u-boot/arch/blackfin/cpu/initcode.c
Wolfgang Denk 0060517ae0 cppcheck cleanup: fix nullPointer errors
There are a number of places where U-Boot intentionally and legally
accesses physical address 0x0000, for example when installing
exception vectors on systems where these are located in low memory.

Add "cppcheck-suppress nullPointer" comments to silence cppcheck
where this is intentional and legal.

Signed-off-by: Wolfgang Denk <wd@denx.de>
2014-11-07 16:27:07 -05:00

1042 lines
27 KiB
C

/*
* initcode.c - Initialize the processor. This is usually entails things
* like external memory, voltage regulators, etc... Note that this file
* cannot make any function calls as it may be executed all by itself by
* the Blackfin's bootrom in LDR format.
*
* Copyright (c) 2004-2011 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#define BFIN_IN_INITCODE
#include <config.h>
#include <asm/blackfin.h>
#include <asm/mach-common/bits/watchdog.h>
#include <asm/mach-common/bits/bootrom.h>
#include <asm/mach-common/bits/core.h>
#include <asm/serial.h>
#ifndef __ADSPBF60x__
#include <asm/mach-common/bits/ebiu.h>
#include <asm/mach-common/bits/pll.h>
#else /* __ADSPBF60x__ */
#include <asm/mach-common/bits/cgu.h>
#define CONFIG_BFIN_GET_DCLK_M \
((CONFIG_CLKIN_HZ*CONFIG_VCO_MULT)/(CONFIG_DCLK_DIV*1000000))
#ifndef CONFIG_DMC_DDRCFG
#if ((CONFIG_BFIN_GET_DCLK_M != 125) && \
(CONFIG_BFIN_GET_DCLK_M != 133) && \
(CONFIG_BFIN_GET_DCLK_M != 150) && \
(CONFIG_BFIN_GET_DCLK_M != 166) && \
(CONFIG_BFIN_GET_DCLK_M != 200) && \
(CONFIG_BFIN_GET_DCLK_M != 225) && \
(CONFIG_BFIN_GET_DCLK_M != 250))
#error "DDR2 CLK must be in (125, 133, 150, 166, 200, 225, 250)MHz"
#endif
#endif
/* DMC control bits */
#define SRREQ 0x8
/* DMC status bits */
#define IDLE 0x1
#define MEMINITDONE 0x4
#define SRACK 0x8
#define PDACK 0x10
#define DPDACK 0x20
#define DLLCALDONE 0x2000
#define PENDREF 0xF0000
#define PHYRDPHASE 0xF00000
#define PHYRDPHASE_OFFSET 20
/* DMC DLL control bits */
#define DLLCALRDCNT 0xFF
#define DATACYC_OFFSET 8
struct ddr_config {
u32 ddr_clk;
u32 dmc_ddrctl;
u32 dmc_ddrcfg;
u32 dmc_ddrtr0;
u32 dmc_ddrtr1;
u32 dmc_ddrtr2;
u32 dmc_ddrmr;
u32 dmc_ddrmr1;
};
static struct ddr_config ddr_config_table[] = {
[0] = {
.ddr_clk = 125, /* 125MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20705212,
.dmc_ddrtr1 = 0x201003CF,
.dmc_ddrtr2 = 0x00320107,
.dmc_ddrmr = 0x00000422,
.dmc_ddrmr1 = 0x4,
},
[1] = {
.ddr_clk = 133, /* 133MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20806313,
.dmc_ddrtr1 = 0x2013040D,
.dmc_ddrtr2 = 0x00320108,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[2] = {
.ddr_clk = 150, /* 150MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20A07323,
.dmc_ddrtr1 = 0x20160492,
.dmc_ddrtr2 = 0x00320209,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[3] = {
.ddr_clk = 166, /* 166MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20A07323,
.dmc_ddrtr1 = 0x2016050E,
.dmc_ddrtr2 = 0x00320209,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[4] = {
.ddr_clk = 200, /* 200MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20a07323,
.dmc_ddrtr1 = 0x2016050f,
.dmc_ddrtr2 = 0x00320509,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[5] = {
.ddr_clk = 225, /* 225MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20E0A424,
.dmc_ddrtr1 = 0x302006DB,
.dmc_ddrtr2 = 0x0032020D,
.dmc_ddrmr = 0x00000842,
.dmc_ddrmr1 = 0x4,
},
[6] = {
.ddr_clk = 250, /* 250MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20E0A424,
.dmc_ddrtr1 = 0x3020079E,
.dmc_ddrtr2 = 0x0032050D,
.dmc_ddrmr = 0x00000842,
.dmc_ddrmr1 = 0x4,
},
};
#endif /* __ADSPBF60x__ */
__attribute__((always_inline))
static inline void serial_init(void)
{
#if defined(__ADSPBF54x__) || defined(__ADSPBF60x__)
# ifdef BFIN_BOOT_UART_USE_RTS
# define BFIN_UART_USE_RTS 1
# else
# define BFIN_UART_USE_RTS 0
# endif
if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
uint32_t uart_base = UART_BASE;
size_t i;
/* force RTS rather than relying on auto RTS */
#if BFIN_UART_HW_VER < 4
bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) | FCPOL);
#else
bfin_write32(&pUART->control, bfin_read32(&pUART->control) |
FCPOL);
#endif
/* Wait for the line to clear up. We cannot rely on UART
* registers as none of them reflect the status of the RSR.
* Instead, we'll sleep for ~10 bit times at 9600 baud.
* We can precalc things here by assuming boot values for
* PLL rather than loading registers and calculating.
* baud = SCLK / (16 ^ (1 - EDBO) * Divisor)
* EDB0 = 0
* Divisor = (SCLK / baud) / 16
* SCLK = baud * 16 * Divisor
* SCLK = (0x14 * CONFIG_CLKIN_HZ) / 5
* CCLK = (16 * Divisor * 5) * (9600 / 10)
* In reality, this will probably be just about 1 second delay,
* so assuming 9600 baud is OK (both as a very low and too high
* speed as this will buffer things enough).
*/
#define _NUMBITS (10) /* how many bits to delay */
#define _LOWBAUD (9600) /* low baud rate */
#define _SCLK ((0x14 * CONFIG_CLKIN_HZ) / 5) /* SCLK based on PLL */
#define _DIVISOR ((_SCLK / _LOWBAUD) / 16) /* UART DLL/DLH */
#define _NUMINS (3) /* how many instructions in loop */
#define _CCLK (((16 * _DIVISOR * 5) * (_LOWBAUD / _NUMBITS)) / _NUMINS)
i = _CCLK;
while (i--)
asm volatile("" : : : "memory");
}
#endif
#if CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS
if (BFIN_DEBUG_EARLY_SERIAL) {
serial_early_init(UART_BASE);
serial_early_set_baud(UART_BASE, CONFIG_BAUDRATE);
}
#endif
}
__attribute__((always_inline))
static inline void serial_deinit(void)
{
#if defined(__ADSPBF54x__) || defined(__ADSPBF60x__)
uint32_t uart_base = UART_BASE;
if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
/* clear forced RTS rather than relying on auto RTS */
#if BFIN_UART_HW_VER < 4
bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) & ~FCPOL);
#else
bfin_write32(&pUART->control, bfin_read32(&pUART->control) &
~FCPOL);
#endif
}
#endif
}
__attribute__((always_inline))
static inline void serial_putc(char c)
{
uint32_t uart_base = UART_BASE;
if (!BFIN_DEBUG_EARLY_SERIAL)
return;
if (c == '\n')
serial_putc('\r');
bfin_write(&pUART->thr, c);
while (!(_lsr_read(pUART) & TEMT))
continue;
}
#include "initcode.h"
__attribute__((always_inline)) static inline void
program_nmi_handler(void)
{
u32 tmp1, tmp2;
/* Older bootroms don't create a dummy NMI handler,
* so make one ourselves ASAP in case it fires.
*/
if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS && !ANOMALY_05000219)
return;
asm volatile (
"%0 = RETS;" /* Save current RETS */
"CALL 1f;" /* Figure out current PC */
"RTN;" /* The simple NMI handler */
"1:"
"%1 = RETS;" /* Load addr of NMI handler */
"RETS = %0;" /* Restore RETS */
"[%2] = %1;" /* Write NMI handler */
: "=d"(tmp1), "=d"(tmp2)
: "ab"(EVT2)
);
}
/* Max SCLK can be 133MHz ... dividing that by (2*4) gives
* us a freq of 16MHz for SPI which should generally be
* slow enough for the slow reads the bootrom uses.
*/
#if !defined(CONFIG_SPI_FLASH_SLOW_READ) && \
((defined(__ADSPBF52x__) && __SILICON_REVISION__ >= 2) || \
(defined(__ADSPBF54x__) && __SILICON_REVISION__ >= 1))
# define BOOTROM_SUPPORTS_SPI_FAST_READ 1
#else
# define BOOTROM_SUPPORTS_SPI_FAST_READ 0
#endif
#ifndef CONFIG_SPI_BAUD_INITBLOCK
# define CONFIG_SPI_BAUD_INITBLOCK (BOOTROM_SUPPORTS_SPI_FAST_READ ? 2 : 4)
#endif
#ifdef SPI0_BAUD
# define bfin_write_SPI_BAUD bfin_write_SPI0_BAUD
#endif
#ifdef __ADSPBF60x__
#ifndef CONFIG_CGU_CTL_VAL
# define CONFIG_CGU_CTL_VAL ((CONFIG_VCO_MULT << 8) | CONFIG_CLKIN_HALF)
#endif
#ifndef CONFIG_CGU_DIV_VAL
# define CONFIG_CGU_DIV_VAL \
((CONFIG_CCLK_DIV << CSEL_P) | \
(CONFIG_SCLK0_DIV << S0SEL_P) | \
(CONFIG_SCLK_DIV << SYSSEL_P) | \
(CONFIG_SCLK1_DIV << S1SEL_P) | \
(CONFIG_DCLK_DIV << DSEL_P) | \
(CONFIG_OCLK_DIV << OSEL_P))
#endif
#else /* __ADSPBF60x__ */
/* PLL_DIV defines */
#ifndef CONFIG_PLL_DIV_VAL
# if (CONFIG_CCLK_DIV == 1)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV1
# elif (CONFIG_CCLK_DIV == 2)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV2
# elif (CONFIG_CCLK_DIV == 4)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV4
# elif (CONFIG_CCLK_DIV == 8)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV8
# else
# define CONFIG_CCLK_ACT_DIV CONFIG_CCLK_DIV_not_defined_properly
# endif
# define CONFIG_PLL_DIV_VAL (CONFIG_CCLK_ACT_DIV | CONFIG_SCLK_DIV)
#endif
#ifndef CONFIG_PLL_LOCKCNT_VAL
# define CONFIG_PLL_LOCKCNT_VAL 0x0300
#endif
#ifndef CONFIG_PLL_CTL_VAL
# define CONFIG_PLL_CTL_VAL (SPORT_HYST | (CONFIG_VCO_MULT << 9) | CONFIG_CLKIN_HALF)
#endif
/* Make sure our voltage value is sane so we don't blow up! */
#ifndef CONFIG_VR_CTL_VAL
# define BFIN_CCLK ((CONFIG_CLKIN_HZ * CONFIG_VCO_MULT) / CONFIG_CCLK_DIV)
# if defined(__ADSPBF533__) || defined(__ADSPBF532__) || defined(__ADSPBF531__)
# define CCLK_VLEV_120 400000000
# define CCLK_VLEV_125 533000000
# elif defined(__ADSPBF537__) || defined(__ADSPBF536__) || defined(__ADSPBF534__)
# define CCLK_VLEV_120 401000000
# define CCLK_VLEV_125 401000000
# elif defined(__ADSPBF561__)
# define CCLK_VLEV_120 300000000
# define CCLK_VLEV_125 501000000
# endif
# if BFIN_CCLK < CCLK_VLEV_120
# define CONFIG_VR_CTL_VLEV VLEV_120
# elif BFIN_CCLK < CCLK_VLEV_125
# define CONFIG_VR_CTL_VLEV VLEV_125
# else
# define CONFIG_VR_CTL_VLEV VLEV_130
# endif
# if defined(__ADSPBF52x__) /* TBD; use default */
# undef CONFIG_VR_CTL_VLEV
# define CONFIG_VR_CTL_VLEV VLEV_110
# elif defined(__ADSPBF54x__) /* TBD; use default */
# undef CONFIG_VR_CTL_VLEV
# define CONFIG_VR_CTL_VLEV VLEV_120
# elif defined(__ADSPBF538__) || defined(__ADSPBF539__) /* TBD; use default */
# undef CONFIG_VR_CTL_VLEV
# define CONFIG_VR_CTL_VLEV VLEV_125
# endif
# ifdef CONFIG_BFIN_MAC
# define CONFIG_VR_CTL_CLKBUF CLKBUFOE
# else
# define CONFIG_VR_CTL_CLKBUF 0
# endif
# if defined(__ADSPBF52x__)
# define CONFIG_VR_CTL_FREQ FREQ_1000
# else
# define CONFIG_VR_CTL_FREQ (GAIN_20 | FREQ_1000)
# endif
# define CONFIG_VR_CTL_VAL (CONFIG_VR_CTL_CLKBUF | CONFIG_VR_CTL_VLEV | CONFIG_VR_CTL_FREQ)
#endif
/* some parts do not have an on-chip voltage regulator */
#if defined(__ADSPBF51x__)
# define CONFIG_HAS_VR 0
# undef CONFIG_VR_CTL_VAL
# define CONFIG_VR_CTL_VAL 0
#else
# define CONFIG_HAS_VR 1
#endif
#if CONFIG_MEM_SIZE
#ifndef EBIU_RSTCTL
/* Blackfin with SDRAM */
#ifndef CONFIG_EBIU_SDBCTL_VAL
# if CONFIG_MEM_SIZE == 16
# define CONFIG_EBSZ_VAL EBSZ_16
# elif CONFIG_MEM_SIZE == 32
# define CONFIG_EBSZ_VAL EBSZ_32
# elif CONFIG_MEM_SIZE == 64
# define CONFIG_EBSZ_VAL EBSZ_64
# elif CONFIG_MEM_SIZE == 128
# define CONFIG_EBSZ_VAL EBSZ_128
# elif CONFIG_MEM_SIZE == 256
# define CONFIG_EBSZ_VAL EBSZ_256
# elif CONFIG_MEM_SIZE == 512
# define CONFIG_EBSZ_VAL EBSZ_512
# else
# error You need to define CONFIG_EBIU_SDBCTL_VAL or CONFIG_MEM_SIZE
# endif
# if CONFIG_MEM_ADD_WDTH == 8
# define CONFIG_EBCAW_VAL EBCAW_8
# elif CONFIG_MEM_ADD_WDTH == 9
# define CONFIG_EBCAW_VAL EBCAW_9
# elif CONFIG_MEM_ADD_WDTH == 10
# define CONFIG_EBCAW_VAL EBCAW_10
# elif CONFIG_MEM_ADD_WDTH == 11
# define CONFIG_EBCAW_VAL EBCAW_11
# else
# error You need to define CONFIG_EBIU_SDBCTL_VAL or CONFIG_MEM_ADD_WDTH
# endif
# define CONFIG_EBIU_SDBCTL_VAL (CONFIG_EBCAW_VAL | CONFIG_EBSZ_VAL | EBE)
#endif
#endif
#endif
/* Conflicting Column Address Widths Causes SDRAM Errors:
* EB2CAW and EB3CAW must be the same
*/
#if ANOMALY_05000362
# if ((CONFIG_EBIU_SDBCTL_VAL & 0x30000000) >> 8) != (CONFIG_EBIU_SDBCTL_VAL & 0x00300000)
# error "Anomaly 05000362: EB2CAW and EB3CAW must be the same"
# endif
#endif
#endif /* __ADSPBF60x__ */
__attribute__((always_inline)) static inline void
program_early_devices(ADI_BOOT_DATA *bs, uint *sdivB, uint *divB, uint *vcoB)
{
serial_putc('a');
/* Save the clock pieces that are used in baud rate calculation */
if (BFIN_DEBUG_EARLY_SERIAL || CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
serial_putc('b');
#ifdef __ADSPBF60x__
*sdivB = bfin_read_CGU_DIV();
*sdivB = ((*sdivB >> 8) & 0x1f) * ((*sdivB >> 5) & 0x7);
*vcoB = (bfin_read_CGU_CTL() >> 8) & 0x7f;
#else
*sdivB = bfin_read_PLL_DIV() & 0xf;
*vcoB = (bfin_read_PLL_CTL() >> 9) & 0x3f;
#endif
*divB = serial_early_get_div();
serial_putc('c');
}
serial_putc('d');
#ifdef CONFIG_HW_WATCHDOG
# ifndef CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE
# define CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE 20000
# endif
/* Program the watchdog with an initial timeout of ~20 seconds.
* Hopefully that should be long enough to load the u-boot LDR
* (from wherever) and then the common u-boot code can take over.
* In bypass mode, the start.S would have already set a much lower
* timeout, so don't clobber that.
*/
if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS) {
serial_putc('e');
#ifdef __ADSPBF60x__
/* Reset system event controller */
bfin_write_SEC_GCTL(0x2);
bfin_write_SEC_CCTL(0x2);
SSYNC();
/* Enable fault event input and system reset action in fault
* controller. Route watchdog timeout event to fault interface.
*/
bfin_write_SEC_FCTL(0xc1);
/* Enable watchdog interrupt source */
bfin_write_SEC_SCTL(2, bfin_read_SEC_SCTL(2) | 0x6);
SSYNC();
/* Enable system event controller */
bfin_write_SEC_GCTL(0x1);
bfin_write_SEC_CCTL(0x1);
SSYNC();
#endif
bfin_write_WDOG_CTL(WDDIS);
SSYNC();
bfin_write_WDOG_CNT(MSEC_TO_SCLK(CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE));
#if CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_UART
bfin_write_WDOG_CTL(WDEN);
#endif
serial_putc('f');
}
#endif
serial_putc('g');
/* Blackfin bootroms use the SPI slow read opcode instead of the SPI
* fast read, so we need to slow down the SPI clock a lot more during
* boot. Once we switch over to u-boot's SPI flash driver, we'll
* increase the speed appropriately.
*/
#ifdef SPI_BAUD
if (CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_SPI_MASTER) {
serial_putc('h');
if (BOOTROM_SUPPORTS_SPI_FAST_READ && CONFIG_SPI_BAUD_INITBLOCK < 4)
bs->dFlags |= BFLAG_FASTREAD;
bfin_write_SPI_BAUD(CONFIG_SPI_BAUD_INITBLOCK);
serial_putc('i');
}
#endif
serial_putc('j');
}
__attribute__((always_inline)) static inline bool
maybe_self_refresh(ADI_BOOT_DATA *bs)
{
serial_putc('a');
if (!CONFIG_MEM_SIZE)
return false;
#ifdef __ADSPBF60x__
/* resume from hibernate, return false let ddr initialize */
if ((bfin_read32(DPM0_STAT) & 0xF0) == 0x50) {
serial_putc('b');
return false;
}
#else /* __ADSPBF60x__ */
/* If external memory is enabled, put it into self refresh first. */
#if defined(EBIU_RSTCTL)
if (bfin_read_EBIU_RSTCTL() & DDR_SRESET) {
serial_putc('b');
bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | SRREQ);
return true;
}
#elif defined(EBIU_SDGCTL)
if (bfin_read_EBIU_SDBCTL() & EBE) {
serial_putc('b');
bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() | SRFS);
return true;
}
#endif
#endif /* __ADSPBF60x__ */
serial_putc('c');
return false;
}
__attribute__((always_inline)) static inline u16
program_clocks(ADI_BOOT_DATA *bs, bool put_into_srfs)
{
u16 vr_ctl = 0;
serial_putc('a');
#ifdef __ADSPBF60x__
if (bfin_read_DMC0_STAT() & MEMINITDONE) {
bfin_write_DMC0_CTL(bfin_read_DMC0_CTL() | SRREQ);
SSYNC();
while (!(bfin_read_DMC0_STAT() & SRACK))
continue;
}
/* Don't set the same value of MSEL and DF to CGU_CTL */
if ((bfin_read_CGU_CTL() & (MSEL_MASK | DF_MASK))
!= CONFIG_CGU_CTL_VAL) {
bfin_write_CGU_DIV(CONFIG_CGU_DIV_VAL);
bfin_write_CGU_CTL(CONFIG_CGU_CTL_VAL);
while ((bfin_read_CGU_STAT() & (CLKSALGN | PLLBP)) ||
!(bfin_read_CGU_STAT() & PLLLK))
continue;
}
bfin_write_CGU_DIV(CONFIG_CGU_DIV_VAL | UPDT);
while (bfin_read_CGU_STAT() & CLKSALGN)
continue;
if (bfin_read_DMC0_STAT() & MEMINITDONE) {
bfin_write_DMC0_CTL(bfin_read_DMC0_CTL() & ~SRREQ);
SSYNC();
while (bfin_read_DMC0_STAT() & SRACK)
continue;
}
#else /* __ADSPBF60x__ */
vr_ctl = bfin_read_VR_CTL();
serial_putc('b');
/* If we're entering self refresh, make sure it has happened. */
if (put_into_srfs)
#if defined(EBIU_RSTCTL)
while (!(bfin_read_EBIU_RSTCTL() & SRACK))
continue;
#elif defined(EBIU_SDGCTL)
while (!(bfin_read_EBIU_SDSTAT() & SDSRA))
continue;
#else
;
#endif
serial_putc('c');
/* With newer bootroms, we use the helper function to set up
* the memory controller. Older bootroms lacks such helpers
* so we do it ourselves.
*/
if (!ANOMALY_05000386) {
serial_putc('d');
/* Always programming PLL_LOCKCNT avoids Anomaly 05000430 */
ADI_SYSCTRL_VALUES memory_settings;
uint32_t actions = SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT;
if (!ANOMALY_05000440)
actions |= SYSCTRL_PLLDIV;
if (CONFIG_HAS_VR) {
actions |= SYSCTRL_VRCTL;
if (CONFIG_VR_CTL_VAL & FREQ_MASK)
actions |= SYSCTRL_INTVOLTAGE;
else
actions |= SYSCTRL_EXTVOLTAGE;
memory_settings.uwVrCtl = CONFIG_VR_CTL_VAL;
} else
actions |= SYSCTRL_EXTVOLTAGE;
memory_settings.uwPllCtl = CONFIG_PLL_CTL_VAL;
memory_settings.uwPllDiv = CONFIG_PLL_DIV_VAL;
memory_settings.uwPllLockCnt = CONFIG_PLL_LOCKCNT_VAL;
#if ANOMALY_05000432
bfin_write_SIC_IWR1(0);
#endif
serial_putc('e');
bfrom_SysControl(actions, &memory_settings, NULL);
serial_putc('f');
if (ANOMALY_05000440)
bfin_write_PLL_DIV(CONFIG_PLL_DIV_VAL);
#if ANOMALY_05000432
bfin_write_SIC_IWR1(-1);
#endif
#if ANOMALY_05000171
bfin_write_SICA_IWR0(-1);
bfin_write_SICA_IWR1(-1);
#endif
serial_putc('g');
} else {
serial_putc('h');
/* Disable all peripheral wakeups except for the PLL event. */
#ifdef SIC_IWR0
bfin_write_SIC_IWR0(1);
bfin_write_SIC_IWR1(0);
# ifdef SIC_IWR2
bfin_write_SIC_IWR2(0);
# endif
#elif defined(SICA_IWR0)
bfin_write_SICA_IWR0(1);
bfin_write_SICA_IWR1(0);
#elif defined(SIC_IWR)
bfin_write_SIC_IWR(1);
#endif
serial_putc('i');
/* Always programming PLL_LOCKCNT avoids Anomaly 05000430 */
bfin_write_PLL_LOCKCNT(CONFIG_PLL_LOCKCNT_VAL);
serial_putc('j');
/* Only reprogram when needed to avoid triggering unnecessary
* PLL relock sequences.
*/
if (vr_ctl != CONFIG_VR_CTL_VAL) {
serial_putc('?');
bfin_write_VR_CTL(CONFIG_VR_CTL_VAL);
asm("idle;");
serial_putc('!');
}
serial_putc('k');
bfin_write_PLL_DIV(CONFIG_PLL_DIV_VAL);
serial_putc('l');
/* Only reprogram when needed to avoid triggering unnecessary
* PLL relock sequences.
*/
if (ANOMALY_05000242 || bfin_read_PLL_CTL() != CONFIG_PLL_CTL_VAL) {
serial_putc('?');
bfin_write_PLL_CTL(CONFIG_PLL_CTL_VAL);
asm("idle;");
serial_putc('!');
}
serial_putc('m');
/* Restore all peripheral wakeups. */
#ifdef SIC_IWR0
bfin_write_SIC_IWR0(-1);
bfin_write_SIC_IWR1(-1);
# ifdef SIC_IWR2
bfin_write_SIC_IWR2(-1);
# endif
#elif defined(SICA_IWR0)
bfin_write_SICA_IWR0(-1);
bfin_write_SICA_IWR1(-1);
#elif defined(SIC_IWR)
bfin_write_SIC_IWR(-1);
#endif
serial_putc('n');
}
#endif /* __ADSPBF60x__ */
serial_putc('o');
return vr_ctl;
}
__attribute__((always_inline)) static inline void
update_serial_clocks(ADI_BOOT_DATA *bs, uint sdivB, uint divB, uint vcoB)
{
/* Since we've changed the SCLK above, we may need to update
* the UART divisors (UART baud rates are based on SCLK).
* Do the division by hand as there are no native instructions
* for dividing which means we'd generate a libgcc reference.
*/
unsigned int sdivR, vcoR;
unsigned int dividend;
unsigned int divisor;
unsigned int quotient;
serial_putc('a');
if (BFIN_DEBUG_EARLY_SERIAL ||
CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
#ifdef __ADSPBF60x__
sdivR = bfin_read_CGU_DIV();
sdivR = ((sdivR >> 8) & 0x1f) * ((sdivR >> 5) & 0x7);
vcoR = (bfin_read_CGU_CTL() >> 8) & 0x7f;
#else
sdivR = bfin_read_PLL_DIV() & 0xf;
vcoR = (bfin_read_PLL_CTL() >> 9) & 0x3f;
#endif
dividend = sdivB * divB * vcoR;
divisor = vcoB * sdivR;
quotient = early_division(dividend, divisor);
serial_early_put_div(quotient - ANOMALY_05000230);
}
serial_putc('c');
}
__attribute__((always_inline)) static inline void
program_memory_controller(ADI_BOOT_DATA *bs, bool put_into_srfs)
{
serial_putc('a');
if (!CONFIG_MEM_SIZE)
return;
serial_putc('b');
#ifdef __ADSPBF60x__
int dlldatacycle;
int dll_ctl;
int i = 0;
if (CONFIG_BFIN_GET_DCLK_M == 125)
i = 0;
else if (CONFIG_BFIN_GET_DCLK_M == 133)
i = 1;
else if (CONFIG_BFIN_GET_DCLK_M == 150)
i = 2;
else if (CONFIG_BFIN_GET_DCLK_M == 166)
i = 3;
else if (CONFIG_BFIN_GET_DCLK_M == 200)
i = 4;
else if (CONFIG_BFIN_GET_DCLK_M == 225)
i = 5;
else if (CONFIG_BFIN_GET_DCLK_M == 250)
i = 6;
#if 0
for (i = 0; i < ARRAY_SIZE(ddr_config_table); i++)
if (CONFIG_BFIN_GET_DCLK_M == ddr_config_table[i].ddr_clk)
break;
#endif
#ifndef CONFIG_DMC_DDRCFG
bfin_write_DMC0_CFG(ddr_config_table[i].dmc_ddrcfg);
#else
bfin_write_DMC0_CFG(CONFIG_DMC_DDRCFG);
#endif
#ifndef CONFIG_DMC_DDRTR0
bfin_write_DMC0_TR0(ddr_config_table[i].dmc_ddrtr0);
#else
bfin_write_DMC0_TR0(CONFIG_DMC_DDRTR0);
#endif
#ifndef CONFIG_DMC_DDRTR1
bfin_write_DMC0_TR1(ddr_config_table[i].dmc_ddrtr1);
#else
bfin_write_DMC0_TR1(CONFIG_DMC_DDRTR1);
#endif
#ifndef CONFIG_DMC_DDRTR2
bfin_write_DMC0_TR2(ddr_config_table[i].dmc_ddrtr2);
#else
bfin_write_DMC0_TR2(CONFIG_DMC_DDRTR2);
#endif
#ifndef CONFIG_DMC_DDRMR
bfin_write_DMC0_MR(ddr_config_table[i].dmc_ddrmr);
#else
bfin_write_DMC0_MR(CONFIG_DMC_DDRMR);
#endif
#ifndef CONFIG_DMC_DDREMR1
bfin_write_DMC0_EMR1(ddr_config_table[i].dmc_ddrmr1);
#else
bfin_write_DMC0_EMR1(CONFIG_DMC_DDREMR1);
#endif
#ifndef CONFIG_DMC_DDRCTL
bfin_write_DMC0_CTL(ddr_config_table[i].dmc_ddrctl);
#else
bfin_write_DMC0_CTL(CONFIG_DMC_DDRCTL);
#endif
SSYNC();
while (!(bfin_read_DMC0_STAT() & MEMINITDONE))
continue;
dlldatacycle = (bfin_read_DMC0_STAT() & PHYRDPHASE) >>
PHYRDPHASE_OFFSET;
dll_ctl = bfin_read_DMC0_DLLCTL();
dll_ctl &= 0x0ff;
bfin_write_DMC0_DLLCTL(dll_ctl | (dlldatacycle << DATACYC_OFFSET));
SSYNC();
while (!(bfin_read_DMC0_STAT() & DLLCALDONE))
continue;
serial_putc('!');
#else /* __ADSPBF60x__ */
/* Program the external memory controller before we come out of
* self-refresh. This only works with our SDRAM controller.
*/
#ifdef EBIU_SDGCTL
# ifdef CONFIG_EBIU_SDRRC_VAL
bfin_write_EBIU_SDRRC(CONFIG_EBIU_SDRRC_VAL);
# endif
# ifdef CONFIG_EBIU_SDBCTL_VAL
bfin_write_EBIU_SDBCTL(CONFIG_EBIU_SDBCTL_VAL);
# endif
# ifdef CONFIG_EBIU_SDGCTL_VAL
bfin_write_EBIU_SDGCTL(CONFIG_EBIU_SDGCTL_VAL);
# endif
#endif
serial_putc('c');
/* Now that we've reprogrammed, take things out of self refresh. */
if (put_into_srfs)
#if defined(EBIU_RSTCTL)
bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() & ~(SRREQ));
#elif defined(EBIU_SDGCTL)
bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() & ~(SRFS));
#endif
serial_putc('d');
/* Our DDR controller sucks and cannot be programmed while in
* self-refresh. So we have to pull it out before programming.
*/
#ifdef EBIU_RSTCTL
# ifdef CONFIG_EBIU_RSTCTL_VAL
bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | 0x1 /*DDRSRESET*/ | CONFIG_EBIU_RSTCTL_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL0_VAL
bfin_write_EBIU_DDRCTL0(CONFIG_EBIU_DDRCTL0_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL1_VAL
bfin_write_EBIU_DDRCTL1(CONFIG_EBIU_DDRCTL1_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL2_VAL
bfin_write_EBIU_DDRCTL2(CONFIG_EBIU_DDRCTL2_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL3_VAL
/* default is disable, so don't need to force this */
bfin_write_EBIU_DDRCTL3(CONFIG_EBIU_DDRCTL3_VAL);
# endif
# ifdef CONFIG_EBIU_DDRQUE_VAL
bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE() | CONFIG_EBIU_DDRQUE_VAL);
# endif
#endif
#endif /* __ADSPBF60x__ */
serial_putc('e');
}
__attribute__((always_inline)) static inline void
check_hibernation(ADI_BOOT_DATA *bs, u16 vr_ctl, bool put_into_srfs)
{
serial_putc('a');
if (!CONFIG_MEM_SIZE)
return;
serial_putc('b');
#ifdef __ADSPBF60x__
if (bfin_read32(DPM0_RESTORE0) != 0) {
uint32_t reg = bfin_read_DMC0_CTL();
reg &= ~0x8;
bfin_write_DMC0_CTL(reg);
while ((bfin_read_DMC0_STAT() & 0x8))
continue;
while (!(bfin_read_DMC0_STAT() & 0x1))
continue;
serial_putc('z');
uint32_t *hibernate_magic =
(uint32_t *)bfin_read32(DPM0_RESTORE4);
SSYNC(); /* make sure memory controller is done */
if (hibernate_magic[0] == 0xDEADBEEF) {
serial_putc('c');
SSYNC();
bfin_write_EVT15(hibernate_magic[1]);
bfin_write_IMASK(EVT_IVG15);
__asm__ __volatile__ (
/* load reti early to avoid anomaly 281 */
"reti = %2;"
/* clear hibernate magic */
"[%0] = %1;"
/* load stack pointer */
"SP = [%0 + 8];"
/* lower ourselves from reset ivg to ivg15 */
"raise 15;"
"nop;nop;nop;"
"rti;"
:
: "p"(hibernate_magic),
"d"(0x2000 /* jump.s 0 */),
"d"(0xffa00000)
);
}
}
#else
/* Are we coming out of hibernate (suspend to memory) ?
* The memory layout is:
* 0x0: hibernate magic for anomaly 307 (0xDEADBEEF)
* 0x4: return address
* 0x8: stack pointer
*
* SCKELOW is unreliable on older parts (anomaly 307)
*/
if (ANOMALY_05000307 || vr_ctl & 0x8000) {
uint32_t *hibernate_magic = 0;
SSYNC();
/* cppcheck-suppress nullPointer */
if (hibernate_magic[0] == 0xDEADBEEF) {
serial_putc('c');
bfin_write_EVT15(hibernate_magic[1]);
bfin_write_IMASK(EVT_IVG15);
__asm__ __volatile__ (
/* load reti early to avoid anomaly 281 */
"reti = %0;"
/* clear hibernate magic */
"[%0] = %1;"
/* load stack pointer */
"SP = [%0 + 8];"
/* lower ourselves from reset ivg to ivg15 */
"raise 15;"
"rti;"
:
: "p"(hibernate_magic), "d"(0x2000 /* jump.s 0 */)
);
}
serial_putc('d');
}
#endif
serial_putc('e');
}
BOOTROM_CALLED_FUNC_ATTR
void initcode(ADI_BOOT_DATA *bs)
{
ADI_BOOT_DATA bootstruct_scratch;
/* Setup NMI handler before anything else */
program_nmi_handler();
serial_init();
serial_putc('A');
/* If the bootstruct is NULL, then it's because we're loading
* dynamically and not via LDR (bootrom). So set the struct to
* some scratch space.
*/
if (!bs)
bs = &bootstruct_scratch;
serial_putc('B');
bool put_into_srfs = maybe_self_refresh(bs);
serial_putc('C');
uint sdivB, divB, vcoB;
program_early_devices(bs, &sdivB, &divB, &vcoB);
serial_putc('D');
u16 vr_ctl = program_clocks(bs, put_into_srfs);
serial_putc('E');
update_serial_clocks(bs, sdivB, divB, vcoB);
serial_putc('F');
program_memory_controller(bs, put_into_srfs);
serial_putc('G');
check_hibernation(bs, vr_ctl, put_into_srfs);
serial_putc('H');
program_async_controller(bs);
#ifdef CONFIG_BFIN_BOOTROM_USES_EVT1
serial_putc('I');
/* Tell the bootrom where our entry point is so that it knows
* where to jump to when finishing processing the LDR. This
* allows us to avoid small jump blocks in the LDR, and also
* works around anomaly 05000389 (init address in external
* memory causes bootrom to trigger external addressing IVHW).
*/
if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS)
bfin_write_EVT1(CONFIG_SYS_MONITOR_BASE);
#endif
serial_putc('>');
serial_putc('\n');
serial_deinit();
}