u-boot/drivers/spi/sh_spi.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

254 lines
4.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SH SPI driver
*
* Copyright (C) 2011-2012 Renesas Solutions Corp.
*/
#include <common.h>
#include <console.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include "sh_spi.h"
static void sh_spi_write(unsigned long data, unsigned long *reg)
{
writel(data, reg);
}
static unsigned long sh_spi_read(unsigned long *reg)
{
return readl(reg);
}
static void sh_spi_set_bit(unsigned long val, unsigned long *reg)
{
unsigned long tmp;
tmp = sh_spi_read(reg);
tmp |= val;
sh_spi_write(tmp, reg);
}
static void sh_spi_clear_bit(unsigned long val, unsigned long *reg)
{
unsigned long tmp;
tmp = sh_spi_read(reg);
tmp &= ~val;
sh_spi_write(tmp, reg);
}
static void clear_fifo(struct sh_spi *ss)
{
sh_spi_set_bit(SH_SPI_RSTF, &ss->regs->cr2);
sh_spi_clear_bit(SH_SPI_RSTF, &ss->regs->cr2);
}
static int recvbuf_wait(struct sh_spi *ss)
{
while (sh_spi_read(&ss->regs->cr1) & SH_SPI_RBE) {
if (ctrlc())
return 1;
udelay(10);
}
return 0;
}
static int write_fifo_empty_wait(struct sh_spi *ss)
{
while (!(sh_spi_read(&ss->regs->cr1) & SH_SPI_TBE)) {
if (ctrlc())
return 1;
udelay(10);
}
return 0;
}
void spi_init(void)
{
}
static void sh_spi_set_cs(struct sh_spi *ss, unsigned int cs)
{
unsigned long val = 0;
if (cs & 0x01)
val |= SH_SPI_SSS0;
if (cs & 0x02)
val |= SH_SPI_SSS1;
sh_spi_clear_bit(SH_SPI_SSS0 | SH_SPI_SSS1, &ss->regs->cr4);
sh_spi_set_bit(val, &ss->regs->cr4);
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct sh_spi *ss;
if (!spi_cs_is_valid(bus, cs))
return NULL;
ss = spi_alloc_slave(struct sh_spi, bus, cs);
if (!ss)
return NULL;
ss->regs = (struct sh_spi_regs *)CONFIG_SH_SPI_BASE;
/* SPI sycle stop */
sh_spi_write(0xfe, &ss->regs->cr1);
/* CR1 init */
sh_spi_write(0x00, &ss->regs->cr1);
/* CR3 init */
sh_spi_write(0x00, &ss->regs->cr3);
sh_spi_set_cs(ss, cs);
clear_fifo(ss);
/* 1/8 clock */
sh_spi_write(sh_spi_read(&ss->regs->cr2) | 0x07, &ss->regs->cr2);
udelay(10);
return &ss->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct sh_spi *spi = to_sh_spi(slave);
free(spi);
}
int spi_claim_bus(struct spi_slave *slave)
{
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
struct sh_spi *ss = to_sh_spi(slave);
sh_spi_write(sh_spi_read(&ss->regs->cr1) &
~(SH_SPI_SSA | SH_SPI_SSDB | SH_SPI_SSD), &ss->regs->cr1);
}
static int sh_spi_send(struct sh_spi *ss, const unsigned char *tx_data,
unsigned int len, unsigned long flags)
{
int i, cur_len, ret = 0;
int remain = (int)len;
if (len >= SH_SPI_FIFO_SIZE)
sh_spi_set_bit(SH_SPI_SSA, &ss->regs->cr1);
while (remain > 0) {
cur_len = (remain < SH_SPI_FIFO_SIZE) ?
remain : SH_SPI_FIFO_SIZE;
for (i = 0; i < cur_len &&
!(sh_spi_read(&ss->regs->cr4) & SH_SPI_WPABRT) &&
!(sh_spi_read(&ss->regs->cr1) & SH_SPI_TBF);
i++)
sh_spi_write(tx_data[i], &ss->regs->tbr_rbr);
cur_len = i;
if (sh_spi_read(&ss->regs->cr4) & SH_SPI_WPABRT) {
/* Abort the transaction */
flags |= SPI_XFER_END;
sh_spi_set_bit(SH_SPI_WPABRT, &ss->regs->cr4);
ret = 1;
break;
}
remain -= cur_len;
tx_data += cur_len;
if (remain > 0)
write_fifo_empty_wait(ss);
}
if (flags & SPI_XFER_END) {
sh_spi_clear_bit(SH_SPI_SSD | SH_SPI_SSDB, &ss->regs->cr1);
sh_spi_set_bit(SH_SPI_SSA, &ss->regs->cr1);
udelay(100);
write_fifo_empty_wait(ss);
}
return ret;
}
static int sh_spi_receive(struct sh_spi *ss, unsigned char *rx_data,
unsigned int len, unsigned long flags)
{
int i;
if (len > SH_SPI_MAX_BYTE)
sh_spi_write(SH_SPI_MAX_BYTE, &ss->regs->cr3);
else
sh_spi_write(len, &ss->regs->cr3);
sh_spi_clear_bit(SH_SPI_SSD | SH_SPI_SSDB, &ss->regs->cr1);
sh_spi_set_bit(SH_SPI_SSA, &ss->regs->cr1);
for (i = 0; i < len; i++) {
if (recvbuf_wait(ss))
return 0;
rx_data[i] = (unsigned char)sh_spi_read(&ss->regs->tbr_rbr);
}
sh_spi_write(0, &ss->regs->cr3);
return 0;
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct sh_spi *ss = to_sh_spi(slave);
const unsigned char *tx_data = dout;
unsigned char *rx_data = din;
unsigned int len = bitlen / 8;
int ret = 0;
if (flags & SPI_XFER_BEGIN)
sh_spi_write(sh_spi_read(&ss->regs->cr1) & ~SH_SPI_SSA,
&ss->regs->cr1);
if (tx_data)
ret = sh_spi_send(ss, tx_data, len, flags);
if (ret == 0 && rx_data)
ret = sh_spi_receive(ss, rx_data, len, flags);
if (flags & SPI_XFER_END) {
sh_spi_set_bit(SH_SPI_SSD, &ss->regs->cr1);
udelay(100);
sh_spi_clear_bit(SH_SPI_SSA | SH_SPI_SSDB | SH_SPI_SSD,
&ss->regs->cr1);
clear_fifo(ss);
}
return ret;
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
if (!bus && cs < SH_SPI_NUM_CS)
return 1;
else
return 0;
}
void spi_cs_activate(struct spi_slave *slave)
{
}
void spi_cs_deactivate(struct spi_slave *slave)
{
}