u-boot/drivers/net/xilinx_axi_emac.c
Wolfgang Denk 1a4596601f Add GPL-2.0+ SPDX-License-Identifier to source files
Signed-off-by: Wolfgang Denk <wd@denx.de>
[trini: Fixup common/cmd_io.c]
Signed-off-by: Tom Rini <trini@ti.com>
2013-07-24 09:44:38 -04:00

653 lines
17 KiB
C

/*
* Copyright (C) 2011 Michal Simek <monstr@monstr.eu>
* Copyright (C) 2011 PetaLogix
* Copyright (C) 2010 Xilinx, Inc. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <net.h>
#include <malloc.h>
#include <asm/io.h>
#include <phy.h>
#include <miiphy.h>
#if !defined(CONFIG_PHYLIB)
# error AXI_ETHERNET requires PHYLIB
#endif
/* Link setup */
#define XAE_EMMC_LINKSPEED_MASK 0xC0000000 /* Link speed */
#define XAE_EMMC_LINKSPD_10 0x00000000 /* Link Speed mask for 10 Mbit */
#define XAE_EMMC_LINKSPD_100 0x40000000 /* Link Speed mask for 100 Mbit */
#define XAE_EMMC_LINKSPD_1000 0x80000000 /* Link Speed mask for 1000 Mbit */
/* Interrupt Status/Enable/Mask Registers bit definitions */
#define XAE_INT_RXRJECT_MASK 0x00000008 /* Rx frame rejected */
#define XAE_INT_MGTRDY_MASK 0x00000080 /* MGT clock Lock */
/* Receive Configuration Word 1 (RCW1) Register bit definitions */
#define XAE_RCW1_RX_MASK 0x10000000 /* Receiver enable */
/* Transmitter Configuration (TC) Register bit definitions */
#define XAE_TC_TX_MASK 0x10000000 /* Transmitter enable */
#define XAE_UAW1_UNICASTADDR_MASK 0x0000FFFF
/* MDIO Management Configuration (MC) Register bit definitions */
#define XAE_MDIO_MC_MDIOEN_MASK 0x00000040 /* MII management enable*/
/* MDIO Management Control Register (MCR) Register bit definitions */
#define XAE_MDIO_MCR_PHYAD_MASK 0x1F000000 /* Phy Address Mask */
#define XAE_MDIO_MCR_PHYAD_SHIFT 24 /* Phy Address Shift */
#define XAE_MDIO_MCR_REGAD_MASK 0x001F0000 /* Reg Address Mask */
#define XAE_MDIO_MCR_REGAD_SHIFT 16 /* Reg Address Shift */
#define XAE_MDIO_MCR_OP_READ_MASK 0x00008000 /* Op Code Read Mask */
#define XAE_MDIO_MCR_OP_WRITE_MASK 0x00004000 /* Op Code Write Mask */
#define XAE_MDIO_MCR_INITIATE_MASK 0x00000800 /* Ready Mask */
#define XAE_MDIO_MCR_READY_MASK 0x00000080 /* Ready Mask */
#define XAE_MDIO_DIV_DFT 29 /* Default MDIO clock divisor */
/* DMA macros */
/* Bitmasks of XAXIDMA_CR_OFFSET register */
#define XAXIDMA_CR_RUNSTOP_MASK 0x00000001 /* Start/stop DMA channel */
#define XAXIDMA_CR_RESET_MASK 0x00000004 /* Reset DMA engine */
/* Bitmasks of XAXIDMA_SR_OFFSET register */
#define XAXIDMA_HALTED_MASK 0x00000001 /* DMA channel halted */
/* Bitmask for interrupts */
#define XAXIDMA_IRQ_IOC_MASK 0x00001000 /* Completion intr */
#define XAXIDMA_IRQ_DELAY_MASK 0x00002000 /* Delay interrupt */
#define XAXIDMA_IRQ_ALL_MASK 0x00007000 /* All interrupts */
/* Bitmasks of XAXIDMA_BD_CTRL_OFFSET register */
#define XAXIDMA_BD_CTRL_TXSOF_MASK 0x08000000 /* First tx packet */
#define XAXIDMA_BD_CTRL_TXEOF_MASK 0x04000000 /* Last tx packet */
#define DMAALIGN 128
static u8 rxframe[PKTSIZE_ALIGN] __attribute((aligned(DMAALIGN)));
/* Reflect dma offsets */
struct axidma_reg {
u32 control; /* DMACR */
u32 status; /* DMASR */
u32 current; /* CURDESC */
u32 reserved;
u32 tail; /* TAILDESC */
};
/* Private driver structures */
struct axidma_priv {
struct axidma_reg *dmatx;
struct axidma_reg *dmarx;
int phyaddr;
struct phy_device *phydev;
struct mii_dev *bus;
};
/* BD descriptors */
struct axidma_bd {
u32 next; /* Next descriptor pointer */
u32 reserved1;
u32 phys; /* Buffer address */
u32 reserved2;
u32 reserved3;
u32 reserved4;
u32 cntrl; /* Control */
u32 status; /* Status */
u32 app0;
u32 app1; /* TX start << 16 | insert */
u32 app2; /* TX csum seed */
u32 app3;
u32 app4;
u32 sw_id_offset;
u32 reserved5;
u32 reserved6;
};
/* Static BDs - driver uses only one BD */
static struct axidma_bd tx_bd __attribute((aligned(DMAALIGN)));
static struct axidma_bd rx_bd __attribute((aligned(DMAALIGN)));
struct axi_regs {
u32 reserved[3];
u32 is; /* 0xC: Interrupt status */
u32 reserved2;
u32 ie; /* 0x14: Interrupt enable */
u32 reserved3[251];
u32 rcw1; /* 0x404: Rx Configuration Word 1 */
u32 tc; /* 0x408: Tx Configuration */
u32 reserved4;
u32 emmc; /* 0x410: EMAC mode configuration */
u32 reserved5[59];
u32 mdio_mc; /* 0x500: MII Management Config */
u32 mdio_mcr; /* 0x504: MII Management Control */
u32 mdio_mwd; /* 0x508: MII Management Write Data */
u32 mdio_mrd; /* 0x50C: MII Management Read Data */
u32 reserved6[124];
u32 uaw0; /* 0x700: Unicast address word 0 */
u32 uaw1; /* 0x704: Unicast address word 1 */
};
/* Use MII register 1 (MII status register) to detect PHY */
#define PHY_DETECT_REG 1
/*
* Mask used to verify certain PHY features (or register contents)
* in the register above:
* 0x1000: 10Mbps full duplex support
* 0x0800: 10Mbps half duplex support
* 0x0008: Auto-negotiation support
*/
#define PHY_DETECT_MASK 0x1808
static inline int mdio_wait(struct eth_device *dev)
{
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
u32 timeout = 200;
/* Wait till MDIO interface is ready to accept a new transaction. */
while (timeout && (!(in_be32(&regs->mdio_mcr)
& XAE_MDIO_MCR_READY_MASK))) {
timeout--;
udelay(1);
}
if (!timeout) {
printf("%s: Timeout\n", __func__);
return 1;
}
return 0;
}
static u32 phyread(struct eth_device *dev, u32 phyaddress, u32 registernum,
u16 *val)
{
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
u32 mdioctrlreg = 0;
if (mdio_wait(dev))
return 1;
mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
XAE_MDIO_MCR_PHYAD_MASK) |
((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
& XAE_MDIO_MCR_REGAD_MASK) |
XAE_MDIO_MCR_INITIATE_MASK |
XAE_MDIO_MCR_OP_READ_MASK;
out_be32(&regs->mdio_mcr, mdioctrlreg);
if (mdio_wait(dev))
return 1;
/* Read data */
*val = in_be32(&regs->mdio_mrd);
return 0;
}
static u32 phywrite(struct eth_device *dev, u32 phyaddress, u32 registernum,
u32 data)
{
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
u32 mdioctrlreg = 0;
if (mdio_wait(dev))
return 1;
mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
XAE_MDIO_MCR_PHYAD_MASK) |
((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
& XAE_MDIO_MCR_REGAD_MASK) |
XAE_MDIO_MCR_INITIATE_MASK |
XAE_MDIO_MCR_OP_WRITE_MASK;
/* Write data */
out_be32(&regs->mdio_mwd, data);
out_be32(&regs->mdio_mcr, mdioctrlreg);
if (mdio_wait(dev))
return 1;
return 0;
}
/* Setting axi emac and phy to proper setting */
static int setup_phy(struct eth_device *dev)
{
u16 phyreg;
u32 i, speed, emmc_reg, ret;
struct axidma_priv *priv = dev->priv;
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
struct phy_device *phydev;
u32 supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full;
if (priv->phyaddr == -1) {
/* Detect the PHY address */
for (i = 31; i >= 0; i--) {
ret = phyread(dev, i, PHY_DETECT_REG, &phyreg);
if (!ret && (phyreg != 0xFFFF) &&
((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
/* Found a valid PHY address */
priv->phyaddr = i;
debug("axiemac: Found valid phy address, %x\n",
phyreg);
break;
}
}
}
/* Interface - look at tsec */
phydev = phy_connect(priv->bus, priv->phyaddr, dev, 0);
phydev->supported &= supported;
phydev->advertising = phydev->supported;
priv->phydev = phydev;
phy_config(phydev);
if (phy_startup(phydev)) {
printf("axiemac: could not initialize PHY %s\n",
phydev->dev->name);
return 0;
}
switch (phydev->speed) {
case 1000:
speed = XAE_EMMC_LINKSPD_1000;
break;
case 100:
speed = XAE_EMMC_LINKSPD_100;
break;
case 10:
speed = XAE_EMMC_LINKSPD_10;
break;
default:
return 0;
}
/* Setup the emac for the phy speed */
emmc_reg = in_be32(&regs->emmc);
emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
emmc_reg |= speed;
/* Write new speed setting out to Axi Ethernet */
out_be32(&regs->emmc, emmc_reg);
/*
* Setting the operating speed of the MAC needs a delay. There
* doesn't seem to be register to poll, so please consider this
* during your application design.
*/
udelay(1);
return 1;
}
/* STOP DMA transfers */
static void axiemac_halt(struct eth_device *dev)
{
struct axidma_priv *priv = dev->priv;
u32 temp;
/* Stop the hardware */
temp = in_be32(&priv->dmatx->control);
temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
out_be32(&priv->dmatx->control, temp);
temp = in_be32(&priv->dmarx->control);
temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
out_be32(&priv->dmarx->control, temp);
debug("axiemac: Halted\n");
}
static int axi_ethernet_init(struct eth_device *dev)
{
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
u32 timeout = 200;
/*
* Check the status of the MgtRdy bit in the interrupt status
* registers. This must be done to allow the MGT clock to become stable
* for the Sgmii and 1000BaseX PHY interfaces. No other register reads
* will be valid until this bit is valid.
* The bit is always a 1 for all other PHY interfaces.
*/
while (timeout && (!(in_be32(&regs->is) & XAE_INT_MGTRDY_MASK))) {
timeout--;
udelay(1);
}
if (!timeout) {
printf("%s: Timeout\n", __func__);
return 1;
}
/* Stop the device and reset HW */
/* Disable interrupts */
out_be32(&regs->ie, 0);
/* Disable the receiver */
out_be32(&regs->rcw1, in_be32(&regs->rcw1) & ~XAE_RCW1_RX_MASK);
/*
* Stopping the receiver in mid-packet causes a dropped packet
* indication from HW. Clear it.
*/
/* Set the interrupt status register to clear the interrupt */
out_be32(&regs->is, XAE_INT_RXRJECT_MASK);
/* Setup HW */
/* Set default MDIO divisor */
out_be32(&regs->mdio_mc, XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK);
debug("axiemac: InitHw done\n");
return 0;
}
static int axiemac_setup_mac(struct eth_device *dev)
{
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
/* Set the MAC address */
int val = ((dev->enetaddr[3] << 24) | (dev->enetaddr[2] << 16) |
(dev->enetaddr[1] << 8) | (dev->enetaddr[0]));
out_be32(&regs->uaw0, val);
val = (dev->enetaddr[5] << 8) | dev->enetaddr[4] ;
val |= in_be32(&regs->uaw1) & ~XAE_UAW1_UNICASTADDR_MASK;
out_be32(&regs->uaw1, val);
return 0;
}
/* Reset DMA engine */
static void axi_dma_init(struct eth_device *dev)
{
struct axidma_priv *priv = dev->priv;
u32 timeout = 500;
/* Reset the engine so the hardware starts from a known state */
out_be32(&priv->dmatx->control, XAXIDMA_CR_RESET_MASK);
out_be32(&priv->dmarx->control, XAXIDMA_CR_RESET_MASK);
/* At the initialization time, hardware should finish reset quickly */
while (timeout--) {
/* Check transmit/receive channel */
/* Reset is done when the reset bit is low */
if (!(in_be32(&priv->dmatx->control) |
in_be32(&priv->dmarx->control))
& XAXIDMA_CR_RESET_MASK) {
break;
}
}
if (!timeout)
printf("%s: Timeout\n", __func__);
}
static int axiemac_init(struct eth_device *dev, bd_t * bis)
{
struct axidma_priv *priv = dev->priv;
struct axi_regs *regs = (struct axi_regs *)dev->iobase;
u32 temp;
debug("axiemac: Init started\n");
/*
* Initialize AXIDMA engine. AXIDMA engine must be initialized before
* AxiEthernet. During AXIDMA engine initialization, AXIDMA hardware is
* reset, and since AXIDMA reset line is connected to AxiEthernet, this
* would ensure a reset of AxiEthernet.
*/
axi_dma_init(dev);
/* Initialize AxiEthernet hardware. */
if (axi_ethernet_init(dev))
return -1;
/* Disable all RX interrupts before RxBD space setup */
temp = in_be32(&priv->dmarx->control);
temp &= ~XAXIDMA_IRQ_ALL_MASK;
out_be32(&priv->dmarx->control, temp);
/* Start DMA RX channel. Now it's ready to receive data.*/
out_be32(&priv->dmarx->current, (u32)&rx_bd);
/* Setup the BD. */
memset(&rx_bd, 0, sizeof(rx_bd));
rx_bd.next = (u32)&rx_bd;
rx_bd.phys = (u32)&rxframe;
rx_bd.cntrl = sizeof(rxframe);
/* Flush the last BD so DMA core could see the updates */
flush_cache((u32)&rx_bd, sizeof(rx_bd));
/* It is necessary to flush rxframe because if you don't do it
* then cache can contain uninitialized data */
flush_cache((u32)&rxframe, sizeof(rxframe));
/* Start the hardware */
temp = in_be32(&priv->dmarx->control);
temp |= XAXIDMA_CR_RUNSTOP_MASK;
out_be32(&priv->dmarx->control, temp);
/* Rx BD is ready - start */
out_be32(&priv->dmarx->tail, (u32)&rx_bd);
/* Enable TX */
out_be32(&regs->tc, XAE_TC_TX_MASK);
/* Enable RX */
out_be32(&regs->rcw1, XAE_RCW1_RX_MASK);
/* PHY setup */
if (!setup_phy(dev)) {
axiemac_halt(dev);
return -1;
}
debug("axiemac: Init complete\n");
return 0;
}
static int axiemac_send(struct eth_device *dev, void *ptr, int len)
{
struct axidma_priv *priv = dev->priv;
u32 timeout;
if (len > PKTSIZE_ALIGN)
len = PKTSIZE_ALIGN;
/* Flush packet to main memory to be trasfered by DMA */
flush_cache((u32)ptr, len);
/* Setup Tx BD */
memset(&tx_bd, 0, sizeof(tx_bd));
/* At the end of the ring, link the last BD back to the top */
tx_bd.next = (u32)&tx_bd;
tx_bd.phys = (u32)ptr;
/* Save len */
tx_bd.cntrl = len | XAXIDMA_BD_CTRL_TXSOF_MASK |
XAXIDMA_BD_CTRL_TXEOF_MASK;
/* Flush the last BD so DMA core could see the updates */
flush_cache((u32)&tx_bd, sizeof(tx_bd));
if (in_be32(&priv->dmatx->status) & XAXIDMA_HALTED_MASK) {
u32 temp;
out_be32(&priv->dmatx->current, (u32)&tx_bd);
/* Start the hardware */
temp = in_be32(&priv->dmatx->control);
temp |= XAXIDMA_CR_RUNSTOP_MASK;
out_be32(&priv->dmatx->control, temp);
}
/* Start transfer */
out_be32(&priv->dmatx->tail, (u32)&tx_bd);
/* Wait for transmission to complete */
debug("axiemac: Waiting for tx to be done\n");
timeout = 200;
while (timeout && (!in_be32(&priv->dmatx->status) &
(XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK))) {
timeout--;
udelay(1);
}
if (!timeout) {
printf("%s: Timeout\n", __func__);
return 1;
}
debug("axiemac: Sending complete\n");
return 0;
}
static int isrxready(struct eth_device *dev)
{
u32 status;
struct axidma_priv *priv = dev->priv;
/* Read pending interrupts */
status = in_be32(&priv->dmarx->status);
/* Acknowledge pending interrupts */
out_be32(&priv->dmarx->status, status & XAXIDMA_IRQ_ALL_MASK);
/*
* If Reception done interrupt is asserted, call RX call back function
* to handle the processed BDs and then raise the according flag.
*/
if ((status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))
return 1;
return 0;
}
static int axiemac_recv(struct eth_device *dev)
{
u32 length;
struct axidma_priv *priv = dev->priv;
u32 temp;
/* Wait for an incoming packet */
if (!isrxready(dev))
return 0;
debug("axiemac: RX data ready\n");
/* Disable IRQ for a moment till packet is handled */
temp = in_be32(&priv->dmarx->control);
temp &= ~XAXIDMA_IRQ_ALL_MASK;
out_be32(&priv->dmarx->control, temp);
length = rx_bd.app4 & 0xFFFF; /* max length mask */
#ifdef DEBUG
print_buffer(&rxframe, &rxframe[0], 1, length, 16);
#endif
/* Pass the received frame up for processing */
if (length)
NetReceive(rxframe, length);
#ifdef DEBUG
/* It is useful to clear buffer to be sure that it is consistent */
memset(rxframe, 0, sizeof(rxframe));
#endif
/* Setup RxBD */
/* Clear the whole buffer and setup it again - all flags are cleared */
memset(&rx_bd, 0, sizeof(rx_bd));
rx_bd.next = (u32)&rx_bd;
rx_bd.phys = (u32)&rxframe;
rx_bd.cntrl = sizeof(rxframe);
/* Write bd to HW */
flush_cache((u32)&rx_bd, sizeof(rx_bd));
/* It is necessary to flush rxframe because if you don't do it
* then cache will contain previous packet */
flush_cache((u32)&rxframe, sizeof(rxframe));
/* Rx BD is ready - start again */
out_be32(&priv->dmarx->tail, (u32)&rx_bd);
debug("axiemac: RX completed, framelength = %d\n", length);
return length;
}
static int axiemac_miiphy_read(const char *devname, uchar addr,
uchar reg, ushort *val)
{
struct eth_device *dev = eth_get_dev();
u32 ret;
ret = phyread(dev, addr, reg, val);
debug("axiemac: Read MII 0x%x, 0x%x, 0x%x\n", addr, reg, *val);
return ret;
}
static int axiemac_miiphy_write(const char *devname, uchar addr,
uchar reg, ushort val)
{
struct eth_device *dev = eth_get_dev();
debug("axiemac: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, val);
return phywrite(dev, addr, reg, val);
}
static int axiemac_bus_reset(struct mii_dev *bus)
{
debug("axiemac: Bus reset\n");
return 0;
}
int xilinx_axiemac_initialize(bd_t *bis, unsigned long base_addr,
unsigned long dma_addr)
{
struct eth_device *dev;
struct axidma_priv *priv;
dev = calloc(1, sizeof(struct eth_device));
if (dev == NULL)
return -1;
dev->priv = calloc(1, sizeof(struct axidma_priv));
if (dev->priv == NULL) {
free(dev);
return -1;
}
priv = dev->priv;
sprintf(dev->name, "aximac.%lx", base_addr);
dev->iobase = base_addr;
priv->dmatx = (struct axidma_reg *)dma_addr;
/* RX channel offset is 0x30 */
priv->dmarx = (struct axidma_reg *)(dma_addr + 0x30);
dev->init = axiemac_init;
dev->halt = axiemac_halt;
dev->send = axiemac_send;
dev->recv = axiemac_recv;
dev->write_hwaddr = axiemac_setup_mac;
#ifdef CONFIG_PHY_ADDR
priv->phyaddr = CONFIG_PHY_ADDR;
#else
priv->phyaddr = -1;
#endif
eth_register(dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) || defined(CONFIG_PHYLIB)
miiphy_register(dev->name, axiemac_miiphy_read, axiemac_miiphy_write);
priv->bus = miiphy_get_dev_by_name(dev->name);
priv->bus->reset = axiemac_bus_reset;
#endif
return 1;
}