u-boot/common/image.c
Jagannadha Sutradharudu Teki cee84e8257 image/FIT: Add ramdisk load, entry address and OS tag inclusion
This patch adds support to include Load, Entry address and OS tag
of ramdisk on to FIT image through mkimage tool.

Signed-off-by: Jagannadha Sutradharudu Teki <402jagan@gmail.com>
2012-09-02 17:39:15 +02:00

3216 lines
85 KiB
C

/*
* (C) Copyright 2008 Semihalf
*
* (C) Copyright 2000-2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <watchdog.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif
#ifdef CONFIG_HAS_DATAFLASH
#include <dataflash.h>
#endif
#ifdef CONFIG_LOGBUFFER
#include <logbuff.h>
#endif
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE)
#include <rtc.h>
#endif
#include <image.h>
#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
#include <fdt.h>
#include <libfdt.h>
#include <fdt_support.h>
#endif
#if defined(CONFIG_FIT)
#include <u-boot/md5.h>
#include <sha1.h>
static int fit_check_ramdisk(const void *fit, int os_noffset,
uint8_t arch, int verify);
#endif
#ifdef CONFIG_CMD_BDI
extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
#endif
DECLARE_GLOBAL_DATA_PTR;
static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
int verify);
#else
#include "mkimage.h"
#include <u-boot/md5.h>
#include <time.h>
#include <image.h>
#endif /* !USE_HOSTCC*/
static const table_entry_t uimage_arch[] = {
{ IH_ARCH_INVALID, NULL, "Invalid ARCH", },
{ IH_ARCH_ALPHA, "alpha", "Alpha", },
{ IH_ARCH_ARM, "arm", "ARM", },
{ IH_ARCH_I386, "x86", "Intel x86", },
{ IH_ARCH_IA64, "ia64", "IA64", },
{ IH_ARCH_M68K, "m68k", "M68K", },
{ IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", },
{ IH_ARCH_MIPS, "mips", "MIPS", },
{ IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", },
{ IH_ARCH_NIOS2, "nios2", "NIOS II", },
{ IH_ARCH_PPC, "powerpc", "PowerPC", },
{ IH_ARCH_PPC, "ppc", "PowerPC", },
{ IH_ARCH_S390, "s390", "IBM S390", },
{ IH_ARCH_SH, "sh", "SuperH", },
{ IH_ARCH_SPARC, "sparc", "SPARC", },
{ IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", },
{ IH_ARCH_BLACKFIN, "blackfin", "Blackfin", },
{ IH_ARCH_AVR32, "avr32", "AVR32", },
{ IH_ARCH_NDS32, "nds32", "NDS32", },
{ IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",},
{ -1, "", "", },
};
static const table_entry_t uimage_os[] = {
{ IH_OS_INVALID, NULL, "Invalid OS", },
{ IH_OS_LINUX, "linux", "Linux", },
#if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
{ IH_OS_LYNXOS, "lynxos", "LynxOS", },
#endif
{ IH_OS_NETBSD, "netbsd", "NetBSD", },
{ IH_OS_OSE, "ose", "Enea OSE", },
{ IH_OS_RTEMS, "rtems", "RTEMS", },
{ IH_OS_U_BOOT, "u-boot", "U-Boot", },
#if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
{ IH_OS_QNX, "qnx", "QNX", },
{ IH_OS_VXWORKS, "vxworks", "VxWorks", },
#endif
#if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
{ IH_OS_INTEGRITY,"integrity", "INTEGRITY", },
#endif
#ifdef USE_HOSTCC
{ IH_OS_4_4BSD, "4_4bsd", "4_4BSD", },
{ IH_OS_DELL, "dell", "Dell", },
{ IH_OS_ESIX, "esix", "Esix", },
{ IH_OS_FREEBSD, "freebsd", "FreeBSD", },
{ IH_OS_IRIX, "irix", "Irix", },
{ IH_OS_NCR, "ncr", "NCR", },
{ IH_OS_OPENBSD, "openbsd", "OpenBSD", },
{ IH_OS_PSOS, "psos", "pSOS", },
{ IH_OS_SCO, "sco", "SCO", },
{ IH_OS_SOLARIS, "solaris", "Solaris", },
{ IH_OS_SVR4, "svr4", "SVR4", },
#endif
{ -1, "", "", },
};
static const table_entry_t uimage_type[] = {
{ IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",},
{ IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", },
{ IH_TYPE_FIRMWARE, "firmware", "Firmware", },
{ IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", },
{ IH_TYPE_KERNEL, "kernel", "Kernel Image", },
{ IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", },
{ IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",},
{ IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",},
{ IH_TYPE_INVALID, NULL, "Invalid Image", },
{ IH_TYPE_MULTI, "multi", "Multi-File Image", },
{ IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",},
{ IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", },
{ IH_TYPE_SCRIPT, "script", "Script", },
{ IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
{ IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",},
{ -1, "", "", },
};
static const table_entry_t uimage_comp[] = {
{ IH_COMP_NONE, "none", "uncompressed", },
{ IH_COMP_BZIP2, "bzip2", "bzip2 compressed", },
{ IH_COMP_GZIP, "gzip", "gzip compressed", },
{ IH_COMP_LZMA, "lzma", "lzma compressed", },
{ IH_COMP_LZO, "lzo", "lzo compressed", },
{ -1, "", "", },
};
uint32_t crc32(uint32_t, const unsigned char *, uint);
uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint);
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
static void genimg_print_time(time_t timestamp);
#endif
/*****************************************************************************/
/* Legacy format routines */
/*****************************************************************************/
int image_check_hcrc(const image_header_t *hdr)
{
ulong hcrc;
ulong len = image_get_header_size();
image_header_t header;
/* Copy header so we can blank CRC field for re-calculation */
memmove(&header, (char *)hdr, image_get_header_size());
image_set_hcrc(&header, 0);
hcrc = crc32(0, (unsigned char *)&header, len);
return (hcrc == image_get_hcrc(hdr));
}
int image_check_dcrc(const image_header_t *hdr)
{
ulong data = image_get_data(hdr);
ulong len = image_get_data_size(hdr);
ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
return (dcrc == image_get_dcrc(hdr));
}
/**
* image_multi_count - get component (sub-image) count
* @hdr: pointer to the header of the multi component image
*
* image_multi_count() returns number of components in a multi
* component image.
*
* Note: no checking of the image type is done, caller must pass
* a valid multi component image.
*
* returns:
* number of components
*/
ulong image_multi_count(const image_header_t *hdr)
{
ulong i, count = 0;
uint32_t *size;
/* get start of the image payload, which in case of multi
* component images that points to a table of component sizes */
size = (uint32_t *)image_get_data(hdr);
/* count non empty slots */
for (i = 0; size[i]; ++i)
count++;
return count;
}
/**
* image_multi_getimg - get component data address and size
* @hdr: pointer to the header of the multi component image
* @idx: index of the requested component
* @data: pointer to a ulong variable, will hold component data address
* @len: pointer to a ulong variable, will hold component size
*
* image_multi_getimg() returns size and data address for the requested
* component in a multi component image.
*
* Note: no checking of the image type is done, caller must pass
* a valid multi component image.
*
* returns:
* data address and size of the component, if idx is valid
* 0 in data and len, if idx is out of range
*/
void image_multi_getimg(const image_header_t *hdr, ulong idx,
ulong *data, ulong *len)
{
int i;
uint32_t *size;
ulong offset, count, img_data;
/* get number of component */
count = image_multi_count(hdr);
/* get start of the image payload, which in case of multi
* component images that points to a table of component sizes */
size = (uint32_t *)image_get_data(hdr);
/* get address of the proper component data start, which means
* skipping sizes table (add 1 for last, null entry) */
img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
if (idx < count) {
*len = uimage_to_cpu(size[idx]);
offset = 0;
/* go over all indices preceding requested component idx */
for (i = 0; i < idx; i++) {
/* add up i-th component size, rounding up to 4 bytes */
offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
}
/* calculate idx-th component data address */
*data = img_data + offset;
} else {
*len = 0;
*data = 0;
}
}
static void image_print_type(const image_header_t *hdr)
{
const char *os, *arch, *type, *comp;
os = genimg_get_os_name(image_get_os(hdr));
arch = genimg_get_arch_name(image_get_arch(hdr));
type = genimg_get_type_name(image_get_type(hdr));
comp = genimg_get_comp_name(image_get_comp(hdr));
printf("%s %s %s (%s)\n", arch, os, type, comp);
}
/**
* image_print_contents - prints out the contents of the legacy format image
* @ptr: pointer to the legacy format image header
* @p: pointer to prefix string
*
* image_print_contents() formats a multi line legacy image contents description.
* The routine prints out all header fields followed by the size/offset data
* for MULTI/SCRIPT images.
*
* returns:
* no returned results
*/
void image_print_contents(const void *ptr)
{
const image_header_t *hdr = (const image_header_t *)ptr;
const char *p;
#ifdef USE_HOSTCC
p = "";
#else
p = " ";
#endif
printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr));
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
printf("%sCreated: ", p);
genimg_print_time((time_t)image_get_time(hdr));
#endif
printf("%sImage Type: ", p);
image_print_type(hdr);
printf("%sData Size: ", p);
genimg_print_size(image_get_data_size(hdr));
printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
printf("%sEntry Point: %08x\n", p, image_get_ep(hdr));
if (image_check_type(hdr, IH_TYPE_MULTI) ||
image_check_type(hdr, IH_TYPE_SCRIPT)) {
int i;
ulong data, len;
ulong count = image_multi_count(hdr);
printf("%sContents:\n", p);
for (i = 0; i < count; i++) {
image_multi_getimg(hdr, i, &data, &len);
printf("%s Image %d: ", p, i);
genimg_print_size(len);
if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
/*
* the user may need to know offsets
* if planning to do something with
* multiple files
*/
printf("%s Offset = 0x%08lx\n", p, data);
}
}
}
}
#ifndef USE_HOSTCC
/**
* image_get_ramdisk - get and verify ramdisk image
* @rd_addr: ramdisk image start address
* @arch: expected ramdisk architecture
* @verify: checksum verification flag
*
* image_get_ramdisk() returns a pointer to the verified ramdisk image
* header. Routine receives image start address and expected architecture
* flag. Verification done covers data and header integrity and os/type/arch
* fields checking.
*
* If dataflash support is enabled routine checks for dataflash addresses
* and handles required dataflash reads.
*
* returns:
* pointer to a ramdisk image header, if image was found and valid
* otherwise, return NULL
*/
static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
int verify)
{
const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
if (!image_check_magic(rd_hdr)) {
puts("Bad Magic Number\n");
bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
return NULL;
}
if (!image_check_hcrc(rd_hdr)) {
puts("Bad Header Checksum\n");
bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
image_print_contents(rd_hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(rd_hdr)) {
puts("Bad Data CRC\n");
bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
return NULL;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
!image_check_arch(rd_hdr, arch) ||
!image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
printf("No Linux %s Ramdisk Image\n",
genimg_get_arch_name(arch));
bootstage_error(BOOTSTAGE_ID_RAMDISK);
return NULL;
}
return rd_hdr;
}
#endif /* !USE_HOSTCC */
/*****************************************************************************/
/* Shared dual-format routines */
/*****************************************************************************/
#ifndef USE_HOSTCC
int getenv_yesno(char *var)
{
char *s = getenv(var);
return (s && (*s == 'n')) ? 0 : 1;
}
ulong getenv_bootm_low(void)
{
char *s = getenv("bootm_low");
if (s) {
ulong tmp = simple_strtoul(s, NULL, 16);
return tmp;
}
#if defined(CONFIG_SYS_SDRAM_BASE)
return CONFIG_SYS_SDRAM_BASE;
#elif defined(CONFIG_ARM)
return gd->bd->bi_dram[0].start;
#else
return 0;
#endif
}
phys_size_t getenv_bootm_size(void)
{
phys_size_t tmp;
char *s = getenv("bootm_size");
if (s) {
tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
return tmp;
}
s = getenv("bootm_low");
if (s)
tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
else
tmp = 0;
#if defined(CONFIG_ARM)
return gd->bd->bi_dram[0].size - tmp;
#else
return gd->bd->bi_memsize - tmp;
#endif
}
phys_size_t getenv_bootm_mapsize(void)
{
phys_size_t tmp;
char *s = getenv("bootm_mapsize");
if (s) {
tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
return tmp;
}
#if defined(CONFIG_SYS_BOOTMAPSZ)
return CONFIG_SYS_BOOTMAPSZ;
#else
return getenv_bootm_size();
#endif
}
void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
{
if (to == from)
return;
#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
while (len > 0) {
size_t tail = (len > chunksz) ? chunksz : len;
WATCHDOG_RESET();
memmove(to, from, tail);
to += tail;
from += tail;
len -= tail;
}
#else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
memmove(to, from, len);
#endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
}
#endif /* !USE_HOSTCC */
void genimg_print_size(uint32_t size)
{
#ifndef USE_HOSTCC
printf("%d Bytes = ", size);
print_size(size, "\n");
#else
printf("%d Bytes = %.2f kB = %.2f MB\n",
size, (double)size / 1.024e3,
(double)size / 1.048576e6);
#endif
}
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
static void genimg_print_time(time_t timestamp)
{
#ifndef USE_HOSTCC
struct rtc_time tm;
to_tm(timestamp, &tm);
printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n",
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
#else
printf("%s", ctime(&timestamp));
#endif
}
#endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */
/**
* get_table_entry_name - translate entry id to long name
* @table: pointer to a translation table for entries of a specific type
* @msg: message to be returned when translation fails
* @id: entry id to be translated
*
* get_table_entry_name() will go over translation table trying to find
* entry that matches given id. If matching entry is found, its long
* name is returned to the caller.
*
* returns:
* long entry name if translation succeeds
* msg otherwise
*/
char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
{
for (; table->id >= 0; ++table) {
if (table->id == id)
#if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
return table->lname;
#else
return table->lname + gd->reloc_off;
#endif
}
return (msg);
}
const char *genimg_get_os_name(uint8_t os)
{
return (get_table_entry_name(uimage_os, "Unknown OS", os));
}
const char *genimg_get_arch_name(uint8_t arch)
{
return (get_table_entry_name(uimage_arch, "Unknown Architecture",
arch));
}
const char *genimg_get_type_name(uint8_t type)
{
return (get_table_entry_name(uimage_type, "Unknown Image", type));
}
const char *genimg_get_comp_name(uint8_t comp)
{
return (get_table_entry_name(uimage_comp, "Unknown Compression",
comp));
}
/**
* get_table_entry_id - translate short entry name to id
* @table: pointer to a translation table for entries of a specific type
* @table_name: to be used in case of error
* @name: entry short name to be translated
*
* get_table_entry_id() will go over translation table trying to find
* entry that matches given short name. If matching entry is found,
* its id returned to the caller.
*
* returns:
* entry id if translation succeeds
* -1 otherwise
*/
int get_table_entry_id(const table_entry_t *table,
const char *table_name, const char *name)
{
const table_entry_t *t;
#ifdef USE_HOSTCC
int first = 1;
for (t = table; t->id >= 0; ++t) {
if (t->sname && strcasecmp(t->sname, name) == 0)
return(t->id);
}
fprintf(stderr, "\nInvalid %s Type - valid names are", table_name);
for (t = table; t->id >= 0; ++t) {
if (t->sname == NULL)
continue;
fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname);
first = 0;
}
fprintf(stderr, "\n");
#else
for (t = table; t->id >= 0; ++t) {
#ifdef CONFIG_NEEDS_MANUAL_RELOC
if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0)
#else
if (t->sname && strcmp(t->sname, name) == 0)
#endif
return (t->id);
}
debug("Invalid %s Type: %s\n", table_name, name);
#endif /* USE_HOSTCC */
return (-1);
}
int genimg_get_os_id(const char *name)
{
return (get_table_entry_id(uimage_os, "OS", name));
}
int genimg_get_arch_id(const char *name)
{
return (get_table_entry_id(uimage_arch, "CPU", name));
}
int genimg_get_type_id(const char *name)
{
return (get_table_entry_id(uimage_type, "Image", name));
}
int genimg_get_comp_id(const char *name)
{
return (get_table_entry_id(uimage_comp, "Compression", name));
}
#ifndef USE_HOSTCC
/**
* genimg_get_format - get image format type
* @img_addr: image start address
*
* genimg_get_format() checks whether provided address points to a valid
* legacy or FIT image.
*
* New uImage format and FDT blob are based on a libfdt. FDT blob
* may be passed directly or embedded in a FIT image. In both situations
* genimg_get_format() must be able to dectect libfdt header.
*
* returns:
* image format type or IMAGE_FORMAT_INVALID if no image is present
*/
int genimg_get_format(void *img_addr)
{
ulong format = IMAGE_FORMAT_INVALID;
const image_header_t *hdr;
#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
char *fit_hdr;
#endif
hdr = (const image_header_t *)img_addr;
if (image_check_magic(hdr))
format = IMAGE_FORMAT_LEGACY;
#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
else {
fit_hdr = (char *)img_addr;
if (fdt_check_header(fit_hdr) == 0)
format = IMAGE_FORMAT_FIT;
}
#endif
return format;
}
/**
* genimg_get_image - get image from special storage (if necessary)
* @img_addr: image start address
*
* genimg_get_image() checks if provided image start adddress is located
* in a dataflash storage. If so, image is moved to a system RAM memory.
*
* returns:
* image start address after possible relocation from special storage
*/
ulong genimg_get_image(ulong img_addr)
{
ulong ram_addr = img_addr;
#ifdef CONFIG_HAS_DATAFLASH
ulong h_size, d_size;
if (addr_dataflash(img_addr)) {
/* ger RAM address */
ram_addr = CONFIG_SYS_LOAD_ADDR;
/* get header size */
h_size = image_get_header_size();
#if defined(CONFIG_FIT)
if (sizeof(struct fdt_header) > h_size)
h_size = sizeof(struct fdt_header);
#endif
/* read in header */
debug(" Reading image header from dataflash address "
"%08lx to RAM address %08lx\n", img_addr, ram_addr);
read_dataflash(img_addr, h_size, (char *)ram_addr);
/* get data size */
switch (genimg_get_format((void *)ram_addr)) {
case IMAGE_FORMAT_LEGACY:
d_size = image_get_data_size(
(const image_header_t *)ram_addr);
debug(" Legacy format image found at 0x%08lx, "
"size 0x%08lx\n",
ram_addr, d_size);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
d_size = fit_get_size((const void *)ram_addr) - h_size;
debug(" FIT/FDT format image found at 0x%08lx, "
"size 0x%08lx\n",
ram_addr, d_size);
break;
#endif
default:
printf(" No valid image found at 0x%08lx\n",
img_addr);
return ram_addr;
}
/* read in image data */
debug(" Reading image remaining data from dataflash address "
"%08lx to RAM address %08lx\n", img_addr + h_size,
ram_addr + h_size);
read_dataflash(img_addr + h_size, d_size,
(char *)(ram_addr + h_size));
}
#endif /* CONFIG_HAS_DATAFLASH */
return ram_addr;
}
/**
* fit_has_config - check if there is a valid FIT configuration
* @images: pointer to the bootm command headers structure
*
* fit_has_config() checks if there is a FIT configuration in use
* (if FTI support is present).
*
* returns:
* 0, no FIT support or no configuration found
* 1, configuration found
*/
int genimg_has_config(bootm_headers_t *images)
{
#if defined(CONFIG_FIT)
if (images->fit_uname_cfg)
return 1;
#endif
return 0;
}
/**
* boot_get_ramdisk - main ramdisk handling routine
* @argc: command argument count
* @argv: command argument list
* @images: pointer to the bootm images structure
* @arch: expected ramdisk architecture
* @rd_start: pointer to a ulong variable, will hold ramdisk start address
* @rd_end: pointer to a ulong variable, will hold ramdisk end
*
* boot_get_ramdisk() is responsible for finding a valid ramdisk image.
* Curently supported are the following ramdisk sources:
* - multicomponent kernel/ramdisk image,
* - commandline provided address of decicated ramdisk image.
*
* returns:
* 0, if ramdisk image was found and valid, or skiped
* rd_start and rd_end are set to ramdisk start/end addresses if
* ramdisk image is found and valid
*
* 1, if ramdisk image is found but corrupted, or invalid
* rd_start and rd_end are set to 0 if no ramdisk exists
*/
int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
uint8_t arch, ulong *rd_start, ulong *rd_end)
{
ulong rd_addr, rd_load;
ulong rd_data, rd_len;
const image_header_t *rd_hdr;
#ifdef CONFIG_SUPPORT_RAW_INITRD
char *end;
#endif
#if defined(CONFIG_FIT)
void *fit_hdr;
const char *fit_uname_config = NULL;
const char *fit_uname_ramdisk = NULL;
ulong default_addr;
int rd_noffset;
int cfg_noffset;
const void *data;
size_t size;
#endif
*rd_start = 0;
*rd_end = 0;
/*
* Look for a '-' which indicates to ignore the
* ramdisk argument
*/
if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) {
debug("## Skipping init Ramdisk\n");
rd_len = rd_data = 0;
} else if (argc >= 3 || genimg_has_config(images)) {
#if defined(CONFIG_FIT)
if (argc >= 3) {
/*
* If the init ramdisk comes from the FIT image and
* the FIT image address is omitted in the command
* line argument, try to use os FIT image address or
* default load address.
*/
if (images->fit_uname_os)
default_addr = (ulong)images->fit_hdr_os;
else
default_addr = load_addr;
if (fit_parse_conf(argv[2], default_addr,
&rd_addr, &fit_uname_config)) {
debug("* ramdisk: config '%s' from image at "
"0x%08lx\n",
fit_uname_config, rd_addr);
} else if (fit_parse_subimage(argv[2], default_addr,
&rd_addr, &fit_uname_ramdisk)) {
debug("* ramdisk: subimage '%s' from image at "
"0x%08lx\n",
fit_uname_ramdisk, rd_addr);
} else
#endif
{
rd_addr = simple_strtoul(argv[2], NULL, 16);
debug("* ramdisk: cmdline image address = "
"0x%08lx\n",
rd_addr);
}
#if defined(CONFIG_FIT)
} else {
/* use FIT configuration provided in first bootm
* command argument
*/
rd_addr = (ulong)images->fit_hdr_os;
fit_uname_config = images->fit_uname_cfg;
debug("* ramdisk: using config '%s' from image "
"at 0x%08lx\n",
fit_uname_config, rd_addr);
/*
* Check whether configuration has ramdisk defined,
* if not, don't try to use it, quit silently.
*/
fit_hdr = (void *)rd_addr;
cfg_noffset = fit_conf_get_node(fit_hdr,
fit_uname_config);
if (cfg_noffset < 0) {
debug("* ramdisk: no such config\n");
return 1;
}
rd_noffset = fit_conf_get_ramdisk_node(fit_hdr,
cfg_noffset);
if (rd_noffset < 0) {
debug("* ramdisk: no ramdisk in config\n");
return 0;
}
}
#endif
/* copy from dataflash if needed */
rd_addr = genimg_get_image(rd_addr);
/*
* Check if there is an initrd image at the
* address provided in the second bootm argument
* check image type, for FIT images get FIT node.
*/
switch (genimg_get_format((void *)rd_addr)) {
case IMAGE_FORMAT_LEGACY:
printf("## Loading init Ramdisk from Legacy "
"Image at %08lx ...\n", rd_addr);
bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
rd_hdr = image_get_ramdisk(rd_addr, arch,
images->verify);
if (rd_hdr == NULL)
return 1;
rd_data = image_get_data(rd_hdr);
rd_len = image_get_data_size(rd_hdr);
rd_load = image_get_load(rd_hdr);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
fit_hdr = (void *)rd_addr;
printf("## Loading init Ramdisk from FIT "
"Image at %08lx ...\n", rd_addr);
bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT);
if (!fit_check_format(fit_hdr)) {
puts("Bad FIT ramdisk image format!\n");
bootstage_error(
BOOTSTAGE_ID_FIT_RD_FORMAT);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK);
if (!fit_uname_ramdisk) {
/*
* no ramdisk image node unit name, try to get config
* node first. If config unit node name is NULL
* fit_conf_get_node() will try to find default config node
*/
bootstage_mark(
BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME);
cfg_noffset = fit_conf_get_node(fit_hdr,
fit_uname_config);
if (cfg_noffset < 0) {
puts("Could not find configuration "
"node\n");
bootstage_error(
BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME);
return 1;
}
fit_uname_config = fdt_get_name(fit_hdr,
cfg_noffset, NULL);
printf(" Using '%s' configuration\n",
fit_uname_config);
rd_noffset = fit_conf_get_ramdisk_node(fit_hdr,
cfg_noffset);
fit_uname_ramdisk = fit_get_name(fit_hdr,
rd_noffset, NULL);
} else {
/* get ramdisk component image node offset */
bootstage_mark(
BOOTSTAGE_ID_FIT_RD_UNIT_NAME);
rd_noffset = fit_image_get_node(fit_hdr,
fit_uname_ramdisk);
}
if (rd_noffset < 0) {
puts("Could not find subimage node\n");
bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE);
return 1;
}
printf(" Trying '%s' ramdisk subimage\n",
fit_uname_ramdisk);
bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK);
if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch,
images->verify))
return 1;
/* get ramdisk image data address and length */
if (fit_image_get_data(fit_hdr, rd_noffset, &data,
&size)) {
puts("Could not find ramdisk subimage data!\n");
bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK);
rd_data = (ulong)data;
rd_len = size;
if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) {
puts("Can't get ramdisk subimage load "
"address!\n");
bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD);
images->fit_hdr_rd = fit_hdr;
images->fit_uname_rd = fit_uname_ramdisk;
images->fit_noffset_rd = rd_noffset;
break;
#endif
default:
#ifdef CONFIG_SUPPORT_RAW_INITRD
if (argc >= 3 && (end = strchr(argv[2], ':'))) {
rd_len = simple_strtoul(++end, NULL, 16);
rd_data = rd_addr;
} else
#endif
{
puts("Wrong Ramdisk Image Format\n");
rd_data = rd_len = rd_load = 0;
return 1;
}
}
} else if (images->legacy_hdr_valid &&
image_check_type(&images->legacy_hdr_os_copy,
IH_TYPE_MULTI)) {
/*
* Now check if we have a legacy mult-component image,
* get second entry data start address and len.
*/
bootstage_mark(BOOTSTAGE_ID_RAMDISK);
printf("## Loading init Ramdisk from multi component "
"Legacy Image at %08lx ...\n",
(ulong)images->legacy_hdr_os);
image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
} else {
/*
* no initrd image
*/
bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
rd_len = rd_data = 0;
}
if (!rd_data) {
debug("## No init Ramdisk\n");
} else {
*rd_start = rd_data;
*rd_end = rd_data + rd_len;
}
debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
*rd_start, *rd_end);
return 0;
}
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
/**
* boot_ramdisk_high - relocate init ramdisk
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @rd_data: ramdisk data start address
* @rd_len: ramdisk data length
* @initrd_start: pointer to a ulong variable, will hold final init ramdisk
* start address (after possible relocation)
* @initrd_end: pointer to a ulong variable, will hold final init ramdisk
* end address (after possible relocation)
*
* boot_ramdisk_high() takes a relocation hint from "initrd_high" environement
* variable and if requested ramdisk data is moved to a specified location.
*
* Initrd_start and initrd_end are set to final (after relocation) ramdisk
* start/end addresses if ramdisk image start and len were provided,
* otherwise set initrd_start and initrd_end set to zeros.
*
* returns:
* 0 - success
* -1 - failure
*/
int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
ulong *initrd_start, ulong *initrd_end)
{
char *s;
ulong initrd_high;
int initrd_copy_to_ram = 1;
if ((s = getenv("initrd_high")) != NULL) {
/* a value of "no" or a similar string will act like 0,
* turning the "load high" feature off. This is intentional.
*/
initrd_high = simple_strtoul(s, NULL, 16);
if (initrd_high == ~0)
initrd_copy_to_ram = 0;
} else {
/* not set, no restrictions to load high */
initrd_high = ~0;
}
#ifdef CONFIG_LOGBUFFER
/* Prevent initrd from overwriting logbuffer */
lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE);
#endif
debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
initrd_high, initrd_copy_to_ram);
if (rd_data) {
if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
debug(" in-place initrd\n");
*initrd_start = rd_data;
*initrd_end = rd_data + rd_len;
lmb_reserve(lmb, rd_data, rd_len);
} else {
if (initrd_high)
*initrd_start = (ulong)lmb_alloc_base(lmb,
rd_len, 0x1000, initrd_high);
else
*initrd_start = (ulong)lmb_alloc(lmb, rd_len,
0x1000);
if (*initrd_start == 0) {
puts("ramdisk - allocation error\n");
goto error;
}
bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
*initrd_end = *initrd_start + rd_len;
printf(" Loading Ramdisk to %08lx, end %08lx ... ",
*initrd_start, *initrd_end);
memmove_wd((void *)*initrd_start,
(void *)rd_data, rd_len, CHUNKSZ);
#ifdef CONFIG_MP
/*
* Ensure the image is flushed to memory to handle
* AMP boot scenarios in which we might not be
* HW cache coherent
*/
flush_cache((unsigned long)*initrd_start, rd_len);
#endif
puts("OK\n");
}
} else {
*initrd_start = 0;
*initrd_end = 0;
}
debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
*initrd_start, *initrd_end);
return 0;
error:
return -1;
}
#endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
#ifdef CONFIG_OF_LIBFDT
static void fdt_error(const char *msg)
{
puts("ERROR: ");
puts(msg);
puts(" - must RESET the board to recover.\n");
}
static const image_header_t *image_get_fdt(ulong fdt_addr)
{
const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr;
image_print_contents(fdt_hdr);
puts(" Verifying Checksum ... ");
if (!image_check_hcrc(fdt_hdr)) {
fdt_error("fdt header checksum invalid");
return NULL;
}
if (!image_check_dcrc(fdt_hdr)) {
fdt_error("fdt checksum invalid");
return NULL;
}
puts("OK\n");
if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) {
fdt_error("uImage is not a fdt");
return NULL;
}
if (image_get_comp(fdt_hdr) != IH_COMP_NONE) {
fdt_error("uImage is compressed");
return NULL;
}
if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) {
fdt_error("uImage data is not a fdt");
return NULL;
}
return fdt_hdr;
}
/**
* fit_check_fdt - verify FIT format FDT subimage
* @fit_hdr: pointer to the FIT header
* fdt_noffset: FDT subimage node offset within FIT image
* @verify: data CRC verification flag
*
* fit_check_fdt() verifies integrity of the FDT subimage and from
* specified FIT image.
*
* returns:
* 1, on success
* 0, on failure
*/
#if defined(CONFIG_FIT)
static int fit_check_fdt(const void *fit, int fdt_noffset, int verify)
{
fit_image_print(fit, fdt_noffset, " ");
if (verify) {
puts(" Verifying Hash Integrity ... ");
if (!fit_image_check_hashes(fit, fdt_noffset)) {
fdt_error("Bad Data Hash");
return 0;
}
puts("OK\n");
}
if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) {
fdt_error("Not a FDT image");
return 0;
}
if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) {
fdt_error("FDT image is compressed");
return 0;
}
return 1;
}
#endif /* CONFIG_FIT */
#ifndef CONFIG_SYS_FDT_PAD
#define CONFIG_SYS_FDT_PAD 0x3000
#endif
#if defined(CONFIG_OF_LIBFDT)
/**
* boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @fdt_blob: pointer to fdt blob base address
*
* Adds the memreserve regions in the dtb to the lmb block. Adding the
* memreserve regions prevents u-boot from using them to store the initrd
* or the fdt blob.
*/
void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob)
{
uint64_t addr, size;
int i, total;
if (fdt_check_header(fdt_blob) != 0)
return;
total = fdt_num_mem_rsv(fdt_blob);
for (i = 0; i < total; i++) {
if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0)
continue;
printf(" reserving fdt memory region: addr=%llx size=%llx\n",
(unsigned long long)addr, (unsigned long long)size);
lmb_reserve(lmb, addr, size);
}
}
/**
* boot_relocate_fdt - relocate flat device tree
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @of_flat_tree: pointer to a char* variable, will hold fdt start address
* @of_size: pointer to a ulong variable, will hold fdt length
*
* boot_relocate_fdt() allocates a region of memory within the bootmap and
* relocates the of_flat_tree into that region, even if the fdt is already in
* the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD
* bytes.
*
* of_flat_tree and of_size are set to final (after relocation) values
*
* returns:
* 0 - success
* 1 - failure
*/
int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size)
{
void *fdt_blob = *of_flat_tree;
void *of_start = 0;
char *fdt_high;
ulong of_len = 0;
int err;
int disable_relocation = 0;
/* nothing to do */
if (*of_size == 0)
return 0;
if (fdt_check_header(fdt_blob) != 0) {
fdt_error("image is not a fdt");
goto error;
}
/* position on a 4K boundary before the alloc_current */
/* Pad the FDT by a specified amount */
of_len = *of_size + CONFIG_SYS_FDT_PAD;
/* If fdt_high is set use it to select the relocation address */
fdt_high = getenv("fdt_high");
if (fdt_high) {
void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16);
if (((ulong) desired_addr) == ~0UL) {
/* All ones means use fdt in place */
of_start = fdt_blob;
lmb_reserve(lmb, (ulong)of_start, of_len);
disable_relocation = 1;
} else if (desired_addr) {
of_start =
(void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
(ulong)desired_addr);
if (of_start == 0) {
puts("Failed using fdt_high value for Device Tree");
goto error;
}
} else {
of_start =
(void *)(ulong) lmb_alloc(lmb, of_len, 0x1000);
}
} else {
of_start =
(void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
getenv_bootm_mapsize()
+ getenv_bootm_low());
}
if (of_start == 0) {
puts("device tree - allocation error\n");
goto error;
}
if (disable_relocation) {
/* We assume there is space after the existing fdt to use for padding */
fdt_set_totalsize(of_start, of_len);
printf(" Using Device Tree in place at %p, end %p\n",
of_start, of_start + of_len - 1);
} else {
debug("## device tree at %p ... %p (len=%ld [0x%lX])\n",
fdt_blob, fdt_blob + *of_size - 1, of_len, of_len);
printf(" Loading Device Tree to %p, end %p ... ",
of_start, of_start + of_len - 1);
err = fdt_open_into(fdt_blob, of_start, of_len);
if (err != 0) {
fdt_error("fdt move failed");
goto error;
}
puts("OK\n");
}
*of_flat_tree = of_start;
*of_size = of_len;
set_working_fdt_addr(*of_flat_tree);
return 0;
error:
return 1;
}
#endif /* CONFIG_OF_LIBFDT */
/**
* boot_get_fdt - main fdt handling routine
* @argc: command argument count
* @argv: command argument list
* @images: pointer to the bootm images structure
* @of_flat_tree: pointer to a char* variable, will hold fdt start address
* @of_size: pointer to a ulong variable, will hold fdt length
*
* boot_get_fdt() is responsible for finding a valid flat device tree image.
* Curently supported are the following ramdisk sources:
* - multicomponent kernel/ramdisk image,
* - commandline provided address of decicated ramdisk image.
*
* returns:
* 0, if fdt image was found and valid, or skipped
* of_flat_tree and of_size are set to fdt start address and length if
* fdt image is found and valid
*
* 1, if fdt image is found but corrupted
* of_flat_tree and of_size are set to 0 if no fdt exists
*/
int boot_get_fdt(int flag, int argc, char * const argv[],
bootm_headers_t *images, char **of_flat_tree, ulong *of_size)
{
const image_header_t *fdt_hdr;
ulong fdt_addr;
char *fdt_blob = NULL;
ulong image_start, image_data, image_end;
ulong load_start, load_end;
#if defined(CONFIG_FIT)
void *fit_hdr;
const char *fit_uname_config = NULL;
const char *fit_uname_fdt = NULL;
ulong default_addr;
int cfg_noffset;
int fdt_noffset;
const void *data;
size_t size;
#endif
*of_flat_tree = NULL;
*of_size = 0;
if (argc > 3 || genimg_has_config(images)) {
#if defined(CONFIG_FIT)
if (argc > 3) {
/*
* If the FDT blob comes from the FIT image and the
* FIT image address is omitted in the command line
* argument, try to use ramdisk or os FIT image
* address or default load address.
*/
if (images->fit_uname_rd)
default_addr = (ulong)images->fit_hdr_rd;
else if (images->fit_uname_os)
default_addr = (ulong)images->fit_hdr_os;
else
default_addr = load_addr;
if (fit_parse_conf(argv[3], default_addr,
&fdt_addr, &fit_uname_config)) {
debug("* fdt: config '%s' from image at "
"0x%08lx\n",
fit_uname_config, fdt_addr);
} else if (fit_parse_subimage(argv[3], default_addr,
&fdt_addr, &fit_uname_fdt)) {
debug("* fdt: subimage '%s' from image at "
"0x%08lx\n",
fit_uname_fdt, fdt_addr);
} else
#endif
{
fdt_addr = simple_strtoul(argv[3], NULL, 16);
debug("* fdt: cmdline image address = "
"0x%08lx\n",
fdt_addr);
}
#if defined(CONFIG_FIT)
} else {
/* use FIT configuration provided in first bootm
* command argument
*/
fdt_addr = (ulong)images->fit_hdr_os;
fit_uname_config = images->fit_uname_cfg;
debug("* fdt: using config '%s' from image "
"at 0x%08lx\n",
fit_uname_config, fdt_addr);
/*
* Check whether configuration has FDT blob defined,
* if not quit silently.
*/
fit_hdr = (void *)fdt_addr;
cfg_noffset = fit_conf_get_node(fit_hdr,
fit_uname_config);
if (cfg_noffset < 0) {
debug("* fdt: no such config\n");
return 0;
}
fdt_noffset = fit_conf_get_fdt_node(fit_hdr,
cfg_noffset);
if (fdt_noffset < 0) {
debug("* fdt: no fdt in config\n");
return 0;
}
}
#endif
debug("## Checking for 'FDT'/'FDT Image' at %08lx\n",
fdt_addr);
/* copy from dataflash if needed */
fdt_addr = genimg_get_image(fdt_addr);
/*
* Check if there is an FDT image at the
* address provided in the second bootm argument
* check image type, for FIT images get a FIT node.
*/
switch (genimg_get_format((void *)fdt_addr)) {
case IMAGE_FORMAT_LEGACY:
/* verify fdt_addr points to a valid image header */
printf("## Flattened Device Tree from Legacy Image "
"at %08lx\n",
fdt_addr);
fdt_hdr = image_get_fdt(fdt_addr);
if (!fdt_hdr)
goto error;
/*
* move image data to the load address,
* make sure we don't overwrite initial image
*/
image_start = (ulong)fdt_hdr;
image_data = (ulong)image_get_data(fdt_hdr);
image_end = image_get_image_end(fdt_hdr);
load_start = image_get_load(fdt_hdr);
load_end = load_start + image_get_data_size(fdt_hdr);
if (load_start == image_start ||
load_start == image_data) {
fdt_blob = (char *)image_data;
break;
}
if ((load_start < image_end) && (load_end > image_start)) {
fdt_error("fdt overwritten");
goto error;
}
debug(" Loading FDT from 0x%08lx to 0x%08lx\n",
image_data, load_start);
memmove((void *)load_start,
(void *)image_data,
image_get_data_size(fdt_hdr));
fdt_blob = (char *)load_start;
break;
case IMAGE_FORMAT_FIT:
/*
* This case will catch both: new uImage format
* (libfdt based) and raw FDT blob (also libfdt
* based).
*/
#if defined(CONFIG_FIT)
/* check FDT blob vs FIT blob */
if (fit_check_format((const void *)fdt_addr)) {
/*
* FIT image
*/
fit_hdr = (void *)fdt_addr;
printf("## Flattened Device Tree from FIT "
"Image at %08lx\n",
fdt_addr);
if (!fit_uname_fdt) {
/*
* no FDT blob image node unit name,
* try to get config node first. If
* config unit node name is NULL
* fit_conf_get_node() will try to
* find default config node
*/
cfg_noffset = fit_conf_get_node(fit_hdr,
fit_uname_config);
if (cfg_noffset < 0) {
fdt_error("Could not find "
"configuration "
"node\n");
goto error;
}
fit_uname_config = fdt_get_name(fit_hdr,
cfg_noffset, NULL);
printf(" Using '%s' configuration\n",
fit_uname_config);
fdt_noffset = fit_conf_get_fdt_node(
fit_hdr,
cfg_noffset);
fit_uname_fdt = fit_get_name(fit_hdr,
fdt_noffset, NULL);
} else {
/* get FDT component image node offset */
fdt_noffset = fit_image_get_node(
fit_hdr,
fit_uname_fdt);
}
if (fdt_noffset < 0) {
fdt_error("Could not find subimage "
"node\n");
goto error;
}
printf(" Trying '%s' FDT blob subimage\n",
fit_uname_fdt);
if (!fit_check_fdt(fit_hdr, fdt_noffset,
images->verify))
goto error;
/* get ramdisk image data address and length */
if (fit_image_get_data(fit_hdr, fdt_noffset,
&data, &size)) {
fdt_error("Could not find FDT "
"subimage data");
goto error;
}
/* verift that image data is a proper FDT blob */
if (fdt_check_header((char *)data) != 0) {
fdt_error("Subimage data is not a FTD");
goto error;
}
/*
* move image data to the load address,
* make sure we don't overwrite initial image
*/
image_start = (ulong)fit_hdr;
image_end = fit_get_end(fit_hdr);
if (fit_image_get_load(fit_hdr, fdt_noffset,
&load_start) == 0) {
load_end = load_start + size;
if ((load_start < image_end) &&
(load_end > image_start)) {
fdt_error("FDT overwritten");
goto error;
}
printf(" Loading FDT from 0x%08lx "
"to 0x%08lx\n",
(ulong)data,
load_start);
memmove((void *)load_start,
(void *)data, size);
fdt_blob = (char *)load_start;
} else {
fdt_blob = (char *)data;
}
images->fit_hdr_fdt = fit_hdr;
images->fit_uname_fdt = fit_uname_fdt;
images->fit_noffset_fdt = fdt_noffset;
break;
} else
#endif
{
/*
* FDT blob
*/
fdt_blob = (char *)fdt_addr;
debug("* fdt: raw FDT blob\n");
printf("## Flattened Device Tree blob at "
"%08lx\n", (long)fdt_blob);
}
break;
default:
puts("ERROR: Did not find a cmdline Flattened Device "
"Tree\n");
goto error;
}
printf(" Booting using the fdt blob at 0x%p\n", fdt_blob);
} else if (images->legacy_hdr_valid &&
image_check_type(&images->legacy_hdr_os_copy,
IH_TYPE_MULTI)) {
ulong fdt_data, fdt_len;
/*
* Now check if we have a legacy multi-component image,
* get second entry data start address and len.
*/
printf("## Flattened Device Tree from multi "
"component Image at %08lX\n",
(ulong)images->legacy_hdr_os);
image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data,
&fdt_len);
if (fdt_len) {
fdt_blob = (char *)fdt_data;
printf(" Booting using the fdt at 0x%p\n", fdt_blob);
if (fdt_check_header(fdt_blob) != 0) {
fdt_error("image is not a fdt");
goto error;
}
if (fdt_totalsize(fdt_blob) != fdt_len) {
fdt_error("fdt size != image size");
goto error;
}
} else {
debug("## No Flattened Device Tree\n");
return 0;
}
} else {
debug("## No Flattened Device Tree\n");
return 0;
}
*of_flat_tree = fdt_blob;
*of_size = fdt_totalsize(fdt_blob);
debug(" of_flat_tree at 0x%08lx size 0x%08lx\n",
(ulong)*of_flat_tree, *of_size);
return 0;
error:
*of_flat_tree = 0;
*of_size = 0;
return 1;
}
#endif /* CONFIG_OF_LIBFDT */
#ifdef CONFIG_SYS_BOOT_GET_CMDLINE
/**
* boot_get_cmdline - allocate and initialize kernel cmdline
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @cmd_start: pointer to a ulong variable, will hold cmdline start
* @cmd_end: pointer to a ulong variable, will hold cmdline end
*
* boot_get_cmdline() allocates space for kernel command line below
* BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt
* variable is present its contents is copied to allocated kernel
* command line.
*
* returns:
* 0 - success
* -1 - failure
*/
int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
{
char *cmdline;
char *s;
cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
getenv_bootm_mapsize() + getenv_bootm_low());
if (cmdline == NULL)
return -1;
if ((s = getenv("bootargs")) == NULL)
s = "";
strcpy(cmdline, s);
*cmd_start = (ulong) & cmdline[0];
*cmd_end = *cmd_start + strlen(cmdline);
debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
return 0;
}
#endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
#ifdef CONFIG_SYS_BOOT_GET_KBD
/**
* boot_get_kbd - allocate and initialize kernel copy of board info
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @kbd: double pointer to board info data
*
* boot_get_kbd() allocates space for kernel copy of board info data below
* BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized
* with the current u-boot board info data.
*
* returns:
* 0 - success
* -1 - failure
*/
int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
{
*kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
getenv_bootm_mapsize() + getenv_bootm_low());
if (*kbd == NULL)
return -1;
**kbd = *(gd->bd);
debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
#if defined(DEBUG) && defined(CONFIG_CMD_BDI)
do_bdinfo(NULL, 0, 0, NULL);
#endif
return 0;
}
#endif /* CONFIG_SYS_BOOT_GET_KBD */
#endif /* !USE_HOSTCC */
#if defined(CONFIG_FIT)
/*****************************************************************************/
/* New uImage format routines */
/*****************************************************************************/
#ifndef USE_HOSTCC
static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr,
ulong *addr, const char **name)
{
const char *sep;
*addr = addr_curr;
*name = NULL;
sep = strchr(spec, sepc);
if (sep) {
if (sep - spec > 0)
*addr = simple_strtoul(spec, NULL, 16);
*name = sep + 1;
return 1;
}
return 0;
}
/**
* fit_parse_conf - parse FIT configuration spec
* @spec: input string, containing configuration spec
* @add_curr: current image address (to be used as a possible default)
* @addr: pointer to a ulong variable, will hold FIT image address of a given
* configuration
* @conf_name double pointer to a char, will hold pointer to a configuration
* unit name
*
* fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>,
* where <addr> is a FIT image address that contains configuration
* with a <conf> unit name.
*
* Address part is optional, and if omitted default add_curr will
* be used instead.
*
* returns:
* 1 if spec is a valid configuration string,
* addr and conf_name are set accordingly
* 0 otherwise
*/
int fit_parse_conf(const char *spec, ulong addr_curr,
ulong *addr, const char **conf_name)
{
return fit_parse_spec(spec, '#', addr_curr, addr, conf_name);
}
/**
* fit_parse_subimage - parse FIT subimage spec
* @spec: input string, containing subimage spec
* @add_curr: current image address (to be used as a possible default)
* @addr: pointer to a ulong variable, will hold FIT image address of a given
* subimage
* @image_name: double pointer to a char, will hold pointer to a subimage name
*
* fit_parse_subimage() expects subimage spec in the for of
* [<addr>]:<subimage>, where <addr> is a FIT image address that contains
* subimage with a <subimg> unit name.
*
* Address part is optional, and if omitted default add_curr will
* be used instead.
*
* returns:
* 1 if spec is a valid subimage string,
* addr and image_name are set accordingly
* 0 otherwise
*/
int fit_parse_subimage(const char *spec, ulong addr_curr,
ulong *addr, const char **image_name)
{
return fit_parse_spec(spec, ':', addr_curr, addr, image_name);
}
#endif /* !USE_HOSTCC */
static void fit_get_debug(const void *fit, int noffset,
char *prop_name, int err)
{
debug("Can't get '%s' property from FIT 0x%08lx, "
"node: offset %d, name %s (%s)\n",
prop_name, (ulong)fit, noffset,
fit_get_name(fit, noffset, NULL),
fdt_strerror(err));
}
/**
* fit_print_contents - prints out the contents of the FIT format image
* @fit: pointer to the FIT format image header
* @p: pointer to prefix string
*
* fit_print_contents() formats a multi line FIT image contents description.
* The routine prints out FIT image properties (root node level) follwed by
* the details of each component image.
*
* returns:
* no returned results
*/
void fit_print_contents(const void *fit)
{
char *desc;
char *uname;
int images_noffset;
int confs_noffset;
int noffset;
int ndepth;
int count = 0;
int ret;
const char *p;
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
time_t timestamp;
#endif
#ifdef USE_HOSTCC
p = "";
#else
p = " ";
#endif
/* Root node properties */
ret = fit_get_desc(fit, 0, &desc);
printf("%sFIT description: ", p);
if (ret)
printf("unavailable\n");
else
printf("%s\n", desc);
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
ret = fit_get_timestamp(fit, 0, &timestamp);
printf("%sCreated: ", p);
if (ret)
printf("unavailable\n");
else
genimg_print_time(timestamp);
#endif
/* Find images parent node offset */
images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
if (images_noffset < 0) {
printf("Can't find images parent node '%s' (%s)\n",
FIT_IMAGES_PATH, fdt_strerror(images_noffset));
return;
}
/* Process its subnodes, print out component images details */
for (ndepth = 0, count = 0,
noffset = fdt_next_node(fit, images_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/*
* Direct child node of the images parent node,
* i.e. component image node.
*/
printf("%s Image %u (%s)\n", p, count++,
fit_get_name(fit, noffset, NULL));
fit_image_print(fit, noffset, p);
}
}
/* Find configurations parent node offset */
confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
if (confs_noffset < 0) {
debug("Can't get configurations parent node '%s' (%s)\n",
FIT_CONFS_PATH, fdt_strerror(confs_noffset));
return;
}
/* get default configuration unit name from default property */
uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL);
if (uname)
printf("%s Default Configuration: '%s'\n", p, uname);
/* Process its subnodes, print out configurations details */
for (ndepth = 0, count = 0,
noffset = fdt_next_node(fit, confs_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/*
* Direct child node of the configurations parent node,
* i.e. configuration node.
*/
printf("%s Configuration %u (%s)\n", p, count++,
fit_get_name(fit, noffset, NULL));
fit_conf_print(fit, noffset, p);
}
}
}
/**
* fit_image_print - prints out the FIT component image details
* @fit: pointer to the FIT format image header
* @image_noffset: offset of the component image node
* @p: pointer to prefix string
*
* fit_image_print() lists all mandatory properies for the processed component
* image. If present, hash nodes are printed out as well. Load
* address for images of type firmware is also printed out. Since the load
* address is not mandatory for firmware images, it will be output as
* "unavailable" when not present.
*
* returns:
* no returned results
*/
void fit_image_print(const void *fit, int image_noffset, const char *p)
{
char *desc;
uint8_t type, arch, os, comp;
size_t size;
ulong load, entry;
const void *data;
int noffset;
int ndepth;
int ret;
/* Mandatory properties */
ret = fit_get_desc(fit, image_noffset, &desc);
printf("%s Description: ", p);
if (ret)
printf("unavailable\n");
else
printf("%s\n", desc);
fit_image_get_type(fit, image_noffset, &type);
printf("%s Type: %s\n", p, genimg_get_type_name(type));
fit_image_get_comp(fit, image_noffset, &comp);
printf("%s Compression: %s\n", p, genimg_get_comp_name(comp));
ret = fit_image_get_data(fit, image_noffset, &data, &size);
#ifndef USE_HOSTCC
printf("%s Data Start: ", p);
if (ret)
printf("unavailable\n");
else
printf("0x%08lx\n", (ulong)data);
#endif
printf("%s Data Size: ", p);
if (ret)
printf("unavailable\n");
else
genimg_print_size(size);
/* Remaining, type dependent properties */
if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
(type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) ||
(type == IH_TYPE_FLATDT)) {
fit_image_get_arch(fit, image_noffset, &arch);
printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch));
}
if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_RAMDISK)) {
fit_image_get_os(fit, image_noffset, &os);
printf("%s OS: %s\n", p, genimg_get_os_name(os));
}
if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
(type == IH_TYPE_FIRMWARE) || (type == IH_TYPE_RAMDISK)) {
ret = fit_image_get_load(fit, image_noffset, &load);
printf("%s Load Address: ", p);
if (ret)
printf("unavailable\n");
else
printf("0x%08lx\n", load);
}
if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
(type == IH_TYPE_RAMDISK)) {
fit_image_get_entry(fit, image_noffset, &entry);
printf("%s Entry Point: ", p);
if (ret)
printf("unavailable\n");
else
printf("0x%08lx\n", entry);
}
/* Process all hash subnodes of the component image node */
for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/* Direct child node of the component image node */
fit_image_print_hash(fit, noffset, p);
}
}
}
/**
* fit_image_print_hash - prints out the hash node details
* @fit: pointer to the FIT format image header
* @noffset: offset of the hash node
* @p: pointer to prefix string
*
* fit_image_print_hash() lists properies for the processed hash node
*
* returns:
* no returned results
*/
void fit_image_print_hash(const void *fit, int noffset, const char *p)
{
char *algo;
uint8_t *value;
int value_len;
int i, ret;
/*
* Check subnode name, must be equal to "hash".
* Multiple hash nodes require unique unit node
* names, e.g. hash@1, hash@2, etc.
*/
if (strncmp(fit_get_name(fit, noffset, NULL),
FIT_HASH_NODENAME,
strlen(FIT_HASH_NODENAME)) != 0)
return;
debug("%s Hash node: '%s'\n", p,
fit_get_name(fit, noffset, NULL));
printf("%s Hash algo: ", p);
if (fit_image_hash_get_algo(fit, noffset, &algo)) {
printf("invalid/unsupported\n");
return;
}
printf("%s\n", algo);
ret = fit_image_hash_get_value(fit, noffset, &value,
&value_len);
printf("%s Hash value: ", p);
if (ret) {
printf("unavailable\n");
} else {
for (i = 0; i < value_len; i++)
printf("%02x", value[i]);
printf("\n");
}
debug("%s Hash len: %d\n", p, value_len);
}
/**
* fit_get_desc - get node description property
* @fit: pointer to the FIT format image header
* @noffset: node offset
* @desc: double pointer to the char, will hold pointer to the descrption
*
* fit_get_desc() reads description property from a given node, if
* description is found pointer to it is returened in third call argument.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_get_desc(const void *fit, int noffset, char **desc)
{
int len;
*desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len);
if (*desc == NULL) {
fit_get_debug(fit, noffset, FIT_DESC_PROP, len);
return -1;
}
return 0;
}
/**
* fit_get_timestamp - get node timestamp property
* @fit: pointer to the FIT format image header
* @noffset: node offset
* @timestamp: pointer to the time_t, will hold read timestamp
*
* fit_get_timestamp() reads timestamp poperty from given node, if timestamp
* is found and has a correct size its value is retured in third call
* argument.
*
* returns:
* 0, on success
* -1, on property read failure
* -2, on wrong timestamp size
*/
int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp)
{
int len;
const void *data;
data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len);
return -1;
}
if (len != sizeof(uint32_t)) {
debug("FIT timestamp with incorrect size of (%u)\n", len);
return -2;
}
*timestamp = uimage_to_cpu(*((uint32_t *)data));
return 0;
}
/**
* fit_image_get_node - get node offset for component image of a given unit name
* @fit: pointer to the FIT format image header
* @image_uname: component image node unit name
*
* fit_image_get_node() finds a component image (withing the '/images'
* node) of a provided unit name. If image is found its node offset is
* returned to the caller.
*
* returns:
* image node offset when found (>=0)
* negative number on failure (FDT_ERR_* code)
*/
int fit_image_get_node(const void *fit, const char *image_uname)
{
int noffset, images_noffset;
images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
if (images_noffset < 0) {
debug("Can't find images parent node '%s' (%s)\n",
FIT_IMAGES_PATH, fdt_strerror(images_noffset));
return images_noffset;
}
noffset = fdt_subnode_offset(fit, images_noffset, image_uname);
if (noffset < 0) {
debug("Can't get node offset for image unit name: '%s' (%s)\n",
image_uname, fdt_strerror(noffset));
}
return noffset;
}
/**
* fit_image_get_os - get os id for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @os: pointer to the uint8_t, will hold os numeric id
*
* fit_image_get_os() finds os property in a given component image node.
* If the property is found, its (string) value is translated to the numeric
* id which is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_os(const void *fit, int noffset, uint8_t *os)
{
int len;
const void *data;
/* Get OS name from property data */
data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_OS_PROP, len);
*os = -1;
return -1;
}
/* Translate OS name to id */
*os = genimg_get_os_id(data);
return 0;
}
/**
* fit_image_get_arch - get arch id for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @arch: pointer to the uint8_t, will hold arch numeric id
*
* fit_image_get_arch() finds arch property in a given component image node.
* If the property is found, its (string) value is translated to the numeric
* id which is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch)
{
int len;
const void *data;
/* Get architecture name from property data */
data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_ARCH_PROP, len);
*arch = -1;
return -1;
}
/* Translate architecture name to id */
*arch = genimg_get_arch_id(data);
return 0;
}
/**
* fit_image_get_type - get type id for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @type: pointer to the uint8_t, will hold type numeric id
*
* fit_image_get_type() finds type property in a given component image node.
* If the property is found, its (string) value is translated to the numeric
* id which is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_type(const void *fit, int noffset, uint8_t *type)
{
int len;
const void *data;
/* Get image type name from property data */
data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_TYPE_PROP, len);
*type = -1;
return -1;
}
/* Translate image type name to id */
*type = genimg_get_type_id(data);
return 0;
}
/**
* fit_image_get_comp - get comp id for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @comp: pointer to the uint8_t, will hold comp numeric id
*
* fit_image_get_comp() finds comp property in a given component image node.
* If the property is found, its (string) value is translated to the numeric
* id which is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp)
{
int len;
const void *data;
/* Get compression name from property data */
data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_COMP_PROP, len);
*comp = -1;
return -1;
}
/* Translate compression name to id */
*comp = genimg_get_comp_id(data);
return 0;
}
/**
* fit_image_get_load - get load address property for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @load: pointer to the uint32_t, will hold load address
*
* fit_image_get_load() finds load address property in a given component image node.
* If the property is found, its value is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_load(const void *fit, int noffset, ulong *load)
{
int len;
const uint32_t *data;
data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_LOAD_PROP, len);
return -1;
}
*load = uimage_to_cpu(*data);
return 0;
}
/**
* fit_image_get_entry - get entry point address property for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @entry: pointer to the uint32_t, will hold entry point address
*
* fit_image_get_entry() finds entry point address property in a given component image node.
* If the property is found, its value is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_entry(const void *fit, int noffset, ulong *entry)
{
int len;
const uint32_t *data;
data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len);
if (data == NULL) {
fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len);
return -1;
}
*entry = uimage_to_cpu(*data);
return 0;
}
/**
* fit_image_get_data - get data property and its size for a given component image node
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @data: double pointer to void, will hold data property's data address
* @size: pointer to size_t, will hold data property's data size
*
* fit_image_get_data() finds data property in a given component image node.
* If the property is found its data start address and size are returned to
* the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_get_data(const void *fit, int noffset,
const void **data, size_t *size)
{
int len;
*data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len);
if (*data == NULL) {
fit_get_debug(fit, noffset, FIT_DATA_PROP, len);
*size = 0;
return -1;
}
*size = len;
return 0;
}
/**
* fit_image_hash_get_algo - get hash algorithm name
* @fit: pointer to the FIT format image header
* @noffset: hash node offset
* @algo: double pointer to char, will hold pointer to the algorithm name
*
* fit_image_hash_get_algo() finds hash algorithm property in a given hash node.
* If the property is found its data start address is returned to the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_hash_get_algo(const void *fit, int noffset, char **algo)
{
int len;
*algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len);
if (*algo == NULL) {
fit_get_debug(fit, noffset, FIT_ALGO_PROP, len);
return -1;
}
return 0;
}
/**
* fit_image_hash_get_value - get hash value and length
* @fit: pointer to the FIT format image header
* @noffset: hash node offset
* @value: double pointer to uint8_t, will hold address of a hash value data
* @value_len: pointer to an int, will hold hash data length
*
* fit_image_hash_get_value() finds hash value property in a given hash node.
* If the property is found its data start address and size are returned to
* the caller.
*
* returns:
* 0, on success
* -1, on failure
*/
int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value,
int *value_len)
{
int len;
*value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len);
if (*value == NULL) {
fit_get_debug(fit, noffset, FIT_VALUE_PROP, len);
*value_len = 0;
return -1;
}
*value_len = len;
return 0;
}
/**
* fit_set_timestamp - set node timestamp property
* @fit: pointer to the FIT format image header
* @noffset: node offset
* @timestamp: timestamp value to be set
*
* fit_set_timestamp() attempts to set timestamp property in the requested
* node and returns operation status to the caller.
*
* returns:
* 0, on success
* -1, on property read failure
*/
int fit_set_timestamp(void *fit, int noffset, time_t timestamp)
{
uint32_t t;
int ret;
t = cpu_to_uimage(timestamp);
ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t,
sizeof(uint32_t));
if (ret) {
printf("Can't set '%s' property for '%s' node (%s)\n",
FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL),
fdt_strerror(ret));
return -1;
}
return 0;
}
/**
* calculate_hash - calculate and return hash for provided input data
* @data: pointer to the input data
* @data_len: data length
* @algo: requested hash algorithm
* @value: pointer to the char, will hold hash value data (caller must
* allocate enough free space)
* value_len: length of the calculated hash
*
* calculate_hash() computes input data hash according to the requested algorithm.
* Resulting hash value is placed in caller provided 'value' buffer, length
* of the calculated hash is returned via value_len pointer argument.
*
* returns:
* 0, on success
* -1, when algo is unsupported
*/
static int calculate_hash(const void *data, int data_len, const char *algo,
uint8_t *value, int *value_len)
{
if (strcmp(algo, "crc32") == 0) {
*((uint32_t *)value) = crc32_wd(0, data, data_len,
CHUNKSZ_CRC32);
*((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value));
*value_len = 4;
} else if (strcmp(algo, "sha1") == 0) {
sha1_csum_wd((unsigned char *) data, data_len,
(unsigned char *) value, CHUNKSZ_SHA1);
*value_len = 20;
} else if (strcmp(algo, "md5") == 0) {
md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5);
*value_len = 16;
} else {
debug("Unsupported hash alogrithm\n");
return -1;
}
return 0;
}
#ifdef USE_HOSTCC
/**
* fit_set_hashes - process FIT component image nodes and calculate hashes
* @fit: pointer to the FIT format image header
*
* fit_set_hashes() adds hash values for all component images in the FIT blob.
* Hashes are calculated for all component images which have hash subnodes
* with algorithm property set to one of the supported hash algorithms.
*
* returns
* 0, on success
* libfdt error code, on failure
*/
int fit_set_hashes(void *fit)
{
int images_noffset;
int noffset;
int ndepth;
int ret;
/* Find images parent node offset */
images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
if (images_noffset < 0) {
printf("Can't find images parent node '%s' (%s)\n",
FIT_IMAGES_PATH, fdt_strerror(images_noffset));
return images_noffset;
}
/* Process its subnodes, print out component images details */
for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/*
* Direct child node of the images parent node,
* i.e. component image node.
*/
ret = fit_image_set_hashes(fit, noffset);
if (ret)
return ret;
}
}
return 0;
}
/**
* fit_image_set_hashes - calculate/set hashes for given component image node
* @fit: pointer to the FIT format image header
* @image_noffset: requested component image node
*
* fit_image_set_hashes() adds hash values for an component image node. All
* existing hash subnodes are checked, if algorithm property is set to one of
* the supported hash algorithms, hash value is computed and corresponding
* hash node property is set, for example:
*
* Input component image node structure:
*
* o image@1 (at image_noffset)
* | - data = [binary data]
* o hash@1
* |- algo = "sha1"
*
* Output component image node structure:
*
* o image@1 (at image_noffset)
* | - data = [binary data]
* o hash@1
* |- algo = "sha1"
* |- value = sha1(data)
*
* returns:
* 0 on sucess
* <0 on failure
*/
int fit_image_set_hashes(void *fit, int image_noffset)
{
const void *data;
size_t size;
char *algo;
uint8_t value[FIT_MAX_HASH_LEN];
int value_len;
int noffset;
int ndepth;
/* Get image data and data length */
if (fit_image_get_data(fit, image_noffset, &data, &size)) {
printf("Can't get image data/size\n");
return -1;
}
/* Process all hash subnodes of the component image node */
for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/* Direct child node of the component image node */
/*
* Check subnode name, must be equal to "hash".
* Multiple hash nodes require unique unit node
* names, e.g. hash@1, hash@2, etc.
*/
if (strncmp(fit_get_name(fit, noffset, NULL),
FIT_HASH_NODENAME,
strlen(FIT_HASH_NODENAME)) != 0) {
/* Not a hash subnode, skip it */
continue;
}
if (fit_image_hash_get_algo(fit, noffset, &algo)) {
printf("Can't get hash algo property for "
"'%s' hash node in '%s' image node\n",
fit_get_name(fit, noffset, NULL),
fit_get_name(fit, image_noffset, NULL));
return -1;
}
if (calculate_hash(data, size, algo, value,
&value_len)) {
printf("Unsupported hash algorithm (%s) for "
"'%s' hash node in '%s' image node\n",
algo, fit_get_name(fit, noffset, NULL),
fit_get_name(fit, image_noffset,
NULL));
return -1;
}
if (fit_image_hash_set_value(fit, noffset, value,
value_len)) {
printf("Can't set hash value for "
"'%s' hash node in '%s' image node\n",
fit_get_name(fit, noffset, NULL),
fit_get_name(fit, image_noffset, NULL));
return -1;
}
}
}
return 0;
}
/**
* fit_image_hash_set_value - set hash value in requested has node
* @fit: pointer to the FIT format image header
* @noffset: hash node offset
* @value: hash value to be set
* @value_len: hash value length
*
* fit_image_hash_set_value() attempts to set hash value in a node at offset
* given and returns operation status to the caller.
*
* returns
* 0, on success
* -1, on failure
*/
int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value,
int value_len)
{
int ret;
ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len);
if (ret) {
printf("Can't set hash '%s' property for '%s' node(%s)\n",
FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL),
fdt_strerror(ret));
return -1;
}
return 0;
}
#endif /* USE_HOSTCC */
/**
* fit_image_check_hashes - verify data intergity
* @fit: pointer to the FIT format image header
* @image_noffset: component image node offset
*
* fit_image_check_hashes() goes over component image hash nodes,
* re-calculates each data hash and compares with the value stored in hash
* node.
*
* returns:
* 1, if all hashes are valid
* 0, otherwise (or on error)
*/
int fit_image_check_hashes(const void *fit, int image_noffset)
{
const void *data;
size_t size;
char *algo;
uint8_t *fit_value;
int fit_value_len;
uint8_t value[FIT_MAX_HASH_LEN];
int value_len;
int noffset;
int ndepth;
char *err_msg = "";
/* Get image data and data length */
if (fit_image_get_data(fit, image_noffset, &data, &size)) {
printf("Can't get image data/size\n");
return 0;
}
/* Process all hash subnodes of the component image node */
for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/* Direct child node of the component image node */
/*
* Check subnode name, must be equal to "hash".
* Multiple hash nodes require unique unit node
* names, e.g. hash@1, hash@2, etc.
*/
if (strncmp(fit_get_name(fit, noffset, NULL),
FIT_HASH_NODENAME,
strlen(FIT_HASH_NODENAME)) != 0)
continue;
if (fit_image_hash_get_algo(fit, noffset, &algo)) {
err_msg = " error!\nCan't get hash algo "
"property";
goto error;
}
printf("%s", algo);
if (fit_image_hash_get_value(fit, noffset, &fit_value,
&fit_value_len)) {
err_msg = " error!\nCan't get hash value "
"property";
goto error;
}
if (calculate_hash(data, size, algo, value,
&value_len)) {
err_msg = " error!\n"
"Unsupported hash algorithm";
goto error;
}
if (value_len != fit_value_len) {
err_msg = " error !\nBad hash value len";
goto error;
} else if (memcmp(value, fit_value, value_len) != 0) {
err_msg = " error!\nBad hash value";
goto error;
}
printf("+ ");
}
}
return 1;
error:
printf("%s for '%s' hash node in '%s' image node\n",
err_msg, fit_get_name(fit, noffset, NULL),
fit_get_name(fit, image_noffset, NULL));
return 0;
}
/**
* fit_all_image_check_hashes - verify data intergity for all images
* @fit: pointer to the FIT format image header
*
* fit_all_image_check_hashes() goes over all images in the FIT and
* for every images checks if all it's hashes are valid.
*
* returns:
* 1, if all hashes of all images are valid
* 0, otherwise (or on error)
*/
int fit_all_image_check_hashes(const void *fit)
{
int images_noffset;
int noffset;
int ndepth;
int count;
/* Find images parent node offset */
images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
if (images_noffset < 0) {
printf("Can't find images parent node '%s' (%s)\n",
FIT_IMAGES_PATH, fdt_strerror(images_noffset));
return 0;
}
/* Process all image subnodes, check hashes for each */
printf("## Checking hash(es) for FIT Image at %08lx ...\n",
(ulong)fit);
for (ndepth = 0, count = 0,
noffset = fdt_next_node(fit, images_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(fit, noffset, &ndepth)) {
if (ndepth == 1) {
/*
* Direct child node of the images parent node,
* i.e. component image node.
*/
printf(" Hash(es) for Image %u (%s): ", count++,
fit_get_name(fit, noffset, NULL));
if (!fit_image_check_hashes(fit, noffset))
return 0;
printf("\n");
}
}
return 1;
}
/**
* fit_image_check_os - check whether image node is of a given os type
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @os: requested image os
*
* fit_image_check_os() reads image os property and compares its numeric
* id with the requested os. Comparison result is returned to the caller.
*
* returns:
* 1 if image is of given os type
* 0 otherwise (or on error)
*/
int fit_image_check_os(const void *fit, int noffset, uint8_t os)
{
uint8_t image_os;
if (fit_image_get_os(fit, noffset, &image_os))
return 0;
return (os == image_os);
}
/**
* fit_image_check_arch - check whether image node is of a given arch
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @arch: requested imagearch
*
* fit_image_check_arch() reads image arch property and compares its numeric
* id with the requested arch. Comparison result is returned to the caller.
*
* returns:
* 1 if image is of given arch
* 0 otherwise (or on error)
*/
int fit_image_check_arch(const void *fit, int noffset, uint8_t arch)
{
uint8_t image_arch;
if (fit_image_get_arch(fit, noffset, &image_arch))
return 0;
return (arch == image_arch);
}
/**
* fit_image_check_type - check whether image node is of a given type
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @type: requested image type
*
* fit_image_check_type() reads image type property and compares its numeric
* id with the requested type. Comparison result is returned to the caller.
*
* returns:
* 1 if image is of given type
* 0 otherwise (or on error)
*/
int fit_image_check_type(const void *fit, int noffset, uint8_t type)
{
uint8_t image_type;
if (fit_image_get_type(fit, noffset, &image_type))
return 0;
return (type == image_type);
}
/**
* fit_image_check_comp - check whether image node uses given compression
* @fit: pointer to the FIT format image header
* @noffset: component image node offset
* @comp: requested image compression type
*
* fit_image_check_comp() reads image compression property and compares its
* numeric id with the requested compression type. Comparison result is
* returned to the caller.
*
* returns:
* 1 if image uses requested compression
* 0 otherwise (or on error)
*/
int fit_image_check_comp(const void *fit, int noffset, uint8_t comp)
{
uint8_t image_comp;
if (fit_image_get_comp(fit, noffset, &image_comp))
return 0;
return (comp == image_comp);
}
/**
* fit_check_format - sanity check FIT image format
* @fit: pointer to the FIT format image header
*
* fit_check_format() runs a basic sanity FIT image verification.
* Routine checks for mandatory properties, nodes, etc.
*
* returns:
* 1, on success
* 0, on failure
*/
int fit_check_format(const void *fit)
{
/* mandatory / node 'description' property */
if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) {
debug("Wrong FIT format: no description\n");
return 0;
}
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
/* mandatory / node 'timestamp' property */
if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) {
debug("Wrong FIT format: no timestamp\n");
return 0;
}
#endif
/* mandatory subimages parent '/images' node */
if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) {
debug("Wrong FIT format: no images parent node\n");
return 0;
}
return 1;
}
/**
* fit_conf_get_node - get node offset for configuration of a given unit name
* @fit: pointer to the FIT format image header
* @conf_uname: configuration node unit name
*
* fit_conf_get_node() finds a configuration (withing the '/configurations'
* parant node) of a provided unit name. If configuration is found its node offset
* is returned to the caller.
*
* When NULL is provided in second argument fit_conf_get_node() will search
* for a default configuration node instead. Default configuration node unit name
* is retrived from FIT_DEFAULT_PROP property of the '/configurations' node.
*
* returns:
* configuration node offset when found (>=0)
* negative number on failure (FDT_ERR_* code)
*/
int fit_conf_get_node(const void *fit, const char *conf_uname)
{
int noffset, confs_noffset;
int len;
confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
if (confs_noffset < 0) {
debug("Can't find configurations parent node '%s' (%s)\n",
FIT_CONFS_PATH, fdt_strerror(confs_noffset));
return confs_noffset;
}
if (conf_uname == NULL) {
/* get configuration unit name from the default property */
debug("No configuration specified, trying default...\n");
conf_uname = (char *)fdt_getprop(fit, confs_noffset,
FIT_DEFAULT_PROP, &len);
if (conf_uname == NULL) {
fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP,
len);
return len;
}
debug("Found default configuration: '%s'\n", conf_uname);
}
noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname);
if (noffset < 0) {
debug("Can't get node offset for configuration unit name: "
"'%s' (%s)\n",
conf_uname, fdt_strerror(noffset));
}
return noffset;
}
static int __fit_conf_get_prop_node(const void *fit, int noffset,
const char *prop_name)
{
char *uname;
int len;
/* get kernel image unit name from configuration kernel property */
uname = (char *)fdt_getprop(fit, noffset, prop_name, &len);
if (uname == NULL)
return len;
return fit_image_get_node(fit, uname);
}
/**
* fit_conf_get_kernel_node - get kernel image node offset that corresponds to
* a given configuration
* @fit: pointer to the FIT format image header
* @noffset: configuration node offset
*
* fit_conf_get_kernel_node() retrives kernel image node unit name from
* configuration FIT_KERNEL_PROP property and translates it to the node
* offset.
*
* returns:
* image node offset when found (>=0)
* negative number on failure (FDT_ERR_* code)
*/
int fit_conf_get_kernel_node(const void *fit, int noffset)
{
return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP);
}
/**
* fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to
* a given configuration
* @fit: pointer to the FIT format image header
* @noffset: configuration node offset
*
* fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from
* configuration FIT_KERNEL_PROP property and translates it to the node
* offset.
*
* returns:
* image node offset when found (>=0)
* negative number on failure (FDT_ERR_* code)
*/
int fit_conf_get_ramdisk_node(const void *fit, int noffset)
{
return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP);
}
/**
* fit_conf_get_fdt_node - get fdt image node offset that corresponds to
* a given configuration
* @fit: pointer to the FIT format image header
* @noffset: configuration node offset
*
* fit_conf_get_fdt_node() retrives fdt image node unit name from
* configuration FIT_KERNEL_PROP property and translates it to the node
* offset.
*
* returns:
* image node offset when found (>=0)
* negative number on failure (FDT_ERR_* code)
*/
int fit_conf_get_fdt_node(const void *fit, int noffset)
{
return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP);
}
/**
* fit_conf_print - prints out the FIT configuration details
* @fit: pointer to the FIT format image header
* @noffset: offset of the configuration node
* @p: pointer to prefix string
*
* fit_conf_print() lists all mandatory properies for the processed
* configuration node.
*
* returns:
* no returned results
*/
void fit_conf_print(const void *fit, int noffset, const char *p)
{
char *desc;
char *uname;
int ret;
/* Mandatory properties */
ret = fit_get_desc(fit, noffset, &desc);
printf("%s Description: ", p);
if (ret)
printf("unavailable\n");
else
printf("%s\n", desc);
uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL);
printf("%s Kernel: ", p);
if (uname == NULL)
printf("unavailable\n");
else
printf("%s\n", uname);
/* Optional properties */
uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL);
if (uname)
printf("%s Init Ramdisk: %s\n", p, uname);
uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL);
if (uname)
printf("%s FDT: %s\n", p, uname);
}
/**
* fit_check_ramdisk - verify FIT format ramdisk subimage
* @fit_hdr: pointer to the FIT ramdisk header
* @rd_noffset: ramdisk subimage node offset within FIT image
* @arch: requested ramdisk image architecture type
* @verify: data CRC verification flag
*
* fit_check_ramdisk() verifies integrity of the ramdisk subimage and from
* specified FIT image.
*
* returns:
* 1, on success
* 0, on failure
*/
#ifndef USE_HOSTCC
static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch,
int verify)
{
fit_image_print(fit, rd_noffset, " ");
if (verify) {
puts(" Verifying Hash Integrity ... ");
if (!fit_image_check_hashes(fit, rd_noffset)) {
puts("Bad Data Hash\n");
bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH);
return 0;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL);
if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) ||
!fit_image_check_arch(fit, rd_noffset, arch) ||
!fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) {
printf("No Linux %s Ramdisk Image\n",
genimg_get_arch_name(arch));
bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL);
return 0;
}
bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK);
return 1;
}
#endif /* USE_HOSTCC */
#endif /* CONFIG_FIT */