriptors */
for(i=0; i<TX_BUF_CNT; i++) {
rtx.txbd[i].status = 0;
rtx.txbd[i].length = 0;
rtx.txbd[i].bufPtr = 0;
}
rtx.txbd[TX_BUF_CNT -1].status |= TXBD_WRAP;
/* Start up the PHY */
phy_run_commands(priv, priv->phyinfo->startup);
adjust_link(dev);
/* Enable Transmit and Receive */
regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
/* Tell the DMA it is clear to go */
regs->dmactrl |= DMACTRL_INIT_SETTINGS;
regs->tstat = TSTAT_CLEAR_THALT;
regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
}
/* This returns the status bits of the device. The return value
* is never checked, and this is what the 8260 driver did, so we
* do the same. Presumably, this would be zero if there were no
* errors */
static int tsec_send(struct eth_device* dev, volatile void *packet, int length)
{
int i;
int result = 0;
struct tsec_private *priv = (struct tsec_private *)dev->priv;
volatile tsec_t *regs = priv->regs;
/* Find an empty buffer descriptor */
for(i=0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
if (i >= TOUT_LOOP) {
debug ("%s: tsec: tx buffers full\n", dev->name);
return result;
}
}
rtx.txbd[txIdx].bufPtr = (uint)packet;
rtx.txbd[txIdx].length = length;
rtx.txbd[txIdx].status |= (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
/* Tell the DMA to go */
regs->tstat = TSTAT_CLEAR_THALT;
/* Wait for buffer to be transmitted */
for(i=0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
if (i >= TOUT_LOOP) {
debug ("%s: tsec: tx error\n", dev->name);
return result;
}
}
txIdx = (txIdx + 1) % TX_BUF_CNT;
result = rtx.txbd[txIdx].status & TXBD_STATS;
return result;
}
static int tsec_recv(struct eth_device* dev)
{
int length;
struct tsec_private *priv = (struct tsec_private *)dev->priv;
volatile tsec_t *regs = priv->regs;
while(!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
length = rtx.rxbd[rxIdx].length;
/* Send the packet up if there were no errors */
if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
NetReceive(NetRxPackets[rxIdx], length - 4);
} else {
printf("Got error %x\n",
(rtx.rxbd[rxIdx].status & RXBD_STATS));
}
rtx.rxbd[rxIdx].length = 0;
/* Set the wrap bit if this is the last element in the list */
rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
rxIdx = (rxIdx + 1) % PKTBUFSRX;
}
if(regs->ievent&IEVENT_BSY) {
regs->ievent = IEVENT_BSY;
regs->rstat = RSTAT_CLEAR_RHALT;
}
return -1;
}
/* Stop the interface */
static void tsec_halt(struct eth_device* dev)
{
struct tsec_private *priv = (struct tsec_private *)dev->priv;
volatile tsec_t *regs = priv->regs;
regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
while(!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC)));
regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
/* Shut down the PHY, as needed */
phy_run_commands(priv, priv->phyinfo->shutdown);
}
struct phy_info phy_info_M88E1011S = {
0x01410c6,
"Marvell 88E1011S",
4,
(struct phy_cmd[]) { /* config */
/* Reset and configure the PHY */
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{0x1d, 0x1f, NULL},
{0x1e, 0x200c, NULL},
{0x1d, 0x5, NULL},
{0x1e, 0x0, NULL},
{0x1e, 0x100, NULL},
{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
{miim_end,}
},
(struct phy_cmd[]) { /* startup */
/* Status is read once to clear old link state */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
{miim_end,}
},
(struct phy_cmd[]) { /* shutdown */
{miim_end,}
},
};
struct phy_info phy_info_M88E1111S = {
0x01410cc,
"Marvell 88E1111S",
4,
(struct phy_cmd[]) { /* config */
/* Reset and configure the PHY */
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{0x1d, 0x1f, NULL},
{0x1e, 0x200c, NULL},
{0x1d, 0x5, NULL},
{0x1e, 0x0, NULL},
{0x1e, 0x100, NULL},
{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
{miim_end,}
},
(struct phy_cmd[]) { /* startup */
/* Status is read once to clear old link state */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
{miim_end,}
},
(struct phy_cmd[]) { /* shutdown */
{miim_end,}
},
};
struct phy_info phy_info_cis8204 = {
0x3f11,
"Cicada Cis8204",
6,
(struct phy_cmd[]) { /* config */
/* Override PHY config settings */
{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
/* Configure some basic stuff */
{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
{MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT, &mii_cis8204_fixled},
{MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT, &mii_cis8204_setmode},
{miim_end,}
},
(struct phy_cmd[]) { /* startup */
/* Read the Status (2x to make sure link is right) */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
{miim_end,}
},
(struct phy_cmd[]) { /* shutdown */
{miim_end,}
},
};
/* Cicada 8201 */
struct phy_info phy_info_cis8201 = {
0xfc41,
"CIS8201",
4,
(struct phy_cmd[]) { /* config */
/* Override PHY config settings */
{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
/* Set up the interface mode */
{MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
/* Configure some basic stuff */
{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
{miim_end,}
},
(struct phy_cmd[]) { /* startup */
/* Read the Status (2x to make sure link is right) */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
{miim_end,}
},
(struct phy_cmd[]) { /* shutdown */
{miim_end,}
},
};
struct phy_info phy_info_dm9161 = {
0x0181b88,
"Davicom DM9161E",
4,
(struct phy_cmd[]) { /* config */
{MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
/* Do not bypass the scrambler/descrambler */
{MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
/* Clear 10BTCSR to default */
{MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL},
/* Configure some basic stuff */
{MIIM_CONTROL, MIIM_CR_INIT, NULL},
/* Restart Auto Negotiation */
{MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
{miim_end,}
},
(struct phy_cmd[]) { /* startup */
/* Status is read once to clear old link state */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr},
{miim_end,}
},
(struct phy_cmd[]) { /* shutdown */
{miim_end,}
},
};
uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
{
unsigned int speed;
if (priv->link) {
speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
switch (speed) {
case MIIM_LXT971_SR2_10HDX:
priv->speed = 10;
priv->duplexity = 0;
break;
case MIIM_LXT971_SR2_10FDX:
priv->speed = 10;
priv->duplexity = 1;
break;
case MIIM_LXT971_SR2_100HDX:
priv->speed = 100;
priv->duplexity = 0;
default:
priv->speed = 100;
priv->duplexity = 1;
break;
}
} else {
priv->speed = 0;
priv->duplexity = 0;
}
return 0;
}
static struct phy_info phy_info_lxt971 = {
0x0001378e,
"LXT971",
4,
(struct phy_cmd []) { /* config */
{ MIIM_CR, MIIM_CR_INIT, mii_cr_init }, /* autonegotiate */
{ miim_end, }
},
(struct phy_cmd []) { /* startup - enable interrupts */
/* { 0x12, 0x00f2, NULL }, */
{ MIIM_STATUS, miim_read, NULL },
{ MIIM_STATUS, miim_read, &mii_parse_sr },
{ MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2 },
{ miim_end, }
},
(struct phy_cmd []) { /* shutdown - disable interrupts */
{ miim_end, }
},
};
/* Parse the DP83865's link and auto-neg status register for speed and duplex
* information */
uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
{
switch (mii_reg & MIIM_DP83865_SPD_MASK) {
case MIIM_DP83865_SPD_1000:
priv->speed = 1000;
break;
case MIIM_DP83865_SPD_100:
priv->speed = 100;
break;
default:
priv->speed = 10;
break;
}
if (mii_reg & MIIM_DP83865_DPX_FULL)
priv->duplexity = 1;
else
priv->duplexity = 0;
return 0;
}
struct phy_info phy_info_dp83865 = {
0x20005c7,
"NatSemi DP83865",
4,
(struct phy_cmd[]) { /* config */
{MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
{miim_end,}
},
(struct phy_cmd[]) { /* startup */
/* Status is read once to clear old link state */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the link and auto-neg status */
{MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr},
{miim_end,}
},
(struct phy_cmd[]) { /* shutdown */
{miim_end,}
},
};
struct phy_info *phy_info[] = {
#if 0
&phy_info_cis8201,
#endif
&phy_info_cis8204,
&phy_info_M88E1011S,
&phy_info_M88E1111S,
&phy_info_dm9161,
&phy_info_lxt971,
&phy_info_dp83865,
NULL
};
/* Grab the identifier of the device's PHY, and search through
* all of the known PHYs to see if one matches. If so, return
* it, if not, return NULL */
struct phy_info * get_phy_info(struct eth_device *dev)
{
struct tsec_private *priv = (struct tsec_private *)dev->priv;
uint phy_reg, phy_ID;
int i;
struct phy_info *theInfo = NULL;
/* Grab the bits from PHYIR1, and put them in the upper half */
phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
phy_ID = (phy_reg & 0xffff) << 16;
/* Grab the bits from PHYIR2, and put them in the lower half */
phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
phy_ID |= (phy_reg & 0xffff);
/* loop through all the known PHY types, and find one that */
/* matches the ID we read from the PHY. */
for(i=0; phy_info[i]; i++) {
if(phy_info[i]->id == (phy_ID >> phy_info[i]->shift))
theInfo = phy_info[i];
}
if(theInfo == NULL)
{
printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
return NULL;
} else {
debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
}
return theInfo;
}
/* Execute the given series of commands on the given device's
* PHY, running functions as necessary*/
void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
{
int i;
uint result;
volatile tsec_t *phyregs = priv->phyregs;
phyregs->miimcfg = MIIMCFG_RESET;
phyregs->miimcfg = MIIMCFG_INIT_VALUE;
while(phyregs->miimind & MIIMIND_BUSY);
for(i=0;cmd->mii_reg != miim_end;i++) {
if(cmd->mii_data == miim_read) {
result = read_phy_reg(priv, cmd->mii_reg);
if(cmd->funct != NULL)
(*(cmd->funct))(result, priv);
} else {
if(cmd->funct != NULL)
result = (*(cmd->funct))(cmd->mii_reg, priv);
else
result = cmd->mii_data;
write_phy_reg(priv, cmd->mii_reg, result);
}
cmd++;
}
}
/* Relocate the function pointers in the phy cmd lists */
static void relocate_cmds(void)
{
struct phy_cmd **cmdlistptr;
struct phy_cmd *cmd;
int i,j,k;
for(i=0; phy_info[i]; i++) {
/* First thing's first: relocate the pointers to the
* PHY command structures (the structs were done) */
phy_info[i] = (struct phy_info *) ((uint)phy_info[i]
+ gd->reloc_off);
phy_info[i]->name += gd->reloc_off;
phy_info[i]->config =
(struct phy_cmd *)((uint)phy_info[i]->config
+ gd->reloc_off);
phy_info[i]->startup =
(struct phy_cmd *)((uint)phy_info[i]->startup
+ gd->reloc_off);
phy_info[i]->shutdown =
(struct phy_cmd *)((uint)phy_info[i]->shutdown
+ gd->reloc_off);
cmdlistptr = &phy_info[i]->config;
j=0;
for(;cmdlistptr <= &phy_info[i]->shutdown;cmdlistptr++) {
k=0;
for(cmd=*cmdlistptr;cmd->mii_reg != miim_end;cmd++) {
/* Only relocate non-NULL pointers */
if(cmd->funct)
cmd->funct += gd->reloc_off;
k++;
}
j++;
}
}
relocated = 1;
}
#if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) \
&& !defined(BITBANGMII)
struct tsec_private * get_priv_for_phy(unsigned char phyaddr)
{
int i;
for(i=0;i<MAXCONTROLLERS;i++) {
if(privlist[i]->phyaddr == phyaddr)
return privlist[i];
}
return NULL;
}
/*
* Read a MII PHY register.
*
* Returns:
* 0 on success
*/
static int tsec_miiphy_read(char *devname, unsigned char addr,
unsigned char reg, unsigned short *value)
{
unsigned short ret;
struct tsec_private *priv = get_priv_for_phy(addr);
if(NULL == priv) {
printf("Can't read PHY at address %d\n", addr);
return -1;
}
ret = (unsigned short)read_phy_reg(priv, reg);
*value = ret;
return 0;
}
/*
* Write a MII PHY register.
*
* Returns:
* 0 on success
*/
static int tsec_miiphy_write(char *devname, unsigned char addr,
unsigned char reg, unsigned short value)
{
struct tsec_private *priv = get_priv_for_phy(addr);
if(NULL == priv) {
printf("Can't write PHY at address %d\n", addr);
return -1;
}
write_phy_reg(priv, reg, value);
return 0;
}
#endif /* defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII)
&& !defined(BITBANGMII) */
#endif /* CONFIG_TSEC_ENET */