u-boot/drivers/misc/mxc_ocotp.c
Peng Fan f8b95731ff imx: ocotp: support i.MX6ULL
i.MX6ULL has two 128 bits fuse banks, bank 7 and bank 8,
while other banks use 256 bits. So we have to adjust the
word and bank index when accessing the bank 8.

When in command line `fuse read 8 0 1`, you can image
`fuse read 7 4 1` in the ocotp driver implementation for 6ULL.

When programming, we use word index, so need to fix bank7/8 programming
for i.mx6ull.

For example: fuse prog 8 3 1; The word index is (8 << 3 | 3) --> 67.
But actully it should be (7 << 3 | 7) ---> 63.
So fix it.

Signed-off-by: Peng Fan <peng.fan@nxp.com>
Cc: Stefano Babic <sbabic@denx.de>
2016-10-04 15:41:00 +02:00

379 lines
8.7 KiB
C

/*
* (C) Copyright 2013 ADVANSEE
* Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
*
* Based on Dirk Behme's
* https://github.com/dirkbehme/u-boot-imx6/blob/28b17e9/drivers/misc/imx_otp.c,
* which is based on Freescale's
* http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/tree/drivers/misc/imx_otp.c?h=imx_v2009.08_1.1.0&id=9aa74e6,
* which is:
* Copyright (C) 2011 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <fuse.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/imx-common/sys_proto.h>
#define BO_CTRL_WR_UNLOCK 16
#define BM_CTRL_WR_UNLOCK 0xffff0000
#define BV_CTRL_WR_UNLOCK_KEY 0x3e77
#define BM_CTRL_ERROR 0x00000200
#define BM_CTRL_BUSY 0x00000100
#define BO_CTRL_ADDR 0
#ifdef CONFIG_MX7
#define BM_CTRL_ADDR 0x0000000f
#define BM_CTRL_RELOAD 0x00000400
#else
#define BM_CTRL_ADDR 0x0000007f
#endif
#ifdef CONFIG_MX7
#define BO_TIMING_FSOURCE 12
#define BM_TIMING_FSOURCE 0x0007f000
#define BV_TIMING_FSOURCE_NS 1001
#define BO_TIMING_PROG 0
#define BM_TIMING_PROG 0x00000fff
#define BV_TIMING_PROG_US 10
#else
#define BO_TIMING_STROBE_READ 16
#define BM_TIMING_STROBE_READ 0x003f0000
#define BV_TIMING_STROBE_READ_NS 37
#define BO_TIMING_RELAX 12
#define BM_TIMING_RELAX 0x0000f000
#define BV_TIMING_RELAX_NS 17
#define BO_TIMING_STROBE_PROG 0
#define BM_TIMING_STROBE_PROG 0x00000fff
#define BV_TIMING_STROBE_PROG_US 10
#endif
#define BM_READ_CTRL_READ_FUSE 0x00000001
#define BF(value, field) (((value) << BO_##field) & BM_##field)
#define WRITE_POSTAMBLE_US 2
#if defined(CONFIG_MX6) || defined(CONFIG_VF610)
#define FUSE_BANK_SIZE 0x80
#ifdef CONFIG_MX6SL
#define FUSE_BANKS 8
#elif defined(CONFIG_MX6ULL)
#define FUSE_BANKS 9
#else
#define FUSE_BANKS 16
#endif
#elif defined CONFIG_MX7
#define FUSE_BANK_SIZE 0x40
#define FUSE_BANKS 16
#else
#error "Unsupported architecture\n"
#endif
#if defined(CONFIG_MX6)
/*
* There is a hole in shadow registers address map of size 0x100
* between bank 5 and bank 6 on iMX6QP, iMX6DQ, iMX6SDL, iMX6SX,
* iMX6UL and i.MX6ULL.
* Bank 5 ends at 0x6F0 and Bank 6 starts at 0x800. When reading the fuses,
* we should account for this hole in address space.
*
* Similar hole exists between bank 14 and bank 15 of size
* 0x80 on iMX6QP, iMX6DQ, iMX6SDL and iMX6SX.
* Note: iMX6SL has only 0-7 banks and there is no hole.
* Note: iMX6UL doesn't have this one.
*
* This function is to covert user input to physical bank index.
* Only needed when read fuse, because we use register offset, so
* need to calculate real register offset.
* When write, no need to consider hole, always use the bank/word
* index from fuse map.
*/
u32 fuse_bank_physical(int index)
{
u32 phy_index;
if (is_mx6sl()) {
phy_index = index;
} else if (is_mx6ul() || is_mx6ull()) {
if (is_mx6ull() && index == 8)
index = 7;
if (index >= 6)
phy_index = fuse_bank_physical(5) + (index - 6) + 3;
else
phy_index = index;
} else {
if (index >= 15)
phy_index = fuse_bank_physical(14) + (index - 15) + 2;
else if (index >= 6)
phy_index = fuse_bank_physical(5) + (index - 6) + 3;
else
phy_index = index;
}
return phy_index;
}
u32 fuse_word_physical(u32 bank, u32 word_index)
{
if (is_mx6ull()) {
if (bank == 8)
word_index = word_index + 4;
}
return word_index;
}
#else
u32 fuse_bank_physical(int index)
{
return index;
}
u32 fuse_word_physical(u32 bank, u32 word_index)
{
return word_index;
}
#endif
static void wait_busy(struct ocotp_regs *regs, unsigned int delay_us)
{
while (readl(&regs->ctrl) & BM_CTRL_BUSY)
udelay(delay_us);
}
static void clear_error(struct ocotp_regs *regs)
{
writel(BM_CTRL_ERROR, &regs->ctrl_clr);
}
static int prepare_access(struct ocotp_regs **regs, u32 bank, u32 word,
int assert, const char *caller)
{
*regs = (struct ocotp_regs *)OCOTP_BASE_ADDR;
if (bank >= FUSE_BANKS ||
word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 2 ||
!assert) {
printf("mxc_ocotp %s(): Invalid argument\n", caller);
return -EINVAL;
}
if (is_mx6ull()) {
if ((bank == 7 || bank == 8) &&
word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 3) {
printf("mxc_ocotp %s(): Invalid argument on 6ULL\n", caller);
return -EINVAL;
}
}
enable_ocotp_clk(1);
wait_busy(*regs, 1);
clear_error(*regs);
return 0;
}
static int finish_access(struct ocotp_regs *regs, const char *caller)
{
u32 err;
err = !!(readl(&regs->ctrl) & BM_CTRL_ERROR);
clear_error(regs);
if (err) {
printf("mxc_ocotp %s(): Access protect error\n", caller);
return -EIO;
}
return 0;
}
static int prepare_read(struct ocotp_regs **regs, u32 bank, u32 word, u32 *val,
const char *caller)
{
return prepare_access(regs, bank, word, val != NULL, caller);
}
int fuse_read(u32 bank, u32 word, u32 *val)
{
struct ocotp_regs *regs;
int ret;
u32 phy_bank;
u32 phy_word;
ret = prepare_read(&regs, bank, word, val, __func__);
if (ret)
return ret;
phy_bank = fuse_bank_physical(bank);
phy_word = fuse_word_physical(bank, word);
*val = readl(&regs->bank[phy_bank].fuse_regs[phy_word << 2]);
return finish_access(regs, __func__);
}
#ifdef CONFIG_MX7
static void set_timing(struct ocotp_regs *regs)
{
u32 ipg_clk;
u32 fsource, prog;
u32 timing;
ipg_clk = mxc_get_clock(MXC_IPG_CLK);
fsource = DIV_ROUND_UP((ipg_clk / 1000) * BV_TIMING_FSOURCE_NS,
+ 1000000) + 1;
prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_PROG_US, 1000000) + 1;
timing = BF(fsource, TIMING_FSOURCE) | BF(prog, TIMING_PROG);
clrsetbits_le32(&regs->timing, BM_TIMING_FSOURCE | BM_TIMING_PROG,
timing);
}
#else
static void set_timing(struct ocotp_regs *regs)
{
u32 ipg_clk;
u32 relax, strobe_read, strobe_prog;
u32 timing;
ipg_clk = mxc_get_clock(MXC_IPG_CLK);
relax = DIV_ROUND_UP(ipg_clk * BV_TIMING_RELAX_NS, 1000000000) - 1;
strobe_read = DIV_ROUND_UP(ipg_clk * BV_TIMING_STROBE_READ_NS,
1000000000) + 2 * (relax + 1) - 1;
strobe_prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_STROBE_PROG_US,
1000000) + 2 * (relax + 1) - 1;
timing = BF(strobe_read, TIMING_STROBE_READ) |
BF(relax, TIMING_RELAX) |
BF(strobe_prog, TIMING_STROBE_PROG);
clrsetbits_le32(&regs->timing, BM_TIMING_STROBE_READ | BM_TIMING_RELAX |
BM_TIMING_STROBE_PROG, timing);
}
#endif
static void setup_direct_access(struct ocotp_regs *regs, u32 bank, u32 word,
int write)
{
u32 wr_unlock = write ? BV_CTRL_WR_UNLOCK_KEY : 0;
#ifdef CONFIG_MX7
u32 addr = bank;
#else
u32 addr;
/* Bank 7 and Bank 8 only supports 4 words each for i.MX6ULL */
if ((is_mx6ull()) && (bank > 7)) {
bank = bank - 1;
word += 4;
}
addr = bank << 3 | word;
#endif
set_timing(regs);
clrsetbits_le32(&regs->ctrl, BM_CTRL_WR_UNLOCK | BM_CTRL_ADDR,
BF(wr_unlock, CTRL_WR_UNLOCK) |
BF(addr, CTRL_ADDR));
}
int fuse_sense(u32 bank, u32 word, u32 *val)
{
struct ocotp_regs *regs;
int ret;
ret = prepare_read(&regs, bank, word, val, __func__);
if (ret)
return ret;
setup_direct_access(regs, bank, word, false);
writel(BM_READ_CTRL_READ_FUSE, &regs->read_ctrl);
wait_busy(regs, 1);
#ifdef CONFIG_MX7
*val = readl((&regs->read_fuse_data0) + (word << 2));
#else
*val = readl(&regs->read_fuse_data);
#endif
return finish_access(regs, __func__);
}
static int prepare_write(struct ocotp_regs **regs, u32 bank, u32 word,
const char *caller)
{
return prepare_access(regs, bank, word, true, caller);
}
int fuse_prog(u32 bank, u32 word, u32 val)
{
struct ocotp_regs *regs;
int ret;
ret = prepare_write(&regs, bank, word, __func__);
if (ret)
return ret;
setup_direct_access(regs, bank, word, true);
#ifdef CONFIG_MX7
switch (word) {
case 0:
writel(0, &regs->data1);
writel(0, &regs->data2);
writel(0, &regs->data3);
writel(val, &regs->data0);
break;
case 1:
writel(val, &regs->data1);
writel(0, &regs->data2);
writel(0, &regs->data3);
writel(0, &regs->data0);
break;
case 2:
writel(0, &regs->data1);
writel(val, &regs->data2);
writel(0, &regs->data3);
writel(0, &regs->data0);
break;
case 3:
writel(0, &regs->data1);
writel(0, &regs->data2);
writel(val, &regs->data3);
writel(0, &regs->data0);
break;
}
wait_busy(regs, BV_TIMING_PROG_US);
#else
writel(val, &regs->data);
wait_busy(regs, BV_TIMING_STROBE_PROG_US);
#endif
udelay(WRITE_POSTAMBLE_US);
return finish_access(regs, __func__);
}
int fuse_override(u32 bank, u32 word, u32 val)
{
struct ocotp_regs *regs;
int ret;
u32 phy_bank;
u32 phy_word;
ret = prepare_write(&regs, bank, word, __func__);
if (ret)
return ret;
phy_bank = fuse_bank_physical(bank);
phy_word = fuse_word_physical(bank, word);
writel(val, &regs->bank[phy_bank].fuse_regs[phy_word << 2]);
return finish_access(regs, __func__);
}