u-boot/drivers/ata/sata_dwc.c
Masahiro Yamada b27af39935 dma: import linux/dma-direction.h to consolidate enum dma_data_direction
Import include/linux/dma-direction.h from Linux 4.13-rc7 and delete
duplicated definitions of enum dma_data_direction.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
2017-09-12 18:02:23 -04:00

2078 lines
46 KiB
C

/*
* sata_dwc.c
*
* Synopsys DesignWare Cores (DWC) SATA host driver
*
* Author: Mark Miesfeld <mmiesfeld@amcc.com>
*
* Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
* Copyright 2008 DENX Software Engineering
*
* Based on versions provided by AMCC and Synopsys which are:
* Copyright 2006 Applied Micro Circuits Corporation
* COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* SATA support based on the chip canyonlands.
*
* 04-17-2009
* The local version of this driver for the canyonlands board
* does not use interrupts but polls the chip instead.
*/
#include <common.h>
#include <command.h>
#include <pci.h>
#include <asm/processor.h>
#include <linux/dma-direction.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <malloc.h>
#include <ata.h>
#include <sata.h>
#include <linux/ctype.h>
#include "sata_dwc.h"
#define DMA_NUM_CHANS 1
#define DMA_NUM_CHAN_REGS 8
#define AHB_DMA_BRST_DFLT 16
struct dmareg {
u32 low;
u32 high;
};
struct dma_chan_regs {
struct dmareg sar;
struct dmareg dar;
struct dmareg llp;
struct dmareg ctl;
struct dmareg sstat;
struct dmareg dstat;
struct dmareg sstatar;
struct dmareg dstatar;
struct dmareg cfg;
struct dmareg sgr;
struct dmareg dsr;
};
struct dma_interrupt_regs {
struct dmareg tfr;
struct dmareg block;
struct dmareg srctran;
struct dmareg dsttran;
struct dmareg error;
};
struct ahb_dma_regs {
struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
struct dma_interrupt_regs interrupt_raw;
struct dma_interrupt_regs interrupt_status;
struct dma_interrupt_regs interrupt_mask;
struct dma_interrupt_regs interrupt_clear;
struct dmareg statusInt;
struct dmareg rq_srcreg;
struct dmareg rq_dstreg;
struct dmareg rq_sgl_srcreg;
struct dmareg rq_sgl_dstreg;
struct dmareg rq_lst_srcreg;
struct dmareg rq_lst_dstreg;
struct dmareg dma_cfg;
struct dmareg dma_chan_en;
struct dmareg dma_id;
struct dmareg dma_test;
struct dmareg res1;
struct dmareg res2;
/* DMA Comp Params
* Param 6 = dma_param[0], Param 5 = dma_param[1],
* Param 4 = dma_param[2] ...
*/
struct dmareg dma_params[6];
};
#define DMA_EN 0x00000001
#define DMA_DI 0x00000000
#define DMA_CHANNEL(ch) (0x00000001 << (ch))
#define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
((0x000000001 << (ch)) << 8))
#define DMA_DISABLE_CHAN(ch) (0x00000000 | \
((0x000000001 << (ch)) << 8))
#define SATA_DWC_MAX_PORTS 1
#define SATA_DWC_SCR_OFFSET 0x24
#define SATA_DWC_REG_OFFSET 0x64
struct sata_dwc_regs {
u32 fptagr;
u32 fpbor;
u32 fptcr;
u32 dmacr;
u32 dbtsr;
u32 intpr;
u32 intmr;
u32 errmr;
u32 llcr;
u32 phycr;
u32 physr;
u32 rxbistpd;
u32 rxbistpd1;
u32 rxbistpd2;
u32 txbistpd;
u32 txbistpd1;
u32 txbistpd2;
u32 bistcr;
u32 bistfctr;
u32 bistsr;
u32 bistdecr;
u32 res[15];
u32 testr;
u32 versionr;
u32 idr;
u32 unimpl[192];
u32 dmadr[256];
};
#define SATA_DWC_TXFIFO_DEPTH 0x01FF
#define SATA_DWC_RXFIFO_DEPTH 0x01FF
#define SATA_DWC_DBTSR_MWR(size) ((size / 4) & SATA_DWC_TXFIFO_DEPTH)
#define SATA_DWC_DBTSR_MRD(size) (((size / 4) & \
SATA_DWC_RXFIFO_DEPTH) << 16)
#define SATA_DWC_INTPR_DMAT 0x00000001
#define SATA_DWC_INTPR_NEWFP 0x00000002
#define SATA_DWC_INTPR_PMABRT 0x00000004
#define SATA_DWC_INTPR_ERR 0x00000008
#define SATA_DWC_INTPR_NEWBIST 0x00000010
#define SATA_DWC_INTPR_IPF 0x10000000
#define SATA_DWC_INTMR_DMATM 0x00000001
#define SATA_DWC_INTMR_NEWFPM 0x00000002
#define SATA_DWC_INTMR_PMABRTM 0x00000004
#define SATA_DWC_INTMR_ERRM 0x00000008
#define SATA_DWC_INTMR_NEWBISTM 0x00000010
#define SATA_DWC_DMACR_TMOD_TXCHEN 0x00000004
#define SATA_DWC_DMACR_TXRXCH_CLEAR SATA_DWC_DMACR_TMOD_TXCHEN
#define SATA_DWC_QCMD_MAX 32
#define SATA_DWC_SERROR_ERR_BITS 0x0FFF0F03
#define HSDEVP_FROM_AP(ap) (struct sata_dwc_device_port*) \
(ap)->private_data
struct sata_dwc_device {
struct device *dev;
struct ata_probe_ent *pe;
struct ata_host *host;
u8 *reg_base;
struct sata_dwc_regs *sata_dwc_regs;
int irq_dma;
};
struct sata_dwc_device_port {
struct sata_dwc_device *hsdev;
int cmd_issued[SATA_DWC_QCMD_MAX];
u32 dma_chan[SATA_DWC_QCMD_MAX];
int dma_pending[SATA_DWC_QCMD_MAX];
};
enum {
SATA_DWC_CMD_ISSUED_NOT = 0,
SATA_DWC_CMD_ISSUED_PEND = 1,
SATA_DWC_CMD_ISSUED_EXEC = 2,
SATA_DWC_CMD_ISSUED_NODATA = 3,
SATA_DWC_DMA_PENDING_NONE = 0,
SATA_DWC_DMA_PENDING_TX = 1,
SATA_DWC_DMA_PENDING_RX = 2,
};
#define msleep(a) udelay(a * 1000)
#define ssleep(a) msleep(a * 1000)
static int ata_probe_timeout = (ATA_TMOUT_INTERNAL / 100);
enum sata_dev_state {
SATA_INIT = 0,
SATA_READY = 1,
SATA_NODEVICE = 2,
SATA_ERROR = 3,
};
enum sata_dev_state dev_state = SATA_INIT;
static struct ahb_dma_regs *sata_dma_regs = 0;
static struct ata_host *phost;
static struct ata_port ap;
static struct ata_port *pap = &ap;
static struct ata_device ata_device;
static struct sata_dwc_device_port dwc_devp;
static void *scr_addr_sstatus;
static u32 temp_n_block = 0;
static unsigned ata_exec_internal(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, unsigned int buflen,
unsigned long timeout);
static unsigned int ata_dev_set_feature(struct ata_device *dev,
u8 enable,u8 feature);
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors);
static u8 ata_irq_on(struct ata_port *ap);
static struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap,
unsigned int tag);
static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
u8 status, int in_wq);
static void ata_tf_to_host(struct ata_port *ap,
const struct ata_taskfile *tf);
static void ata_exec_command(struct ata_port *ap,
const struct ata_taskfile *tf);
static unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc);
static u8 ata_check_altstatus(struct ata_port *ap);
static u8 ata_check_status(struct ata_port *ap);
static void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep);
static void ata_qc_issue(struct ata_queued_cmd *qc);
static void ata_tf_load(struct ata_port *ap,
const struct ata_taskfile *tf);
static int ata_dev_read_sectors(unsigned char* pdata,
unsigned long datalen, u32 block, u32 n_block);
static int ata_dev_write_sectors(unsigned char* pdata,
unsigned long datalen , u32 block, u32 n_block);
static void ata_std_dev_select(struct ata_port *ap, unsigned int device);
static void ata_qc_complete(struct ata_queued_cmd *qc);
static void __ata_qc_complete(struct ata_queued_cmd *qc);
static void fill_result_tf(struct ata_queued_cmd *qc);
static void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
static void ata_mmio_data_xfer(struct ata_device *dev,
unsigned char *buf,
unsigned int buflen,int do_write);
static void ata_pio_task(struct ata_port *arg_ap);
static void __ata_port_freeze(struct ata_port *ap);
static int ata_port_freeze(struct ata_port *ap);
static void ata_qc_free(struct ata_queued_cmd *qc);
static void ata_pio_sectors(struct ata_queued_cmd *qc);
static void ata_pio_sector(struct ata_queued_cmd *qc);
static void ata_pio_queue_task(struct ata_port *ap,
void *data,unsigned long delay);
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq);
static int sata_dwc_softreset(struct ata_port *ap);
static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
unsigned int flags, u16 *id);
static int check_sata_dev_state(void);
static const struct ata_port_info sata_dwc_port_info[] = {
{
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING |
ATA_FLAG_SRST | ATA_FLAG_NCQ,
.pio_mask = 0x1f,
.mwdma_mask = 0x07,
.udma_mask = 0x7f,
},
};
int init_sata(int dev)
{
struct sata_dwc_device hsdev;
struct ata_host host;
struct ata_port_info pi = sata_dwc_port_info[0];
struct ata_link *link;
struct sata_dwc_device_port hsdevp = dwc_devp;
u8 *base = 0;
u8 *sata_dma_regs_addr = 0;
u8 status;
unsigned long base_addr = 0;
int chan = 0;
int rc;
int i;
phost = &host;
base = (u8*)SATA_BASE_ADDR;
hsdev.sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
host.n_ports = SATA_DWC_MAX_PORTS;
for (i = 0; i < SATA_DWC_MAX_PORTS; i++) {
ap.pflags |= ATA_PFLAG_INITIALIZING;
ap.flags = ATA_FLAG_DISABLED;
ap.print_id = -1;
ap.ctl = ATA_DEVCTL_OBS;
ap.host = &host;
ap.last_ctl = 0xFF;
link = &ap.link;
link->ap = &ap;
link->pmp = 0;
link->active_tag = ATA_TAG_POISON;
link->hw_sata_spd_limit = 0;
ap.port_no = i;
host.ports[i] = &ap;
}
ap.pio_mask = pi.pio_mask;
ap.mwdma_mask = pi.mwdma_mask;
ap.udma_mask = pi.udma_mask;
ap.flags |= pi.flags;
ap.link.flags |= pi.link_flags;
host.ports[0]->ioaddr.cmd_addr = base;
host.ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
base_addr = (unsigned long)base;
host.ports[0]->ioaddr.cmd_addr = (void *)base_addr + 0x00;
host.ports[0]->ioaddr.data_addr = (void *)base_addr + 0x00;
host.ports[0]->ioaddr.error_addr = (void *)base_addr + 0x04;
host.ports[0]->ioaddr.feature_addr = (void *)base_addr + 0x04;
host.ports[0]->ioaddr.nsect_addr = (void *)base_addr + 0x08;
host.ports[0]->ioaddr.lbal_addr = (void *)base_addr + 0x0c;
host.ports[0]->ioaddr.lbam_addr = (void *)base_addr + 0x10;
host.ports[0]->ioaddr.lbah_addr = (void *)base_addr + 0x14;
host.ports[0]->ioaddr.device_addr = (void *)base_addr + 0x18;
host.ports[0]->ioaddr.command_addr = (void *)base_addr + 0x1c;
host.ports[0]->ioaddr.status_addr = (void *)base_addr + 0x1c;
host.ports[0]->ioaddr.altstatus_addr = (void *)base_addr + 0x20;
host.ports[0]->ioaddr.ctl_addr = (void *)base_addr + 0x20;
sata_dma_regs_addr = (u8*)SATA_DMA_REG_ADDR;
sata_dma_regs = (void *__iomem)sata_dma_regs_addr;
status = ata_check_altstatus(&ap);
if (status == 0x7f) {
printf("Hard Disk not found.\n");
dev_state = SATA_NODEVICE;
rc = false;
return rc;
}
printf("Waiting for device...");
i = 0;
while (1) {
udelay(10000);
status = ata_check_altstatus(&ap);
if ((status & ATA_BUSY) == 0) {
printf("\n");
break;
}
i++;
if (i > (ATA_RESET_TIME * 100)) {
printf("** TimeOUT **\n");
dev_state = SATA_NODEVICE;
rc = false;
return rc;
}
if ((i >= 100) && ((i % 100) == 0))
printf(".");
}
rc = sata_dwc_softreset(&ap);
if (rc) {
printf("sata_dwc : error. soft reset failed\n");
return rc;
}
for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
out_le32(&(sata_dma_regs->interrupt_mask.error.low),
DMA_DISABLE_CHAN(chan));
out_le32(&(sata_dma_regs->interrupt_mask.tfr.low),
DMA_DISABLE_CHAN(chan));
}
out_le32(&(sata_dma_regs->dma_cfg.low), DMA_DI);
out_le32(&hsdev.sata_dwc_regs->intmr,
SATA_DWC_INTMR_ERRM |
SATA_DWC_INTMR_PMABRTM);
/* Unmask the error bits that should trigger
* an error interrupt by setting the error mask register.
*/
out_le32(&hsdev.sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
hsdev.host = ap.host;
memset(&hsdevp, 0, sizeof(hsdevp));
hsdevp.hsdev = &hsdev;
for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
hsdevp.cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
out_le32((void __iomem *)scr_addr_sstatus + 4,
in_le32((void __iomem *)scr_addr_sstatus + 4));
rc = 0;
return rc;
}
int reset_sata(int dev)
{
return 0;
}
static u8 ata_check_altstatus(struct ata_port *ap)
{
u8 val = 0;
val = readb(ap->ioaddr.altstatus_addr);
return val;
}
static int sata_dwc_softreset(struct ata_port *ap)
{
u8 nsect,lbal = 0;
u8 tmp = 0;
struct ata_ioports *ioaddr = &ap->ioaddr;
in_le32((void *)ap->ioaddr.scr_addr + (SCR_ERROR * 4));
writeb(0x55, ioaddr->nsect_addr);
writeb(0xaa, ioaddr->lbal_addr);
writeb(0xaa, ioaddr->nsect_addr);
writeb(0x55, ioaddr->lbal_addr);
writeb(0x55, ioaddr->nsect_addr);
writeb(0xaa, ioaddr->lbal_addr);
nsect = readb(ioaddr->nsect_addr);
lbal = readb(ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa)) {
printf("Device found\n");
} else {
printf("No device found\n");
dev_state = SATA_NODEVICE;
return false;
}
tmp = ATA_DEVICE_OBS;
writeb(tmp, ioaddr->device_addr);
writeb(ap->ctl, ioaddr->ctl_addr);
udelay(200);
writeb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(200);
writeb(ap->ctl, ioaddr->ctl_addr);
msleep(150);
ata_check_status(ap);
msleep(50);
ata_check_status(ap);
while (1) {
u8 status = ata_check_status(ap);
if (!(status & ATA_BUSY))
break;
printf("Hard Disk status is BUSY.\n");
msleep(50);
}
tmp = ATA_DEVICE_OBS;
writeb(tmp, ioaddr->device_addr);
nsect = readb(ioaddr->nsect_addr);
lbal = readb(ioaddr->lbal_addr);
return 0;
}
static u8 ata_check_status(struct ata_port *ap)
{
u8 val = 0;
val = readb(ap->ioaddr.status_addr);
return val;
}
static int ata_id_has_hipm(const u16 *id)
{
u16 val = id[76];
if (val == 0 || val == 0xffff)
return -1;
return val & (1 << 9);
}
static int ata_id_has_dipm(const u16 *id)
{
u16 val = id[78];
if (val == 0 || val == 0xffff)
return -1;
return val & (1 << 3);
}
int scan_sata(int dev)
{
int i;
int rc;
u8 status;
const u16 *id;
struct ata_device *ata_dev = &ata_device;
unsigned long pio_mask, mwdma_mask;
char revbuf[7];
u16 iobuf[ATA_SECTOR_WORDS];
memset(iobuf, 0, sizeof(iobuf));
if (dev_state == SATA_NODEVICE)
return 1;
printf("Waiting for device...");
i = 0;
while (1) {
udelay(10000);
status = ata_check_altstatus(&ap);
if ((status & ATA_BUSY) == 0) {
printf("\n");
break;
}
i++;
if (i > (ATA_RESET_TIME * 100)) {
printf("** TimeOUT **\n");
dev_state = SATA_NODEVICE;
return 1;
}
if ((i >= 100) && ((i % 100) == 0))
printf(".");
}
udelay(1000);
rc = ata_dev_read_id(ata_dev, &ata_dev->class,
ATA_READID_POSTRESET,ata_dev->id);
if (rc) {
printf("sata_dwc : error. failed sata scan\n");
return 1;
}
/* SATA drives indicate we have a bridge. We don't know which
* end of the link the bridge is which is a problem
*/
if (ata_id_is_sata(ata_dev->id))
ap.cbl = ATA_CBL_SATA;
id = ata_dev->id;
ata_dev->flags &= ~ATA_DFLAG_CFG_MASK;
ata_dev->max_sectors = 0;
ata_dev->cdb_len = 0;
ata_dev->n_sectors = 0;
ata_dev->cylinders = 0;
ata_dev->heads = 0;
ata_dev->sectors = 0;
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
pio_mask <<= 3;
pio_mask |= 0x7;
} else {
/* If word 64 isn't valid then Word 51 high byte holds
* the PIO timing number for the maximum. Turn it into
* a mask.
*/
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
if (mode < 5) {
pio_mask = (2 << mode) - 1;
} else {
pio_mask = 1;
}
}
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
if (ata_id_is_cfa(id)) {
int pio = id[163] & 0x7;
int dma = (id[163] >> 3) & 7;
if (pio)
pio_mask |= (1 << 5);
if (pio > 1)
pio_mask |= (1 << 6);
if (dma)
mwdma_mask |= (1 << 3);
if (dma > 1)
mwdma_mask |= (1 << 4);
}
if (ata_dev->class == ATA_DEV_ATA) {
if (ata_id_is_cfa(id)) {
if (id[162] & 1)
printf("supports DRM functions and may "
"not be fully accessable.\n");
strcpy(revbuf, "CFA");
} else {
if (ata_id_has_tpm(id))
printf("supports DRM functions and may "
"not be fully accessable.\n");
}
ata_dev->n_sectors = ata_id_n_sectors((u16*)id);
if (ata_dev->id[59] & 0x100)
ata_dev->multi_count = ata_dev->id[59] & 0xff;
if (ata_id_has_lba(id)) {
char ncq_desc[20];
ata_dev->flags |= ATA_DFLAG_LBA;
if (ata_id_has_lba48(id)) {
ata_dev->flags |= ATA_DFLAG_LBA48;
if (ata_dev->n_sectors >= (1UL << 28) &&
ata_id_has_flush_ext(id))
ata_dev->flags |= ATA_DFLAG_FLUSH_EXT;
}
if (!ata_id_has_ncq(ata_dev->id))
ncq_desc[0] = '\0';
if (ata_dev->horkage & ATA_HORKAGE_NONCQ)
strcpy(ncq_desc, "NCQ (not used)");
if (ap.flags & ATA_FLAG_NCQ)
ata_dev->flags |= ATA_DFLAG_NCQ;
}
ata_dev->cdb_len = 16;
}
ata_dev->max_sectors = ATA_MAX_SECTORS;
if (ata_dev->flags & ATA_DFLAG_LBA48)
ata_dev->max_sectors = ATA_MAX_SECTORS_LBA48;
if (!(ata_dev->horkage & ATA_HORKAGE_IPM)) {
if (ata_id_has_hipm(ata_dev->id))
ata_dev->flags |= ATA_DFLAG_HIPM;
if (ata_id_has_dipm(ata_dev->id))
ata_dev->flags |= ATA_DFLAG_DIPM;
}
if ((ap.cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ata_dev->id))) {
ata_dev->udma_mask &= ATA_UDMA5;
ata_dev->max_sectors = ATA_MAX_SECTORS;
}
if (ata_dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
printf("Drive reports diagnostics failure."
"This may indicate a drive\n");
printf("fault or invalid emulation."
"Contact drive vendor for information.\n");
}
rc = check_sata_dev_state();
ata_id_c_string(ata_dev->id,
(unsigned char *)sata_dev_desc[dev].revision,
ATA_ID_FW_REV, sizeof(sata_dev_desc[dev].revision));
ata_id_c_string(ata_dev->id,
(unsigned char *)sata_dev_desc[dev].vendor,
ATA_ID_PROD, sizeof(sata_dev_desc[dev].vendor));
ata_id_c_string(ata_dev->id,
(unsigned char *)sata_dev_desc[dev].product,
ATA_ID_SERNO, sizeof(sata_dev_desc[dev].product));
sata_dev_desc[dev].lba = (u32) ata_dev->n_sectors;
#ifdef CONFIG_LBA48
if (ata_dev->id[83] & (1 << 10)) {
sata_dev_desc[dev].lba48 = 1;
} else {
sata_dev_desc[dev].lba48 = 0;
}
#endif
return 0;
}
static u8 ata_busy_wait(struct ata_port *ap,
unsigned int bits,unsigned int max)
{
u8 status;
do {
udelay(10);
status = ata_check_status(ap);
max--;
} while (status != 0xff && (status & bits) && (max > 0));
return status;
}
static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
unsigned int flags, u16 *id)
{
struct ata_port *ap = pap;
unsigned int class = *p_class;
struct ata_taskfile tf;
unsigned int err_mask = 0;
const char *reason;
int may_fallback = 1, tried_spinup = 0;
u8 status;
int rc;
status = ata_busy_wait(ap, ATA_BUSY, 30000);
if (status & ATA_BUSY) {
printf("BSY = 0 check. timeout.\n");
rc = false;
return rc;
}
ata_dev_select(ap, dev->devno, 1, 1);
retry:
memset(&tf, 0, sizeof(tf));
ap->print_id = 1;
ap->flags &= ~ATA_FLAG_DISABLED;
tf.ctl = ap->ctl;
tf.device = ATA_DEVICE_OBS;
tf.command = ATA_CMD_ID_ATA;
tf.protocol = ATA_PROT_PIO;
/* Some devices choke if TF registers contain garbage. Make
* sure those are properly initialized.
*/
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
/* Device presence detection is unreliable on some
* controllers. Always poll IDENTIFY if available.
*/
tf.flags |= ATA_TFLAG_POLLING;
temp_n_block = 1;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
sizeof(id[0]) * ATA_ID_WORDS, 0);
if (err_mask) {
if (err_mask & AC_ERR_NODEV_HINT) {
printf("NODEV after polling detection\n");
return -ENOENT;
}
if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
/* Device or controller might have reported
* the wrong device class. Give a shot at the
* other IDENTIFY if the current one is
* aborted by the device.
*/
if (may_fallback) {
may_fallback = 0;
if (class == ATA_DEV_ATA) {
class = ATA_DEV_ATAPI;
} else {
class = ATA_DEV_ATA;
}
goto retry;
}
/* Control reaches here iff the device aborted
* both flavors of IDENTIFYs which happens
* sometimes with phantom devices.
*/
printf("both IDENTIFYs aborted, assuming NODEV\n");
return -ENOENT;
}
rc = -EIO;
reason = "I/O error";
goto err_out;
}
/* Falling back doesn't make sense if ID data was read
* successfully at least once.
*/
may_fallback = 0;
unsigned int id_cnt;
for (id_cnt = 0; id_cnt < ATA_ID_WORDS; id_cnt++)
id[id_cnt] = le16_to_cpu(id[id_cnt]);
rc = -EINVAL;
reason = "device reports invalid type";
if (class == ATA_DEV_ATA) {
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
goto err_out;
} else {
if (ata_id_is_ata(id))
goto err_out;
}
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
tried_spinup = 1;
/*
* Drive powered-up in standby mode, and requires a specific
* SET_FEATURES spin-up subcommand before it will accept
* anything other than the original IDENTIFY command.
*/
err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
if (err_mask && id[2] != 0x738c) {
rc = -EIO;
reason = "SPINUP failed";
goto err_out;
}
/*
* If the drive initially returned incomplete IDENTIFY info,
* we now must reissue the IDENTIFY command.
*/
if (id[2] == 0x37c8)
goto retry;
}
if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
/*
* The exact sequence expected by certain pre-ATA4 drives is:
* SRST RESET
* IDENTIFY (optional in early ATA)
* INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
* anything else..
* Some drives were very specific about that exact sequence.
*
* Note that ATA4 says lba is mandatory so the second check
* shoud never trigger.
*/
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
err_mask = ata_dev_init_params(dev, id[3], id[6]);
if (err_mask) {
rc = -EIO;
reason = "INIT_DEV_PARAMS failed";
goto err_out;
}
/* current CHS translation info (id[53-58]) might be
* changed. reread the identify device info.
*/
flags &= ~ATA_READID_POSTRESET;
goto retry;
}
}
*p_class = class;
return 0;
err_out:
printf("failed to READ ID (%s, err_mask=0x%x)\n", reason, err_mask);
return rc;
}
static u8 ata_wait_idle(struct ata_port *ap)
{
u8 status = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
return status;
}
static void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep)
{
if (wait)
ata_wait_idle(ap);
ata_std_dev_select(ap, device);
if (wait)
ata_wait_idle(ap);
}
static void ata_std_dev_select(struct ata_port *ap, unsigned int device)
{
u8 tmp;
if (device == 0) {
tmp = ATA_DEVICE_OBS;
} else {
tmp = ATA_DEVICE_OBS | ATA_DEV1;
}
writeb(tmp, ap->ioaddr.device_addr);
readb(ap->ioaddr.altstatus_addr);
udelay(1);
}
static int waiting_for_reg_state(volatile u8 *offset,
int timeout_msec,
u32 sign)
{
int i;
u32 status;
for (i = 0; i < timeout_msec; i++) {
status = readl(offset);
if ((status & sign) != 0)
break;
msleep(1);
}
return (i < timeout_msec) ? 0 : -1;
}
static void ata_qc_reinit(struct ata_queued_cmd *qc)
{
qc->dma_dir = DMA_NONE;
qc->flags = 0;
qc->nbytes = qc->extrabytes = qc->curbytes = 0;
qc->n_elem = 0;
qc->err_mask = 0;
qc->sect_size = ATA_SECT_SIZE;
qc->nbytes = ATA_SECT_SIZE * temp_n_block;
memset(&qc->tf, 0, sizeof(qc->tf));
qc->tf.ctl = 0;
qc->tf.device = ATA_DEVICE_OBS;
qc->result_tf.command = ATA_DRDY;
qc->result_tf.feature = 0;
}
struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap,
unsigned int tag)
{
if (tag < ATA_MAX_QUEUE)
return &ap->qcmd[tag];
return NULL;
}
static void __ata_port_freeze(struct ata_port *ap)
{
printf("set port freeze.\n");
ap->pflags |= ATA_PFLAG_FROZEN;
}
static int ata_port_freeze(struct ata_port *ap)
{
__ata_port_freeze(ap);
return 0;
}
unsigned ata_exec_internal(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, unsigned int buflen,
unsigned long timeout)
{
struct ata_link *link = dev->link;
struct ata_port *ap = pap;
struct ata_queued_cmd *qc;
unsigned int tag, preempted_tag;
u32 preempted_sactive, preempted_qc_active;
int preempted_nr_active_links;
unsigned int err_mask;
int rc = 0;
u8 status;
status = ata_busy_wait(ap, ATA_BUSY, 300000);
if (status & ATA_BUSY) {
printf("BSY = 0 check. timeout.\n");
rc = false;
return rc;
}
if (ap->pflags & ATA_PFLAG_FROZEN)
return AC_ERR_SYSTEM;
tag = ATA_TAG_INTERNAL;
if (test_and_set_bit(tag, &ap->qc_allocated)) {
rc = false;
return rc;
}
qc = __ata_qc_from_tag(ap, tag);
qc->tag = tag;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
preempted_tag = link->active_tag;
preempted_sactive = link->sactive;
preempted_qc_active = ap->qc_active;
preempted_nr_active_links = ap->nr_active_links;
link->active_tag = ATA_TAG_POISON;
link->sactive = 0;
ap->qc_active = 0;
ap->nr_active_links = 0;
qc->tf = *tf;
if (cdb)
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
qc->flags |= ATA_QCFLAG_RESULT_TF;
qc->dma_dir = dma_dir;
qc->private_data = 0;
ata_qc_issue(qc);
if (!timeout)
timeout = ata_probe_timeout * 1000 / HZ;
status = ata_busy_wait(ap, ATA_BUSY, 30000);
if (status & ATA_BUSY) {
printf("BSY = 0 check. timeout.\n");
printf("altstatus = 0x%x.\n", status);
qc->err_mask |= AC_ERR_OTHER;
return qc->err_mask;
}
if (waiting_for_reg_state(ap->ioaddr.altstatus_addr, 1000, 0x8)) {
u8 status = 0;
u8 errorStatus = 0;
status = readb(ap->ioaddr.altstatus_addr);
if ((status & 0x01) != 0) {
errorStatus = readb(ap->ioaddr.feature_addr);
if (errorStatus == 0x04 &&
qc->tf.command == ATA_CMD_PIO_READ_EXT){
printf("Hard Disk doesn't support LBA48\n");
dev_state = SATA_ERROR;
qc->err_mask |= AC_ERR_OTHER;
return qc->err_mask;
}
}
qc->err_mask |= AC_ERR_OTHER;
return qc->err_mask;
}
status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) {
printf("BSY = 0 check. timeout.\n");
qc->err_mask |= AC_ERR_OTHER;
return qc->err_mask;
}
ata_pio_task(ap);
if (!rc) {
if (qc->flags & ATA_QCFLAG_ACTIVE) {
qc->err_mask |= AC_ERR_TIMEOUT;
ata_port_freeze(ap);
}
}
if (qc->flags & ATA_QCFLAG_FAILED) {
if (qc->result_tf.command & (ATA_ERR | ATA_DF))
qc->err_mask |= AC_ERR_DEV;
if (!qc->err_mask)
qc->err_mask |= AC_ERR_OTHER;
if (qc->err_mask & ~AC_ERR_OTHER)
qc->err_mask &= ~AC_ERR_OTHER;
}
*tf = qc->result_tf;
err_mask = qc->err_mask;
ata_qc_free(qc);
link->active_tag = preempted_tag;
link->sactive = preempted_sactive;
ap->qc_active = preempted_qc_active;
ap->nr_active_links = preempted_nr_active_links;
if (ap->flags & ATA_FLAG_DISABLED) {
err_mask |= AC_ERR_SYSTEM;
ap->flags &= ~ATA_FLAG_DISABLED;
}
return err_mask;
}
static void ata_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_link *link = qc->dev->link;
u8 prot = qc->tf.protocol;
if (ata_is_ncq(prot)) {
if (!link->sactive)
ap->nr_active_links++;
link->sactive |= 1 << qc->tag;
} else {
ap->nr_active_links++;
link->active_tag = qc->tag;
}
qc->flags |= ATA_QCFLAG_ACTIVE;
ap->qc_active |= 1 << qc->tag;
if (qc->dev->flags & ATA_DFLAG_SLEEPING) {
msleep(1);
return;
}
qc->err_mask |= ata_qc_issue_prot(qc);
if (qc->err_mask)
goto err;
return;
err:
ata_qc_complete(qc);
}
static unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
if (ap->flags & ATA_FLAG_PIO_POLLING) {
switch (qc->tf.protocol) {
case ATA_PROT_PIO:
case ATA_PROT_NODATA:
case ATAPI_PROT_PIO:
case ATAPI_PROT_NODATA:
qc->tf.flags |= ATA_TFLAG_POLLING;
break;
default:
break;
}
}
ata_dev_select(ap, qc->dev->devno, 1, 0);
switch (qc->tf.protocol) {
case ATA_PROT_PIO:
if (qc->tf.flags & ATA_TFLAG_POLLING)
qc->tf.ctl |= ATA_NIEN;
ata_tf_to_host(ap, &qc->tf);
ap->hsm_task_state = HSM_ST;
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_pio_queue_task(ap, qc, 0);
break;
default:
return AC_ERR_SYSTEM;
}
return 0;
}
static void ata_tf_to_host(struct ata_port *ap,
const struct ata_taskfile *tf)
{
ata_tf_load(ap, tf);
ata_exec_command(ap, tf);
}
static void ata_tf_load(struct ata_port *ap,
const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
if (ioaddr->ctl_addr)
writeb(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
writeb(tf->hob_feature, ioaddr->feature_addr);
writeb(tf->hob_nsect, ioaddr->nsect_addr);
writeb(tf->hob_lbal, ioaddr->lbal_addr);
writeb(tf->hob_lbam, ioaddr->lbam_addr);
writeb(tf->hob_lbah, ioaddr->lbah_addr);
}
if (is_addr) {
writeb(tf->feature, ioaddr->feature_addr);
writeb(tf->nsect, ioaddr->nsect_addr);
writeb(tf->lbal, ioaddr->lbal_addr);
writeb(tf->lbam, ioaddr->lbam_addr);
writeb(tf->lbah, ioaddr->lbah_addr);
}
if (tf->flags & ATA_TFLAG_DEVICE)
writeb(tf->device, ioaddr->device_addr);
ata_wait_idle(ap);
}
static void ata_exec_command(struct ata_port *ap,
const struct ata_taskfile *tf)
{
writeb(tf->command, ap->ioaddr.command_addr);
readb(ap->ioaddr.altstatus_addr);
udelay(1);
}
static void ata_pio_queue_task(struct ata_port *ap,
void *data,unsigned long delay)
{
ap->port_task_data = data;
}
static unsigned int ac_err_mask(u8 status)
{
if (status & (ATA_BUSY | ATA_DRQ))
return AC_ERR_HSM;
if (status & (ATA_ERR | ATA_DF))
return AC_ERR_DEV;
return 0;
}
static unsigned int __ac_err_mask(u8 status)
{
unsigned int mask = ac_err_mask(status);
if (mask == 0)
return AC_ERR_OTHER;
return mask;
}
static void ata_pio_task(struct ata_port *arg_ap)
{
struct ata_port *ap = arg_ap;
struct ata_queued_cmd *qc = ap->port_task_data;
u8 status;
int poll_next;
fsm_start:
/*
* This is purely heuristic. This is a fast path.
* Sometimes when we enter, BSY will be cleared in
* a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then
* chk-status again. If still busy, queue delayed work.
*/
status = ata_busy_wait(ap, ATA_BUSY, 5);
if (status & ATA_BUSY) {
msleep(2);
status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) {
ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
return;
}
}
poll_next = ata_hsm_move(ap, qc, status, 1);
/* another command or interrupt handler
* may be running at this point.
*/
if (poll_next)
goto fsm_start;
}
static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
u8 status, int in_wq)
{
int poll_next;
fsm_start:
switch (ap->hsm_task_state) {
case HSM_ST_FIRST:
poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
if ((status & ATA_DRQ) == 0) {
if (status & (ATA_ERR | ATA_DF)) {
qc->err_mask |= AC_ERR_DEV;
} else {
qc->err_mask |= AC_ERR_HSM;
}
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* Device should not ask for data transfer (DRQ=1)
* when it finds something wrong.
* We ignore DRQ here and stop the HSM by
* changing hsm_task_state to HSM_ST_ERR and
* let the EH abort the command or reset the device.
*/
if (status & (ATA_ERR | ATA_DF)) {
if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
printf("DRQ=1 with device error, "
"dev_stat 0x%X\n", status);
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
}
if (qc->tf.protocol == ATA_PROT_PIO) {
/* PIO data out protocol.
* send first data block.
*/
/* ata_pio_sectors() might change the state
* to HSM_ST_LAST. so, the state is changed here
* before ata_pio_sectors().
*/
ap->hsm_task_state = HSM_ST;
ata_pio_sectors(qc);
} else {
printf("protocol is not ATA_PROT_PIO \n");
}
break;
case HSM_ST:
if ((status & ATA_DRQ) == 0) {
if (status & (ATA_ERR | ATA_DF)) {
qc->err_mask |= AC_ERR_DEV;
} else {
/* HSM violation. Let EH handle this.
* Phantom devices also trigger this
* condition. Mark hint.
*/
qc->err_mask |= AC_ERR_HSM | AC_ERR_NODEV_HINT;
}
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* For PIO reads, some devices may ask for
* data transfer (DRQ=1) alone with ERR=1.
* We respect DRQ here and transfer one
* block of junk data before changing the
* hsm_task_state to HSM_ST_ERR.
*
* For PIO writes, ERR=1 DRQ=1 doesn't make
* sense since the data block has been
* transferred to the device.
*/
if (status & (ATA_ERR | ATA_DF)) {
qc->err_mask |= AC_ERR_DEV;
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
ata_pio_sectors(qc);
status = ata_wait_idle(ap);
}
if (status & (ATA_BUSY | ATA_DRQ))
qc->err_mask |= AC_ERR_HSM;
/* ata_pio_sectors() might change the
* state to HSM_ST_LAST. so, the state
* is changed after ata_pio_sectors().
*/
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
ata_pio_sectors(qc);
if (ap->hsm_task_state == HSM_ST_LAST &&
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
status = ata_wait_idle(ap);
goto fsm_start;
}
poll_next = 1;
break;
case HSM_ST_LAST:
if (!ata_ok(status)) {
qc->err_mask |= __ac_err_mask(status);
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
ap->hsm_task_state = HSM_ST_IDLE;
ata_hsm_qc_complete(qc, in_wq);
poll_next = 0;
break;
case HSM_ST_ERR:
/* make sure qc->err_mask is available to
* know what's wrong and recover
*/
ap->hsm_task_state = HSM_ST_IDLE;
ata_hsm_qc_complete(qc, in_wq);
poll_next = 0;
break;
default:
poll_next = 0;
}
return poll_next;
}
static void ata_pio_sectors(struct ata_queued_cmd *qc)
{
struct ata_port *ap;
ap = pap;
qc->pdata = ap->pdata;
ata_pio_sector(qc);
readb(qc->ap->ioaddr.altstatus_addr);
udelay(1);
}
static void ata_pio_sector(struct ata_queued_cmd *qc)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct ata_port *ap = qc->ap;
unsigned int offset;
unsigned char *buf;
char temp_data_buf[512];
if (qc->curbytes == qc->nbytes - qc->sect_size)
ap->hsm_task_state = HSM_ST_LAST;
offset = qc->curbytes;
switch (qc->tf.command) {
case ATA_CMD_ID_ATA:
buf = (unsigned char *)&ata_device.id[0];
break;
case ATA_CMD_PIO_READ_EXT:
case ATA_CMD_PIO_READ:
case ATA_CMD_PIO_WRITE_EXT:
case ATA_CMD_PIO_WRITE:
buf = qc->pdata + offset;
break;
default:
buf = (unsigned char *)&temp_data_buf[0];
}
ata_mmio_data_xfer(qc->dev, buf, qc->sect_size, do_write);
qc->curbytes += qc->sect_size;
}
static void ata_mmio_data_xfer(struct ata_device *dev, unsigned char *buf,
unsigned int buflen, int do_write)
{
struct ata_port *ap = pap;
void __iomem *data_addr = ap->ioaddr.data_addr;
unsigned int words = buflen >> 1;
u16 *buf16 = (u16 *)buf;
unsigned int i = 0;
udelay(100);
if (do_write) {
for (i = 0; i < words; i++)
writew(le16_to_cpu(buf16[i]), data_addr);
} else {
for (i = 0; i < words; i++)
buf16[i] = cpu_to_le16(readw(data_addr));
}
if (buflen & 0x01) {
__le16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (do_write) {
memcpy(align_buf, trailing_buf, 1);
writew(le16_to_cpu(align_buf[0]), data_addr);
} else {
align_buf[0] = cpu_to_le16(readw(data_addr));
memcpy(trailing_buf, align_buf, 1);
}
}
}
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
{
struct ata_port *ap = qc->ap;
if (in_wq) {
/* EH might have kicked in while host lock is
* released.
*/
qc = &ap->qcmd[qc->tag];
if (qc) {
if (!(qc->err_mask & AC_ERR_HSM)) {
ata_irq_on(ap);
ata_qc_complete(qc);
} else {
ata_port_freeze(ap);
}
}
} else {
if (!(qc->err_mask & AC_ERR_HSM)) {
ata_qc_complete(qc);
} else {
ata_port_freeze(ap);
}
}
}
static u8 ata_irq_on(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 tmp;
ap->ctl &= ~ATA_NIEN;
ap->last_ctl = ap->ctl;
if (ioaddr->ctl_addr)
writeb(ap->ctl, ioaddr->ctl_addr);
tmp = ata_wait_idle(ap);
return tmp;
}
static unsigned int ata_tag_internal(unsigned int tag)
{
return tag == ATA_MAX_QUEUE - 1;
}
static void ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_device *dev = qc->dev;
if (qc->err_mask)
qc->flags |= ATA_QCFLAG_FAILED;
if (qc->flags & ATA_QCFLAG_FAILED) {
if (!ata_tag_internal(qc->tag)) {
fill_result_tf(qc);
return;
}
}
if (qc->flags & ATA_QCFLAG_RESULT_TF)
fill_result_tf(qc);
/* Some commands need post-processing after successful
* completion.
*/
switch (qc->tf.command) {
case ATA_CMD_SET_FEATURES:
if (qc->tf.feature != SETFEATURES_WC_ON &&
qc->tf.feature != SETFEATURES_WC_OFF)
break;
case ATA_CMD_INIT_DEV_PARAMS:
case ATA_CMD_SET_MULTI:
break;
case ATA_CMD_SLEEP:
dev->flags |= ATA_DFLAG_SLEEPING;
break;
}
__ata_qc_complete(qc);
}
static void fill_result_tf(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
qc->result_tf.flags = qc->tf.flags;
ata_tf_read(ap, &qc->result_tf);
}
static void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = ata_check_status(ap);
tf->feature = readb(ioaddr->error_addr);
tf->nsect = readb(ioaddr->nsect_addr);
tf->lbal = readb(ioaddr->lbal_addr);
tf->lbam = readb(ioaddr->lbam_addr);
tf->lbah = readb(ioaddr->lbah_addr);
tf->device = readb(ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
if (ioaddr->ctl_addr) {
writeb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = readb(ioaddr->error_addr);
tf->hob_nsect = readb(ioaddr->nsect_addr);
tf->hob_lbal = readb(ioaddr->lbal_addr);
tf->hob_lbam = readb(ioaddr->lbam_addr);
tf->hob_lbah = readb(ioaddr->lbah_addr);
writeb(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
} else {
printf("sata_dwc warnning register read.\n");
}
}
}
static void __ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_link *link = qc->dev->link;
link->active_tag = ATA_TAG_POISON;
ap->nr_active_links--;
if (qc->flags & ATA_QCFLAG_CLEAR_EXCL && ap->excl_link == link)
ap->excl_link = NULL;
qc->flags &= ~ATA_QCFLAG_ACTIVE;
ap->qc_active &= ~(1 << qc->tag);
}
static void ata_qc_free(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int tag;
qc->flags = 0;
tag = qc->tag;
if (tag < ATA_MAX_QUEUE) {
qc->tag = ATA_TAG_POISON;
clear_bit(tag, &ap->qc_allocated);
}
}
static int check_sata_dev_state(void)
{
unsigned long datalen;
unsigned char *pdata;
int ret = 0;
int i = 0;
char temp_data_buf[512];
while (1) {
udelay(10000);
pdata = (unsigned char*)&temp_data_buf[0];
datalen = 512;
ret = ata_dev_read_sectors(pdata, datalen, 0, 1);
if (ret == true)
break;
i++;
if (i > (ATA_RESET_TIME * 100)) {
printf("** TimeOUT **\n");
dev_state = SATA_NODEVICE;
return false;
}
if ((i >= 100) && ((i % 100) == 0))
printf(".");
}
dev_state = SATA_READY;
return true;
}
static unsigned int ata_dev_set_feature(struct ata_device *dev,
u8 enable, u8 feature)
{
struct ata_taskfile tf;
struct ata_port *ap;
ap = pap;
unsigned int err_mask;
memset(&tf, 0, sizeof(tf));
tf.ctl = ap->ctl;
tf.device = ATA_DEVICE_OBS;
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = enable;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = feature;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, 0, 0);
return err_mask;
}
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors)
{
struct ata_taskfile tf;
struct ata_port *ap;
ap = pap;
unsigned int err_mask;
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
return AC_ERR_INVALID;
memset(&tf, 0, sizeof(tf));
tf.ctl = ap->ctl;
tf.device = ATA_DEVICE_OBS;
tf.command = ATA_CMD_INIT_DEV_PARAMS;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = sectors;
tf.device |= (heads - 1) & 0x0f;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, 0, 0);
if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
err_mask = 0;
return err_mask;
}
#if defined(CONFIG_SATA_DWC) && !defined(CONFIG_LBA48)
#define SATA_MAX_READ_BLK 0xFF
#else
#define SATA_MAX_READ_BLK 0xFFFF
#endif
ulong sata_read(int device, ulong blknr, lbaint_t blkcnt, void *buffer)
{
ulong start,blks, buf_addr;
unsigned short smallblks;
unsigned long datalen;
unsigned char *pdata;
device &= 0xff;
u32 block = 0;
u32 n_block = 0;
if (dev_state != SATA_READY)
return 0;
buf_addr = (unsigned long)buffer;
start = blknr;
blks = blkcnt;
do {
pdata = (unsigned char *)buf_addr;
if (blks > SATA_MAX_READ_BLK) {
datalen = sata_dev_desc[device].blksz * SATA_MAX_READ_BLK;
smallblks = SATA_MAX_READ_BLK;
block = (u32)start;
n_block = (u32)smallblks;
start += SATA_MAX_READ_BLK;
blks -= SATA_MAX_READ_BLK;
} else {
datalen = sata_dev_desc[device].blksz * SATA_MAX_READ_BLK;
datalen = sata_dev_desc[device].blksz * blks;
smallblks = (unsigned short)blks;
block = (u32)start;
n_block = (u32)smallblks;
start += blks;
blks = 0;
}
if (ata_dev_read_sectors(pdata, datalen, block, n_block) != true) {
printf("sata_dwc : Hard disk read error.\n");
blkcnt -= blks;
break;
}
buf_addr += datalen;
} while (blks != 0);
return (blkcnt);
}
static int ata_dev_read_sectors(unsigned char *pdata, unsigned long datalen,
u32 block, u32 n_block)
{
struct ata_port *ap = pap;
struct ata_device *dev = &ata_device;
struct ata_taskfile tf;
unsigned int class = ATA_DEV_ATA;
unsigned int err_mask = 0;
const char *reason;
int may_fallback = 1;
if (dev_state == SATA_ERROR)
return false;
ata_dev_select(ap, dev->devno, 1, 1);
retry:
memset(&tf, 0, sizeof(tf));
tf.ctl = ap->ctl;
ap->print_id = 1;
ap->flags &= ~ATA_FLAG_DISABLED;
ap->pdata = pdata;
tf.device = ATA_DEVICE_OBS;
temp_n_block = n_block;
#ifdef CONFIG_LBA48
tf.command = ATA_CMD_PIO_READ_EXT;
tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
tf.hob_feature = 31;
tf.feature = 31;
tf.hob_nsect = (n_block >> 8) & 0xff;
tf.nsect = n_block & 0xff;
tf.hob_lbah = 0x0;
tf.hob_lbam = 0x0;
tf.hob_lbal = (block >> 24) & 0xff;
tf.lbah = (block >> 16) & 0xff;
tf.lbam = (block >> 8) & 0xff;
tf.lbal = block & 0xff;
tf.device = 1 << 6;
if (tf.flags & ATA_TFLAG_FUA)
tf.device |= 1 << 7;
#else
tf.command = ATA_CMD_PIO_READ;
tf.flags |= ATA_TFLAG_LBA ;
tf.feature = 31;
tf.nsect = n_block & 0xff;
tf.lbah = (block >> 16) & 0xff;
tf.lbam = (block >> 8) & 0xff;
tf.lbal = block & 0xff;
tf.device = (block >> 24) & 0xf;
tf.device |= 1 << 6;
if (tf.flags & ATA_TFLAG_FUA)
tf.device |= 1 << 7;
#endif
tf.protocol = ATA_PROT_PIO;
/* Some devices choke if TF registers contain garbage. Make
* sure those are properly initialized.
*/
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.flags |= ATA_TFLAG_POLLING;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 0, 0);
if (err_mask) {
if (err_mask & AC_ERR_NODEV_HINT) {
printf("READ_SECTORS NODEV after polling detection\n");
return -ENOENT;
}
if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
/* Device or controller might have reported
* the wrong device class. Give a shot at the
* other IDENTIFY if the current one is
* aborted by the device.
*/
if (may_fallback) {
may_fallback = 0;
if (class == ATA_DEV_ATA) {
class = ATA_DEV_ATAPI;
} else {
class = ATA_DEV_ATA;
}
goto retry;
}
/* Control reaches here iff the device aborted
* both flavors of IDENTIFYs which happens
* sometimes with phantom devices.
*/
printf("both IDENTIFYs aborted, assuming NODEV\n");
return -ENOENT;
}
reason = "I/O error";
goto err_out;
}
return true;
err_out:
printf("failed to READ SECTORS (%s, err_mask=0x%x)\n", reason, err_mask);
return false;
}
#if defined(CONFIG_SATA_DWC) && !defined(CONFIG_LBA48)
#define SATA_MAX_WRITE_BLK 0xFF
#else
#define SATA_MAX_WRITE_BLK 0xFFFF
#endif
ulong sata_write(int device, ulong blknr, lbaint_t blkcnt, const void *buffer)
{
ulong start,blks, buf_addr;
unsigned short smallblks;
unsigned long datalen;
unsigned char *pdata;
device &= 0xff;
u32 block = 0;
u32 n_block = 0;
if (dev_state != SATA_READY)
return 0;
buf_addr = (unsigned long)buffer;
start = blknr;
blks = blkcnt;
do {
pdata = (unsigned char *)buf_addr;
if (blks > SATA_MAX_WRITE_BLK) {
datalen = sata_dev_desc[device].blksz * SATA_MAX_WRITE_BLK;
smallblks = SATA_MAX_WRITE_BLK;
block = (u32)start;
n_block = (u32)smallblks;
start += SATA_MAX_WRITE_BLK;
blks -= SATA_MAX_WRITE_BLK;
} else {
datalen = sata_dev_desc[device].blksz * blks;
smallblks = (unsigned short)blks;
block = (u32)start;
n_block = (u32)smallblks;
start += blks;
blks = 0;
}
if (ata_dev_write_sectors(pdata, datalen, block, n_block) != true) {
printf("sata_dwc : Hard disk read error.\n");
blkcnt -= blks;
break;
}
buf_addr += datalen;
} while (blks != 0);
return (blkcnt);
}
static int ata_dev_write_sectors(unsigned char* pdata, unsigned long datalen,
u32 block, u32 n_block)
{
struct ata_port *ap = pap;
struct ata_device *dev = &ata_device;
struct ata_taskfile tf;
unsigned int class = ATA_DEV_ATA;
unsigned int err_mask = 0;
const char *reason;
int may_fallback = 1;
if (dev_state == SATA_ERROR)
return false;
ata_dev_select(ap, dev->devno, 1, 1);
retry:
memset(&tf, 0, sizeof(tf));
tf.ctl = ap->ctl;
ap->print_id = 1;
ap->flags &= ~ATA_FLAG_DISABLED;
ap->pdata = pdata;
tf.device = ATA_DEVICE_OBS;
temp_n_block = n_block;
#ifdef CONFIG_LBA48
tf.command = ATA_CMD_PIO_WRITE_EXT;
tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48 | ATA_TFLAG_WRITE;
tf.hob_feature = 31;
tf.feature = 31;
tf.hob_nsect = (n_block >> 8) & 0xff;
tf.nsect = n_block & 0xff;
tf.hob_lbah = 0x0;
tf.hob_lbam = 0x0;
tf.hob_lbal = (block >> 24) & 0xff;
tf.lbah = (block >> 16) & 0xff;
tf.lbam = (block >> 8) & 0xff;
tf.lbal = block & 0xff;
tf.device = 1 << 6;
if (tf.flags & ATA_TFLAG_FUA)
tf.device |= 1 << 7;
#else
tf.command = ATA_CMD_PIO_WRITE;
tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_WRITE;
tf.feature = 31;
tf.nsect = n_block & 0xff;
tf.lbah = (block >> 16) & 0xff;
tf.lbam = (block >> 8) & 0xff;
tf.lbal = block & 0xff;
tf.device = (block >> 24) & 0xf;
tf.device |= 1 << 6;
if (tf.flags & ATA_TFLAG_FUA)
tf.device |= 1 << 7;
#endif
tf.protocol = ATA_PROT_PIO;
/* Some devices choke if TF registers contain garbage. Make
* sure those are properly initialized.
*/
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.flags |= ATA_TFLAG_POLLING;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 0, 0);
if (err_mask) {
if (err_mask & AC_ERR_NODEV_HINT) {
printf("READ_SECTORS NODEV after polling detection\n");
return -ENOENT;
}
if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
/* Device or controller might have reported
* the wrong device class. Give a shot at the
* other IDENTIFY if the current one is
* aborted by the device.
*/
if (may_fallback) {
may_fallback = 0;
if (class == ATA_DEV_ATA) {
class = ATA_DEV_ATAPI;
} else {
class = ATA_DEV_ATA;
}
goto retry;
}
/* Control reaches here iff the device aborted
* both flavors of IDENTIFYs which happens
* sometimes with phantom devices.
*/
printf("both IDENTIFYs aborted, assuming NODEV\n");
return -ENOENT;
}
reason = "I/O error";
goto err_out;
}
return true;
err_out:
printf("failed to WRITE SECTORS (%s, err_mask=0x%x)\n", reason, err_mask);
return false;
}