mirror of
https://github.com/u-boot/u-boot.git
synced 2024-12-12 14:23:50 +08:00
8ed9604613
add support for the TI OMAP2420 processor and its H4 reference board * Patch by Christian Pellegrin, 24 Sep 2004: Added support for NE2000 compatible (DP8390, DP83902) NICs.
964 lines
26 KiB
C
964 lines
26 KiB
C
/*
|
|
Ported to U-Boot by Christian Pellegrin <chri@ascensit.com>
|
|
|
|
Based on sources from the Linux kernel (pcnet_cs.c, 8390.h) and
|
|
eCOS(if_dp83902a.c, if_dp83902a.h). Both of these 2 wonderful world
|
|
are GPL, so this is, of course, GPL.
|
|
|
|
|
|
==========================================================================
|
|
|
|
dev/if_dp83902a.c
|
|
|
|
Ethernet device driver for NS DP83902a ethernet controller
|
|
|
|
==========================================================================
|
|
####ECOSGPLCOPYRIGHTBEGIN####
|
|
-------------------------------------------
|
|
This file is part of eCos, the Embedded Configurable Operating System.
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
|
|
|
eCos is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 or (at your option) any later version.
|
|
|
|
eCos is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with eCos; if not, write to the Free Software Foundation, Inc.,
|
|
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
|
|
As a special exception, if other files instantiate templates or use macros
|
|
or inline functions from this file, or you compile this file and link it
|
|
with other works to produce a work based on this file, this file does not
|
|
by itself cause the resulting work to be covered by the GNU General Public
|
|
License. However the source code for this file must still be made available
|
|
in accordance with section (3) of the GNU General Public License.
|
|
|
|
This exception does not invalidate any other reasons why a work based on
|
|
this file might be covered by the GNU General Public License.
|
|
|
|
Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
|
|
at http://sources.redhat.com/ecos/ecos-license/
|
|
-------------------------------------------
|
|
####ECOSGPLCOPYRIGHTEND####
|
|
####BSDCOPYRIGHTBEGIN####
|
|
|
|
-------------------------------------------
|
|
|
|
Portions of this software may have been derived from OpenBSD or other sources,
|
|
and are covered by the appropriate copyright disclaimers included herein.
|
|
|
|
-------------------------------------------
|
|
|
|
####BSDCOPYRIGHTEND####
|
|
==========================================================================
|
|
#####DESCRIPTIONBEGIN####
|
|
|
|
Author(s): gthomas
|
|
Contributors: gthomas, jskov, rsandifo
|
|
Date: 2001-06-13
|
|
Purpose:
|
|
Description:
|
|
|
|
FIXME: Will fail if pinged with large packets (1520 bytes)
|
|
Add promisc config
|
|
Add SNMP
|
|
|
|
####DESCRIPTIONEND####
|
|
|
|
|
|
==========================================================================
|
|
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <net.h>
|
|
#include <malloc.h>
|
|
|
|
#ifdef CONFIG_DRIVER_NE2000
|
|
|
|
/* wor around udelay resetting OCR */
|
|
static void my_udelay(long us) {
|
|
long tmo;
|
|
|
|
tmo = get_timer (0) + us * CFG_HZ / 1000000; /* will this be much greater than 0 ? */
|
|
while (get_timer (0) < tmo);
|
|
}
|
|
|
|
#define mdelay(n) my_udelay((n)*1000)
|
|
|
|
/* forward definition of function used for the uboot interface */
|
|
void uboot_push_packet_len(int len);
|
|
void uboot_push_tx_done(int key, int val);
|
|
|
|
/* timeout for tx/rx in s */
|
|
#define TOUT 5
|
|
|
|
#define ETHER_ADDR_LEN 6
|
|
|
|
/*
|
|
------------------------------------------------------------------------
|
|
Debugging details
|
|
|
|
Set to perms of:
|
|
0 disables all debug output
|
|
1 for process debug output
|
|
2 for added data IO output: get_reg, put_reg
|
|
4 for packet allocation/free output
|
|
8 for only startup status, so we can tell we're installed OK
|
|
*/
|
|
/*#define DEBUG 0xf*/
|
|
#define DEBUG 0
|
|
|
|
#if DEBUG & 1
|
|
#define DEBUG_FUNCTION() do { printf("%s\n", __FUNCTION__); } while (0)
|
|
#define DEBUG_LINE() do { printf("%d\n", __LINE__); } while (0)
|
|
#else
|
|
#define DEBUG_FUNCTION() do {} while(0)
|
|
#define DEBUG_LINE() do {} while(0)
|
|
#endif
|
|
|
|
#include "ne2000.h"
|
|
|
|
#if DEBUG & 1
|
|
#define PRINTK(args...) printf(args)
|
|
#else
|
|
#define PRINTK(args...)
|
|
#endif
|
|
|
|
static dp83902a_priv_data_t nic; /* just one instance of the card supported */
|
|
|
|
static bool
|
|
dp83902a_init(void)
|
|
{
|
|
dp83902a_priv_data_t *dp = &nic;
|
|
cyg_uint8* base;
|
|
int i;
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
base = dp->base;
|
|
if (!base) return false; /* No device found */
|
|
|
|
DEBUG_LINE();
|
|
|
|
/* Prepare ESA */
|
|
DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_PAGE1); /* Select page 1 */
|
|
/* Use the address from the serial EEPROM */
|
|
for (i = 0; i < 6; i++)
|
|
DP_IN(base, DP_P1_PAR0+i, dp->esa[i]);
|
|
DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_PAGE0); /* Select page 0 */
|
|
|
|
printf("NE2000 - %s ESA: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
"eeprom",
|
|
dp->esa[0],
|
|
dp->esa[1],
|
|
dp->esa[2],
|
|
dp->esa[3],
|
|
dp->esa[4],
|
|
dp->esa[5] );
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
dp83902a_stop(void)
|
|
{
|
|
dp83902a_priv_data_t *dp = &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_STOP); /* Brutal */
|
|
DP_OUT(base, DP_ISR, 0xFF); /* Clear any pending interrupts */
|
|
DP_OUT(base, DP_IMR, 0x00); /* Disable all interrupts */
|
|
|
|
dp->running = false;
|
|
}
|
|
|
|
/*
|
|
This function is called to "start up" the interface. It may be called
|
|
multiple times, even when the hardware is already running. It will be
|
|
called whenever something "hardware oriented" changes and should leave
|
|
the hardware ready to send/receive packets.
|
|
*/
|
|
static void
|
|
dp83902a_start(unsigned char * enaddr)
|
|
{
|
|
dp83902a_priv_data_t *dp = &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
int i;
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_STOP); /* Brutal */
|
|
DP_OUT(base, DP_DCR, DP_DCR_INIT);
|
|
DP_OUT(base, DP_RBCH, 0); /* Remote byte count */
|
|
DP_OUT(base, DP_RBCL, 0);
|
|
DP_OUT(base, DP_RCR, DP_RCR_MON); /* Accept no packets */
|
|
DP_OUT(base, DP_TCR, DP_TCR_LOCAL); /* Transmitter [virtually] off */
|
|
DP_OUT(base, DP_TPSR, dp->tx_buf1); /* Transmitter start page */
|
|
dp->tx1 = dp->tx2 = 0;
|
|
dp->tx_next = dp->tx_buf1;
|
|
dp->tx_started = false;
|
|
DP_OUT(base, DP_PSTART, dp->rx_buf_start); /* Receive ring start page */
|
|
DP_OUT(base, DP_BNDRY, dp->rx_buf_end-1); /* Receive ring boundary */
|
|
DP_OUT(base, DP_PSTOP, dp->rx_buf_end); /* Receive ring end page */
|
|
dp->rx_next = dp->rx_buf_start-1;
|
|
DP_OUT(base, DP_ISR, 0xFF); /* Clear any pending interrupts */
|
|
DP_OUT(base, DP_IMR, DP_IMR_All); /* Enable all interrupts */
|
|
DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_PAGE1 | DP_CR_STOP); /* Select page 1 */
|
|
DP_OUT(base, DP_P1_CURP, dp->rx_buf_start); /* Current page - next free page for Rx */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
DP_OUT(base, DP_P1_PAR0+i, enaddr[i]);
|
|
}
|
|
/* Enable and start device */
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START);
|
|
DP_OUT(base, DP_TCR, DP_TCR_NORMAL); /* Normal transmit operations */
|
|
DP_OUT(base, DP_RCR, DP_RCR_AB); /* Accept broadcast, no errors, no multicast */
|
|
dp->running = true;
|
|
}
|
|
|
|
/*
|
|
This routine is called to start the transmitter. It is split out from the
|
|
data handling routine so it may be called either when data becomes first
|
|
available or when an Tx interrupt occurs
|
|
*/
|
|
|
|
static void
|
|
dp83902a_start_xmit(int start_page, int len)
|
|
{
|
|
dp83902a_priv_data_t *dp = (dp83902a_priv_data_t *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
#if DEBUG & 1
|
|
printf("Tx pkt %d len %d\n", start_page, len);
|
|
if (dp->tx_started)
|
|
printf("TX already started?!?\n");
|
|
#endif
|
|
|
|
DP_OUT(base, DP_ISR, (DP_ISR_TxP | DP_ISR_TxE));
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START);
|
|
DP_OUT(base, DP_TBCL, len & 0xFF);
|
|
DP_OUT(base, DP_TBCH, len >> 8);
|
|
DP_OUT(base, DP_TPSR, start_page);
|
|
DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_TXPKT | DP_CR_START);
|
|
|
|
dp->tx_started = true;
|
|
}
|
|
|
|
/*
|
|
This routine is called to send data to the hardware. It is known a-priori
|
|
that there is free buffer space (dp->tx_next).
|
|
*/
|
|
static void
|
|
dp83902a_send(unsigned char *data, int total_len, unsigned long key)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
int len, start_page, pkt_len, i, isr;
|
|
#if DEBUG & 4
|
|
int dx;
|
|
#endif
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
len = pkt_len = total_len;
|
|
if (pkt_len < IEEE_8023_MIN_FRAME) pkt_len = IEEE_8023_MIN_FRAME;
|
|
|
|
start_page = dp->tx_next;
|
|
if (dp->tx_next == dp->tx_buf1) {
|
|
dp->tx1 = start_page;
|
|
dp->tx1_len = pkt_len;
|
|
dp->tx1_key = key;
|
|
dp->tx_next = dp->tx_buf2;
|
|
} else {
|
|
dp->tx2 = start_page;
|
|
dp->tx2_len = pkt_len;
|
|
dp->tx2_key = key;
|
|
dp->tx_next = dp->tx_buf1;
|
|
}
|
|
|
|
#if DEBUG & 5
|
|
printf("TX prep page %d len %d\n", start_page, pkt_len);
|
|
#endif
|
|
|
|
DP_OUT(base, DP_ISR, DP_ISR_RDC); /* Clear end of DMA */
|
|
{
|
|
/* Dummy read. The manual sez something slightly different, */
|
|
/* but the code is extended a bit to do what Hitachi's monitor */
|
|
/* does (i.e., also read data). */
|
|
|
|
cyg_uint16 tmp;
|
|
int len = 1;
|
|
|
|
DP_OUT(base, DP_RSAL, 0x100-len);
|
|
DP_OUT(base, DP_RSAH, (start_page-1) & 0xff);
|
|
DP_OUT(base, DP_RBCL, len);
|
|
DP_OUT(base, DP_RBCH, 0);
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_RDMA | DP_CR_START);
|
|
DP_IN_DATA(dp->data, tmp);
|
|
}
|
|
|
|
#ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_TX_DMA
|
|
/* Stall for a bit before continuing to work around random data */
|
|
/* corruption problems on some platforms. */
|
|
CYGACC_CALL_IF_DELAY_US(1);
|
|
#endif
|
|
|
|
/* Send data to device buffer(s) */
|
|
DP_OUT(base, DP_RSAL, 0);
|
|
DP_OUT(base, DP_RSAH, start_page);
|
|
DP_OUT(base, DP_RBCL, pkt_len & 0xFF);
|
|
DP_OUT(base, DP_RBCH, pkt_len >> 8);
|
|
DP_OUT(base, DP_CR, DP_CR_WDMA | DP_CR_START);
|
|
|
|
/* Put data into buffer */
|
|
#if DEBUG & 4
|
|
printf(" sg buf %08lx len %08x\n ", (unsigned long) data, len);
|
|
dx = 0;
|
|
#endif
|
|
while (len > 0) {
|
|
#if DEBUG & 4
|
|
printf(" %02x", *data);
|
|
if (0 == (++dx % 16)) printf("\n ");
|
|
#endif
|
|
DP_OUT_DATA(dp->data, *data++);
|
|
len--;
|
|
}
|
|
#if DEBUG & 4
|
|
printf("\n");
|
|
#endif
|
|
if (total_len < pkt_len) {
|
|
#if DEBUG & 4
|
|
printf(" + %d bytes of padding\n", pkt_len - total_len);
|
|
#endif
|
|
/* Padding to 802.3 length was required */
|
|
for (i = total_len; i < pkt_len;) {
|
|
i++;
|
|
DP_OUT_DATA(dp->data, 0);
|
|
}
|
|
}
|
|
|
|
#ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_TX_DMA
|
|
/* After last data write, delay for a bit before accessing the */
|
|
/* device again, or we may get random data corruption in the last */
|
|
/* datum (on some platforms). */
|
|
CYGACC_CALL_IF_DELAY_US(1);
|
|
#endif
|
|
|
|
/* Wait for DMA to complete */
|
|
do {
|
|
DP_IN(base, DP_ISR, isr);
|
|
} while ((isr & DP_ISR_RDC) == 0);
|
|
/* Then disable DMA */
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START);
|
|
|
|
/* Start transmit if not already going */
|
|
if (!dp->tx_started) {
|
|
if (start_page == dp->tx1) {
|
|
dp->tx_int = 1; /* Expecting interrupt from BUF1 */
|
|
} else {
|
|
dp->tx_int = 2; /* Expecting interrupt from BUF2 */
|
|
}
|
|
dp83902a_start_xmit(start_page, pkt_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
This function is called when a packet has been received. It's job is
|
|
to prepare to unload the packet from the hardware. Once the length of
|
|
the packet is known, the upper layer of the driver can be told. When
|
|
the upper layer is ready to unload the packet, the internal function
|
|
'dp83902a_recv' will be called to actually fetch it from the hardware.
|
|
*/
|
|
static void
|
|
dp83902a_RxEvent(void)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
unsigned char rsr;
|
|
unsigned char rcv_hdr[4];
|
|
int i, len, pkt, cur;
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
DP_IN(base, DP_RSR, rsr);
|
|
while (true) {
|
|
/* Read incoming packet header */
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE1 | DP_CR_NODMA | DP_CR_START);
|
|
DP_IN(base, DP_P1_CURP, cur);
|
|
DP_OUT(base, DP_P1_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START);
|
|
DP_IN(base, DP_BNDRY, pkt);
|
|
|
|
pkt += 1;
|
|
if (pkt == dp->rx_buf_end)
|
|
pkt = dp->rx_buf_start;
|
|
|
|
if (pkt == cur) {
|
|
break;
|
|
}
|
|
DP_OUT(base, DP_RBCL, sizeof(rcv_hdr));
|
|
DP_OUT(base, DP_RBCH, 0);
|
|
DP_OUT(base, DP_RSAL, 0);
|
|
DP_OUT(base, DP_RSAH, pkt);
|
|
if (dp->rx_next == pkt) {
|
|
if (cur == dp->rx_buf_start)
|
|
DP_OUT(base, DP_BNDRY, dp->rx_buf_end-1);
|
|
else
|
|
DP_OUT(base, DP_BNDRY, cur-1); /* Update pointer */
|
|
return;
|
|
}
|
|
dp->rx_next = pkt;
|
|
DP_OUT(base, DP_ISR, DP_ISR_RDC); /* Clear end of DMA */
|
|
DP_OUT(base, DP_CR, DP_CR_RDMA | DP_CR_START);
|
|
#ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_RX_DMA
|
|
CYGACC_CALL_IF_DELAY_US(10);
|
|
#endif
|
|
|
|
for (i = 0; i < sizeof(rcv_hdr);) {
|
|
DP_IN_DATA(dp->data, rcv_hdr[i++]);
|
|
}
|
|
|
|
#if DEBUG & 5
|
|
printf("rx hdr %02x %02x %02x %02x\n",
|
|
rcv_hdr[0], rcv_hdr[1], rcv_hdr[2], rcv_hdr[3]);
|
|
#endif
|
|
len = ((rcv_hdr[3] << 8) | rcv_hdr[2]) - sizeof(rcv_hdr);
|
|
uboot_push_packet_len(len);
|
|
if (rcv_hdr[1] == dp->rx_buf_start)
|
|
DP_OUT(base, DP_BNDRY, dp->rx_buf_end-1);
|
|
else
|
|
DP_OUT(base, DP_BNDRY, rcv_hdr[1]-1); /* Update pointer */
|
|
}
|
|
}
|
|
|
|
/*
|
|
This function is called as a result of the "eth_drv_recv()" call above.
|
|
It's job is to actually fetch data for a packet from the hardware once
|
|
memory buffers have been allocated for the packet. Note that the buffers
|
|
may come in pieces, using a scatter-gather list. This allows for more
|
|
efficient processing in the upper layers of the stack.
|
|
*/
|
|
static void
|
|
dp83902a_recv(unsigned char *data, int len)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
int i, mlen;
|
|
cyg_uint8 saved_char = 0;
|
|
bool saved;
|
|
#if DEBUG & 4
|
|
int dx;
|
|
#endif
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
#if DEBUG & 5
|
|
printf("Rx packet %d length %d\n", dp->rx_next, len);
|
|
#endif
|
|
|
|
/* Read incoming packet data */
|
|
DP_OUT(base, DP_CR, DP_CR_PAGE0 | DP_CR_NODMA | DP_CR_START);
|
|
DP_OUT(base, DP_RBCL, len & 0xFF);
|
|
DP_OUT(base, DP_RBCH, len >> 8);
|
|
DP_OUT(base, DP_RSAL, 4); /* Past header */
|
|
DP_OUT(base, DP_RSAH, dp->rx_next);
|
|
DP_OUT(base, DP_ISR, DP_ISR_RDC); /* Clear end of DMA */
|
|
DP_OUT(base, DP_CR, DP_CR_RDMA | DP_CR_START);
|
|
#ifdef CYGHWR_NS_DP83902A_PLF_BROKEN_RX_DMA
|
|
CYGACC_CALL_IF_DELAY_US(10);
|
|
#endif
|
|
|
|
saved = false;
|
|
for (i = 0; i < 1; i++) {
|
|
if (data) {
|
|
mlen = len;
|
|
#if DEBUG & 4
|
|
printf(" sg buf %08lx len %08x \n", (unsigned long) data, mlen);
|
|
dx = 0;
|
|
#endif
|
|
while (0 < mlen) {
|
|
/* Saved byte from previous loop? */
|
|
if (saved) {
|
|
*data++ = saved_char;
|
|
mlen--;
|
|
saved = false;
|
|
continue;
|
|
}
|
|
|
|
{
|
|
cyg_uint8 tmp;
|
|
DP_IN_DATA(dp->data, tmp);
|
|
#if DEBUG & 4
|
|
printf(" %02x", tmp);
|
|
if (0 == (++dx % 16)) printf("\n ");
|
|
#endif
|
|
*data++ = tmp;;
|
|
mlen--;
|
|
}
|
|
}
|
|
#if DEBUG & 4
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dp83902a_TxEvent(void)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
unsigned char tsr;
|
|
unsigned long key;
|
|
|
|
DEBUG_FUNCTION();
|
|
|
|
DP_IN(base, DP_TSR, tsr);
|
|
if (dp->tx_int == 1) {
|
|
key = dp->tx1_key;
|
|
dp->tx1 = 0;
|
|
} else {
|
|
key = dp->tx2_key;
|
|
dp->tx2 = 0;
|
|
}
|
|
/* Start next packet if one is ready */
|
|
dp->tx_started = false;
|
|
if (dp->tx1) {
|
|
dp83902a_start_xmit(dp->tx1, dp->tx1_len);
|
|
dp->tx_int = 1;
|
|
} else if (dp->tx2) {
|
|
dp83902a_start_xmit(dp->tx2, dp->tx2_len);
|
|
dp->tx_int = 2;
|
|
} else {
|
|
dp->tx_int = 0;
|
|
}
|
|
/* Tell higher level we sent this packet */
|
|
uboot_push_tx_done(key, 0);
|
|
}
|
|
|
|
/* Read the tally counters to clear them. Called in response to a CNT */
|
|
/* interrupt. */
|
|
static void
|
|
dp83902a_ClearCounters(void)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
cyg_uint8 cnt1, cnt2, cnt3;
|
|
|
|
DP_IN(base, DP_FER, cnt1);
|
|
DP_IN(base, DP_CER, cnt2);
|
|
DP_IN(base, DP_MISSED, cnt3);
|
|
DP_OUT(base, DP_ISR, DP_ISR_CNT);
|
|
}
|
|
|
|
/* Deal with an overflow condition. This code follows the procedure set */
|
|
/* out in section 7.0 of the datasheet. */
|
|
static void
|
|
dp83902a_Overflow(void)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *)&nic;
|
|
cyg_uint8 *base = dp->base;
|
|
cyg_uint8 isr;
|
|
|
|
/* Issue a stop command and wait 1.6ms for it to complete. */
|
|
DP_OUT(base, DP_CR, DP_CR_STOP | DP_CR_NODMA);
|
|
CYGACC_CALL_IF_DELAY_US(1600);
|
|
|
|
/* Clear the remote byte counter registers. */
|
|
DP_OUT(base, DP_RBCL, 0);
|
|
DP_OUT(base, DP_RBCH, 0);
|
|
|
|
/* Enter loopback mode while we clear the buffer. */
|
|
DP_OUT(base, DP_TCR, DP_TCR_LOCAL);
|
|
DP_OUT(base, DP_CR, DP_CR_START | DP_CR_NODMA);
|
|
|
|
/* Read in as many packets as we can and acknowledge any and receive */
|
|
/* interrupts. Since the buffer has overflowed, a receive event of */
|
|
/* some kind will have occured. */
|
|
dp83902a_RxEvent();
|
|
DP_OUT(base, DP_ISR, DP_ISR_RxP|DP_ISR_RxE);
|
|
|
|
/* Clear the overflow condition and leave loopback mode. */
|
|
DP_OUT(base, DP_ISR, DP_ISR_OFLW);
|
|
DP_OUT(base, DP_TCR, DP_TCR_NORMAL);
|
|
|
|
/* If a transmit command was issued, but no transmit event has occured, */
|
|
/* restart it here. */
|
|
DP_IN(base, DP_ISR, isr);
|
|
if (dp->tx_started && !(isr & (DP_ISR_TxP|DP_ISR_TxE))) {
|
|
DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_TXPKT | DP_CR_START);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dp83902a_poll(void)
|
|
{
|
|
struct dp83902a_priv_data *dp = (struct dp83902a_priv_data *) &nic;
|
|
cyg_uint8 *base = dp->base;
|
|
unsigned char isr;
|
|
|
|
DP_OUT(base, DP_CR, DP_CR_NODMA | DP_CR_PAGE0 | DP_CR_START);
|
|
DP_IN(base, DP_ISR, isr);
|
|
while (0 != isr) {
|
|
/* The CNT interrupt triggers when the MSB of one of the error */
|
|
/* counters is set. We don't much care about these counters, but */
|
|
/* we should read their values to reset them. */
|
|
if (isr & DP_ISR_CNT) {
|
|
dp83902a_ClearCounters();
|
|
}
|
|
/* Check for overflow. It's a special case, since there's a */
|
|
/* particular procedure that must be followed to get back into */
|
|
/* a running state.a */
|
|
if (isr & DP_ISR_OFLW) {
|
|
dp83902a_Overflow();
|
|
} else {
|
|
/* Other kinds of interrupts can be acknowledged simply by */
|
|
/* clearing the relevant bits of the ISR. Do that now, then */
|
|
/* handle the interrupts we care about. */
|
|
DP_OUT(base, DP_ISR, isr); /* Clear set bits */
|
|
if (!dp->running) break; /* Is this necessary? */
|
|
/* Check for tx_started on TX event since these may happen */
|
|
/* spuriously it seems. */
|
|
if (isr & (DP_ISR_TxP|DP_ISR_TxE) && dp->tx_started) {
|
|
dp83902a_TxEvent();
|
|
}
|
|
if (isr & (DP_ISR_RxP|DP_ISR_RxE)) {
|
|
dp83902a_RxEvent();
|
|
}
|
|
}
|
|
DP_IN(base, DP_ISR, isr);
|
|
}
|
|
}
|
|
|
|
/* find prom (taken from pc_net_cs.c from Linux) */
|
|
|
|
#include "8390.h"
|
|
|
|
typedef struct hw_info_t {
|
|
u_int offset;
|
|
u_char a0, a1, a2;
|
|
u_int flags;
|
|
} hw_info_t;
|
|
|
|
#define DELAY_OUTPUT 0x01
|
|
#define HAS_MISC_REG 0x02
|
|
#define USE_BIG_BUF 0x04
|
|
#define HAS_IBM_MISC 0x08
|
|
#define IS_DL10019 0x10
|
|
#define IS_DL10022 0x20
|
|
#define HAS_MII 0x40
|
|
#define USE_SHMEM 0x80 /* autodetected */
|
|
|
|
#define AM79C9XX_HOME_PHY 0x00006B90 /* HomePNA PHY */
|
|
#define AM79C9XX_ETH_PHY 0x00006B70 /* 10baseT PHY */
|
|
#define MII_PHYID_REV_MASK 0xfffffff0
|
|
#define MII_PHYID_REG1 0x02
|
|
#define MII_PHYID_REG2 0x03
|
|
|
|
static hw_info_t hw_info[] = {
|
|
{ /* Accton EN2212 */ 0x0ff0, 0x00, 0x00, 0xe8, DELAY_OUTPUT },
|
|
{ /* Allied Telesis LA-PCM */ 0x0ff0, 0x00, 0x00, 0xf4, 0 },
|
|
{ /* APEX MultiCard */ 0x03f4, 0x00, 0x20, 0xe5, 0 },
|
|
{ /* ASANTE FriendlyNet */ 0x4910, 0x00, 0x00, 0x94,
|
|
DELAY_OUTPUT | HAS_IBM_MISC },
|
|
{ /* Danpex EN-6200P2 */ 0x0110, 0x00, 0x40, 0xc7, 0 },
|
|
{ /* DataTrek NetCard */ 0x0ff0, 0x00, 0x20, 0xe8, 0 },
|
|
{ /* Dayna CommuniCard E */ 0x0110, 0x00, 0x80, 0x19, 0 },
|
|
{ /* D-Link DE-650 */ 0x0040, 0x00, 0x80, 0xc8, 0 },
|
|
{ /* EP-210 Ethernet */ 0x0110, 0x00, 0x40, 0x33, 0 },
|
|
{ /* EP4000 Ethernet */ 0x01c0, 0x00, 0x00, 0xb4, 0 },
|
|
{ /* Epson EEN10B */ 0x0ff0, 0x00, 0x00, 0x48,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* ELECOM Laneed LD-CDWA */ 0xb8, 0x08, 0x00, 0x42, 0 },
|
|
{ /* Hypertec Ethernet */ 0x01c0, 0x00, 0x40, 0x4c, 0 },
|
|
{ /* IBM CCAE */ 0x0ff0, 0x08, 0x00, 0x5a,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* IBM CCAE */ 0x0ff0, 0x00, 0x04, 0xac,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* IBM CCAE */ 0x0ff0, 0x00, 0x06, 0x29,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* IBM FME */ 0x0374, 0x08, 0x00, 0x5a,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* IBM FME */ 0x0374, 0x00, 0x04, 0xac,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* Kansai KLA-PCM/T */ 0x0ff0, 0x00, 0x60, 0x87,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* NSC DP83903 */ 0x0374, 0x08, 0x00, 0x17,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* NSC DP83903 */ 0x0374, 0x00, 0xc0, 0xa8,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* NSC DP83903 */ 0x0374, 0x00, 0xa0, 0xb0,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* NSC DP83903 */ 0x0198, 0x00, 0x20, 0xe0,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* I-O DATA PCLA/T */ 0x0ff0, 0x00, 0xa0, 0xb0, 0 },
|
|
{ /* Katron PE-520 */ 0x0110, 0x00, 0x40, 0xf6, 0 },
|
|
{ /* Kingston KNE-PCM/x */ 0x0ff0, 0x00, 0xc0, 0xf0,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* Kingston KNE-PCM/x */ 0x0ff0, 0xe2, 0x0c, 0x0f,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* Kingston KNE-PC2 */ 0x0180, 0x00, 0xc0, 0xf0, 0 },
|
|
{ /* Maxtech PCN2000 */ 0x5000, 0x00, 0x00, 0xe8, 0 },
|
|
{ /* NDC Instant-Link */ 0x003a, 0x00, 0x80, 0xc6, 0 },
|
|
{ /* NE2000 Compatible */ 0x0ff0, 0x00, 0xa0, 0x0c, 0 },
|
|
{ /* Network General Sniffer */ 0x0ff0, 0x00, 0x00, 0x65,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* Panasonic VEL211 */ 0x0ff0, 0x00, 0x80, 0x45,
|
|
HAS_MISC_REG | HAS_IBM_MISC },
|
|
{ /* PreMax PE-200 */ 0x07f0, 0x00, 0x20, 0xe0, 0 },
|
|
{ /* RPTI EP400 */ 0x0110, 0x00, 0x40, 0x95, 0 },
|
|
{ /* SCM Ethernet */ 0x0ff0, 0x00, 0x20, 0xcb, 0 },
|
|
{ /* Socket EA */ 0x4000, 0x00, 0xc0, 0x1b,
|
|
DELAY_OUTPUT | HAS_MISC_REG | USE_BIG_BUF },
|
|
{ /* Socket LP-E CF+ */ 0x01c0, 0x00, 0xc0, 0x1b, 0 },
|
|
{ /* SuperSocket RE450T */ 0x0110, 0x00, 0xe0, 0x98, 0 },
|
|
{ /* Volktek NPL-402CT */ 0x0060, 0x00, 0x40, 0x05, 0 },
|
|
{ /* NEC PC-9801N-J12 */ 0x0ff0, 0x00, 0x00, 0x4c, 0 },
|
|
{ /* PCMCIA Technology OEM */ 0x01c8, 0x00, 0xa0, 0x0c, 0 }
|
|
};
|
|
|
|
#define NR_INFO (sizeof(hw_info)/sizeof(hw_info_t))
|
|
|
|
static hw_info_t default_info = { 0, 0, 0, 0, 0 };
|
|
|
|
unsigned char dev_addr[6];
|
|
|
|
#define PCNET_CMD 0x00
|
|
#define PCNET_DATAPORT 0x10 /* NatSemi-defined port window offset. */
|
|
#define PCNET_RESET 0x1f /* Issue a read to reset, a write to clear. */
|
|
#define PCNET_MISC 0x18 /* For IBM CCAE and Socket EA cards */
|
|
|
|
unsigned long nic_base;
|
|
|
|
static void pcnet_reset_8390(void)
|
|
{
|
|
int i, r;
|
|
|
|
PRINTK("nic base is %lx\n", nic_base);
|
|
|
|
#if 1
|
|
n2k_outb(E8390_NODMA+E8390_PAGE0+E8390_STOP, E8390_CMD);
|
|
PRINTK("cmd (at %lx) is %x\n", nic_base+ E8390_CMD, n2k_inb(E8390_CMD));
|
|
n2k_outb(E8390_NODMA+E8390_PAGE1+E8390_STOP, E8390_CMD);
|
|
PRINTK("cmd (at %lx) is %x\n", nic_base+ E8390_CMD, n2k_inb(E8390_CMD));
|
|
n2k_outb(E8390_NODMA+E8390_PAGE0+E8390_STOP, E8390_CMD);
|
|
PRINTK("cmd (at %lx) is %x\n", nic_base+ E8390_CMD, n2k_inb(E8390_CMD));
|
|
#endif
|
|
n2k_outb(E8390_NODMA+E8390_PAGE0+E8390_STOP, E8390_CMD);
|
|
|
|
n2k_outb(n2k_inb(nic_base + PCNET_RESET), PCNET_RESET);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
if ((r = (n2k_inb(EN0_ISR) & ENISR_RESET)) != 0)
|
|
break;
|
|
PRINTK("got %x in reset\n", r);
|
|
my_udelay(100);
|
|
}
|
|
n2k_outb(ENISR_RESET, EN0_ISR); /* Ack intr. */
|
|
|
|
if (i == 100)
|
|
printf("pcnet_reset_8390() did not complete.\n");
|
|
} /* pcnet_reset_8390 */
|
|
|
|
static hw_info_t * get_prom(void ) {
|
|
unsigned char prom[32];
|
|
int i, j;
|
|
struct {
|
|
u_char value, offset;
|
|
} program_seq[] = {
|
|
{E8390_NODMA+E8390_PAGE0+E8390_STOP, E8390_CMD}, /* Select page 0*/
|
|
{0x48, EN0_DCFG}, /* Set byte-wide (0x48) access. */
|
|
{0x00, EN0_RCNTLO}, /* Clear the count regs. */
|
|
{0x00, EN0_RCNTHI},
|
|
{0x00, EN0_IMR}, /* Mask completion irq. */
|
|
{0xFF, EN0_ISR},
|
|
{E8390_RXOFF, EN0_RXCR}, /* 0x20 Set to monitor */
|
|
{E8390_TXOFF, EN0_TXCR}, /* 0x02 and loopback mode. */
|
|
{32, EN0_RCNTLO},
|
|
{0x00, EN0_RCNTHI},
|
|
{0x00, EN0_RSARLO}, /* DMA starting at 0x0000. */
|
|
{0x00, EN0_RSARHI},
|
|
{E8390_RREAD+E8390_START, E8390_CMD},
|
|
};
|
|
|
|
PRINTK("trying to get MAC via prom reading\n");
|
|
|
|
pcnet_reset_8390();
|
|
|
|
mdelay(10);
|
|
|
|
for (i = 0; i < sizeof(program_seq)/sizeof(program_seq[0]); i++)
|
|
n2k_outb(program_seq[i].value, program_seq[i].offset);
|
|
|
|
PRINTK("PROM:");
|
|
for (i = 0; i < 32; i++) {
|
|
prom[i] = n2k_inb(PCNET_DATAPORT);
|
|
PRINTK(" %02x", prom[i]);
|
|
}
|
|
PRINTK("\n");
|
|
for (i = 0; i < NR_INFO; i++) {
|
|
if ((prom[0] == hw_info[i].a0) &&
|
|
(prom[2] == hw_info[i].a1) &&
|
|
(prom[4] == hw_info[i].a2)) {
|
|
PRINTK("matched board %d\n", i);
|
|
break;
|
|
}
|
|
}
|
|
if ((i < NR_INFO) || ((prom[28] == 0x57) && (prom[30] == 0x57))) {
|
|
for (j = 0; j < 6; j++)
|
|
dev_addr[j] = prom[j<<1];
|
|
PRINTK("on exit i is %d/%ld\n", i, NR_INFO);
|
|
PRINTK("MAC address is %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
dev_addr[0],dev_addr[1],dev_addr[2],dev_addr[3],dev_addr[4],dev_addr[5]);
|
|
return (i < NR_INFO) ? hw_info+i : &default_info;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* U-boot specific routines */
|
|
|
|
#define NB 5
|
|
|
|
static unsigned char *pbuf = NULL;
|
|
static int plen[NB];
|
|
static int nrx = 0;
|
|
|
|
static int pkey = -1;
|
|
|
|
void uboot_push_packet_len(int len) {
|
|
PRINTK("pushed len = %d, nrx = %d\n", len, nrx);
|
|
if (len>=2000) {
|
|
printf("NE2000: packet too big\n");
|
|
return;
|
|
}
|
|
if (nrx >= NB) {
|
|
printf("losing packets in rx\n");
|
|
return;
|
|
}
|
|
plen[nrx] = len;
|
|
dp83902a_recv(&pbuf[nrx*2000], len);
|
|
nrx++;
|
|
}
|
|
|
|
void uboot_push_tx_done(int key, int val) {
|
|
PRINTK("pushed key = %d\n", key);
|
|
pkey = key;
|
|
}
|
|
|
|
int eth_init(bd_t *bd) {
|
|
static hw_info_t * r;
|
|
char ethaddr[20];
|
|
|
|
PRINTK("### eth_init\n");
|
|
|
|
if (!pbuf) {
|
|
pbuf = malloc(NB*2000);
|
|
if (!pbuf) {
|
|
printf("Cannot allocate rx buffers\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DRIVER_NE2000_CCR
|
|
{
|
|
volatile unsigned char *p = (volatile unsigned char *) CONFIG_DRIVER_NE2000_CCR;
|
|
|
|
PRINTK("CCR before is %x\n", *p);
|
|
*p = CONFIG_DRIVER_NE2000_VAL;
|
|
PRINTK("CCR after is %x\n", *p);
|
|
}
|
|
#endif
|
|
|
|
nic_base = CONFIG_DRIVER_NE2000_BASE;
|
|
nic.base = (cyg_uint8 *) CONFIG_DRIVER_NE2000_BASE;
|
|
|
|
r = get_prom();
|
|
if (!r)
|
|
return -1;
|
|
|
|
sprintf (ethaddr, "%02X:%02X:%02X:%02X:%02X:%02X",
|
|
dev_addr[0], dev_addr[1],
|
|
dev_addr[2], dev_addr[3],
|
|
dev_addr[4], dev_addr[5]) ;
|
|
PRINTK("Set environment from HW MAC addr = \"%s\"\n", ethaddr);
|
|
setenv ("ethaddr", ethaddr);
|
|
|
|
|
|
#define DP_DATA 0x10
|
|
nic.data = nic.base + DP_DATA;
|
|
nic.tx_buf1 = 0x40;
|
|
nic.tx_buf2 = 0x48;
|
|
nic.rx_buf_start = 0x50;
|
|
nic.rx_buf_end = 0x80;
|
|
|
|
if (dp83902a_init() == false)
|
|
return -1;
|
|
dp83902a_start(dev_addr);
|
|
return 0;
|
|
}
|
|
|
|
void eth_halt() {
|
|
|
|
PRINTK("### eth_halt\n");
|
|
|
|
dp83902a_stop();
|
|
}
|
|
|
|
int eth_rx() {
|
|
int j, tmo;
|
|
|
|
PRINTK("### eth_rx\n");
|
|
|
|
tmo = get_timer (0) + TOUT * CFG_HZ;
|
|
while(1) {
|
|
dp83902a_poll();
|
|
if (nrx > 0) {
|
|
for(j=0; j<nrx; j++) {
|
|
NetReceive(&pbuf[j*2000], plen[j]);
|
|
}
|
|
nrx = 0;
|
|
return 1;
|
|
}
|
|
if (get_timer (0) >= tmo) {
|
|
printf("timeout during rx\n");
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int eth_send(volatile void *packet, int length) {
|
|
int tmo;
|
|
|
|
PRINTK("### eth_send\n");
|
|
|
|
pkey = -1;
|
|
|
|
dp83902a_send((unsigned char *) packet, length, 666);
|
|
tmo = get_timer (0) + TOUT * CFG_HZ;
|
|
while(1) {
|
|
dp83902a_poll();
|
|
if (pkey != -1) {
|
|
PRINTK("Packet sucesfully sent\n");
|
|
return 0;
|
|
}
|
|
if (get_timer (0) >= tmo) {
|
|
printf("transmission error (timoeut)\n");
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif
|