u-boot/drivers/spi/nxp_fspi.c
Adam Ford 5fb6b82471 spi: nxp_fspi: Enable support for nxp,imx8mm-fspi
The i.MX8M Mini can use the FlexSPI driver.  Add support
for it to the driver.

Signed-off-by: Adam Ford <aford173@gmail.com>
2021-01-23 13:40:29 +01:00

1009 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* NXP FlexSPI(FSPI) controller driver.
*
* Copyright (c) 2019 Michael Walle <michael@walle.cc>
* Copyright (c) 2019 NXP
*
* This driver was originally ported from the linux kernel v5.4-rc3, which had
* the following notes:
*
* FlexSPI is a flexsible SPI host controller which supports two SPI
* channels and up to 4 external devices. Each channel supports
* Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
* data lines).
*
* FlexSPI controller is driven by the LUT(Look-up Table) registers
* LUT registers are a look-up-table for sequences of instructions.
* A valid sequence consists of four LUT registers.
* Maximum 32 LUT sequences can be programmed simultaneously.
*
* LUTs are being created at run-time based on the commands passed
* from the spi-mem framework, thus using single LUT index.
*
* Software triggered Flash read/write access by IP Bus.
*
* Memory mapped read access by AHB Bus.
*
* Based on SPI MEM interface and spi-fsl-qspi.c driver.
*
* Author:
* Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
* Boris Brezillon <bbrezillon@kernel.org>
* Frieder Schrempf <frieder.schrempf@kontron.de>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
#include <linux/iopoll.h>
#include <linux/bug.h>
#include <linux/err.h>
/*
* The driver only uses one single LUT entry, that is updated on
* each call of exec_op(). Index 0 is preset at boot with a basic
* read operation, so let's use the last entry (31).
*/
#define SEQID_LUT 31
/* Registers used by the driver */
#define FSPI_MCR0 0x00
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR0_LEARN_EN BIT(15)
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
#define FSPI_MCR0_DOZE_EN BIT(12)
#define FSPI_MCR0_HSEN BIT(11)
#define FSPI_MCR0_SERCLKDIV BIT(8)
#define FSPI_MCR0_ATDF_EN BIT(7)
#define FSPI_MCR0_ARDF_EN BIT(6)
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
#define FSPI_MCR0_MDIS BIT(1)
#define FSPI_MCR0_SWRST BIT(0)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
#define FSPI_MCR2_CLRLRPHS BIT(14)
#define FSPI_MCR2_ABRDATSZ BIT(8)
#define FSPI_MCR2_ABRLEARN BIT(7)
#define FSPI_MCR2_ABR_READ BIT(6)
#define FSPI_MCR2_ABRWRITE BIT(5)
#define FSPI_MCR2_ABRDUMMY BIT(4)
#define FSPI_MCR2_ABR_MODE BIT(3)
#define FSPI_MCR2_ABRCADDR BIT(2)
#define FSPI_MCR2_ABRRADDR BIT(1)
#define FSPI_MCR2_ABR_CMD BIT(0)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT BIT(6)
#define FSPI_AHBCR_PREF_EN BIT(5)
#define FSPI_AHBCR_BUFF_EN BIT(4)
#define FSPI_AHBCR_CACH_EN BIT(3)
#define FSPI_AHBCR_CLRTXBUF BIT(2)
#define FSPI_AHBCR_CLRRXBUF BIT(1)
#define FSPI_AHBCR_PAR_EN BIT(0)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR BIT(9)
#define FSPI_INTEN_SCLKSBRD BIT(8)
#define FSPI_INTEN_DATALRNFL BIT(7)
#define FSPI_INTEN_IPTXWE BIT(6)
#define FSPI_INTEN_IPRXWA BIT(5)
#define FSPI_INTEN_AHBCMDERR BIT(4)
#define FSPI_INTEN_IPCMDERR BIT(3)
#define FSPI_INTEN_AHBCMDGE BIT(2)
#define FSPI_INTEN_IPCMDGE BIT(1)
#define FSPI_INTEN_IPCMDDONE BIT(0)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR BIT(9)
#define FSPI_INTR_SCLKSBRD BIT(8)
#define FSPI_INTR_DATALRNFL BIT(7)
#define FSPI_INTR_IPTXWE BIT(6)
#define FSPI_INTR_IPRXWA BIT(5)
#define FSPI_INTR_AHBCMDERR BIT(4)
#define FSPI_INTR_IPCMDERR BIT(3)
#define FSPI_INTR_AHBCMDGE BIT(2)
#define FSPI_INTR_IPCMDGE BIT(1)
#define FSPI_INTR_IPCMDDONE BIT(0)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_KB 10
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
#define FSPI_FLSHXCR1_WA BIT(10)
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x) (x)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_IDATSZ(x) (x)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG BIT(0)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR BIT(0)
#define FSPI_IPRXFCR_DMA_EN BIT(1)
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR BIT(0)
#define FSPI_IPTXFCR_DMA_EN BIT(1)
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN BIT(8)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN BIT(8)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHB(x) ((x) << 8)
#define FSPI_STS0_DLPHA(x) ((x) << 4)
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
#define FSPI_STS0_ARB_IDLE BIT(1)
#define FSPI_STS0_SEQ_IDLE BIT(0)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
#define FSPI_STS1_AHB_ERRID(x) (x)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
#define FSPI_AHBSPNST_ACTIVE BIT(0)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
#define FSPI_IPRXFSTS_FILL(x) (x)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
#define FSPI_IPTXFSTS_FILL(x) (x)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
/* register map end */
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
/*
* Calculate number of required PAD bits for LUT register.
*
* The pad stands for the number of IO lines [0:7].
* For example, the octal read needs eight IO lines,
* so you should use LUT_PAD(8). This macro
* returns 3 i.e. use eight (2^3) IP lines for read.
*/
#define LUT_PAD(x) (fls(x) - 1)
/*
* Macro for constructing the LUT entries with the following
* register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define PAD_SHIFT 8
#define INSTR_SHIFT 10
#define OPRND_SHIFT 16
/* Macros for constructing the LUT register. */
#define LUT_DEF(idx, ins, pad, opr) \
((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
(opr)) << (((idx) % 2) * OPRND_SHIFT))
#define POLL_TOUT 5000
#define NXP_FSPI_MAX_CHIPSELECT 4
struct nxp_fspi_devtype_data {
unsigned int rxfifo;
unsigned int txfifo;
unsigned int ahb_buf_size;
unsigned int quirks;
bool little_endian;
};
static const struct nxp_fspi_devtype_data lx2160a_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
static const struct nxp_fspi_devtype_data imx8mm_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
struct nxp_fspi {
struct udevice *dev;
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_phy_size;
struct clk clk, clk_en;
const struct nxp_fspi_devtype_data *devtype_data;
};
/*
* R/W functions for big- or little-endian registers:
* The FSPI controller's endianness is independent of
* the CPU core's endianness. So far, although the CPU
* core is little-endian the FSPI controller can use
* big-endian or little-endian.
*/
static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
{
if (f->devtype_data->little_endian)
out_le32(addr, val);
else
out_be32(addr, val);
}
static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
{
if (f->devtype_data->little_endian)
return in_le32(addr);
else
return in_be32(addr);
}
static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
{
switch (width) {
case 1:
case 2:
case 4:
case 8:
return 0;
}
return -ENOTSUPP;
}
static bool nxp_fspi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct nxp_fspi *f;
struct udevice *bus;
int ret;
bus = slave->dev->parent;
f = dev_get_priv(bus);
ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
if (op->addr.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
if (op->dummy.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
if (op->data.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
if (ret)
return false;
/*
* The number of address bytes should be equal to or less than 4 bytes.
*/
if (op->addr.nbytes > 4)
return false;
/*
* If requested address value is greater than controller assigned
* memory mapped space, return error as it didn't fit in the range
* of assigned address space.
*/
if (op->addr.val >= f->memmap_phy_size)
return false;
/* Max 64 dummy clock cycles supported */
if (op->dummy.buswidth &&
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
return false;
/* Max data length, check controller limits and alignment */
if (op->data.dir == SPI_MEM_DATA_IN &&
(op->data.nbytes > f->devtype_data->ahb_buf_size ||
(op->data.nbytes > f->devtype_data->rxfifo - 4 &&
!IS_ALIGNED(op->data.nbytes, 8))))
return false;
if (op->data.dir == SPI_MEM_DATA_OUT &&
op->data.nbytes > f->devtype_data->txfifo)
return false;
return true;
}
/* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
u32 mask, u32 delay_us,
u32 timeout_us, bool c)
{
u32 reg;
if (!f->devtype_data->little_endian)
mask = (u32)cpu_to_be32(mask);
if (c)
return readl_poll_sleep_timeout(base, reg, (reg & mask),
delay_us, timeout_us);
else
return readl_poll_sleep_timeout(base, reg, !(reg & mask),
delay_us, timeout_us);
}
/*
* If the slave device content being changed by Write/Erase, need to
* invalidate the AHB buffer. This can be achieved by doing the reset
* of controller after setting MCR0[SWRESET] bit.
*/
static inline void nxp_fspi_invalid(struct nxp_fspi *f)
{
u32 reg;
int ret;
reg = fspi_readl(f, f->iobase + FSPI_MCR0);
fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
}
static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
u32 lutval[4] = {};
int lutidx = 1, i;
/* cmd */
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
op->cmd.opcode);
/* addr bytes */
if (op->addr.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
LUT_PAD(op->addr.buswidth),
op->addr.nbytes * 8);
lutidx++;
}
/* dummy bytes, if needed */
if (op->dummy.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
/*
* Due to FlexSPI controller limitation number of PAD for dummy
* buswidth needs to be programmed as equal to data buswidth.
*/
LUT_PAD(op->data.buswidth),
op->dummy.nbytes * 8 /
op->dummy.buswidth);
lutidx++;
}
/* read/write data bytes */
if (op->data.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx,
op->data.dir == SPI_MEM_DATA_IN ?
LUT_NXP_READ : LUT_NXP_WRITE,
LUT_PAD(op->data.buswidth),
0);
lutidx++;
}
/* stop condition. */
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
/* unlock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
/* fill LUT */
for (i = 0; i < ARRAY_SIZE(lutval); i++)
fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
/* lock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
}
#if CONFIG_IS_ENABLED(CLK)
static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
{
int ret;
ret = clk_enable(&f->clk_en);
if (ret)
return ret;
ret = clk_enable(&f->clk);
if (ret) {
clk_disable(&f->clk_en);
return ret;
}
return 0;
}
static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
{
clk_disable(&f->clk);
clk_disable(&f->clk_en);
}
#endif
/*
* In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
* register and start base address of the slave device.
*
* (Higher address)
* -------- <-- FLSHB2CR0
* | B2 |
* | |
* B2 start address --> -------- <-- FLSHB1CR0
* | B1 |
* | |
* B1 start address --> -------- <-- FLSHA2CR0
* | A2 |
* | |
* A2 start address --> -------- <-- FLSHA1CR0
* | A1 |
* | |
* A1 start address --> -------- (Lower address)
*
*
* Start base address defines the starting address range for given CS and
* FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
*
* But, different targets are having different combinations of number of CS,
* some targets only have single CS or two CS covering controller's full
* memory mapped space area.
* Thus, implementation is being done as independent of the size and number
* of the connected slave device.
* Assign controller memory mapped space size as the size to the connected
* slave device.
* Mark FLSHxxCR0 as zero initially and then assign value only to the selected
* chip-select Flash configuration register.
*
* For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
* memory mapped size of the controller.
* Value for rest of the CS FLSHxxCR0 register would be zero.
*
*/
static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
{
u64 size_kb;
/* Reset FLSHxxCR0 registers */
fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
/* Assign controller memory mapped space as size, KBytes, of flash. */
size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
4 * chip_select);
dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
}
static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
{
u32 len = op->data.nbytes;
/* Read out the data directly from the AHB buffer. */
memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
}
static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
u8 *buf = (u8 *)op->data.buf.out;
/* clear the TX FIFO. */
fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
/*
* Default value of water mark level is 8 bytes, hence in single
* write request controller can write max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
if (i < op->data.nbytes) {
u32 data = 0;
int j;
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
memcpy(&data, buf + i + j, 4);
fspi_writel(f, data, base + FSPI_TFDR + j);
}
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
}
static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
int len = op->data.nbytes;
u8 *buf = (u8 *)op->data.buf.in;
/*
* Default value of water mark level is 8 bytes, hence in single
* read request controller can read max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
if (i < len) {
u32 tmp;
int size, j;
buf = op->data.buf.in + i;
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
len = op->data.nbytes - i;
for (j = 0; j < op->data.nbytes - i; j += 4) {
tmp = fspi_readl(f, base + FSPI_RFDR + j);
size = min(len, 4);
memcpy(buf + j, &tmp, size);
len -= size;
}
}
/* invalid the RXFIFO */
fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int seqnum = 0;
int err = 0;
u32 reg;
reg = fspi_readl(f, base + FSPI_IPRXFCR);
/* invalid RXFIFO first */
reg &= ~FSPI_IPRXFCR_DMA_EN;
reg = reg | FSPI_IPRXFCR_CLR;
fspi_writel(f, reg, base + FSPI_IPRXFCR);
fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
/*
* Always start the sequence at the same index since we update
* the LUT at each exec_op() call. And also specify the DATA
* length, since it's has not been specified in the LUT.
*/
fspi_writel(f, op->data.nbytes |
(SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
(seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
base + FSPI_IPCR1);
/* Trigger the LUT now. */
fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
/* Wait for the completion. */
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
/* Invoke IP data read, if request is of data read. */
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
nxp_fspi_read_rxfifo(f, op);
return err;
}
static int nxp_fspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct nxp_fspi *f;
struct udevice *bus;
int err = 0;
bus = slave->dev->parent;
f = dev_get_priv(bus);
/* Wait for controller being ready. */
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
WARN_ON(err);
nxp_fspi_prepare_lut(f, op);
/*
* If we have large chunks of data, we read them through the AHB bus
* by accessing the mapped memory. In all other cases we use
* IP commands to access the flash.
*/
if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
op->data.dir == SPI_MEM_DATA_IN) {
nxp_fspi_read_ahb(f, op);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
nxp_fspi_fill_txfifo(f, op);
err = nxp_fspi_do_op(f, op);
}
/* Invalidate the data in the AHB buffer. */
nxp_fspi_invalid(f);
return err;
}
static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
struct spi_mem_op *op)
{
struct nxp_fspi *f;
struct udevice *bus;
bus = slave->dev->parent;
f = dev_get_priv(bus);
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > f->devtype_data->txfifo)
op->data.nbytes = f->devtype_data->txfifo;
} else {
if (op->data.nbytes > f->devtype_data->ahb_buf_size)
op->data.nbytes = f->devtype_data->ahb_buf_size;
else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
}
return 0;
}
static int nxp_fspi_default_setup(struct nxp_fspi *f)
{
void __iomem *base = f->iobase;
int ret, i;
u32 reg;
#if CONFIG_IS_ENABLED(CLK)
/* disable and unprepare clock to avoid glitch pass to controller */
nxp_fspi_clk_disable_unprep(f);
/* the default frequency, we will change it later if necessary. */
ret = clk_set_rate(&f->clk, 20000000);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return ret;
#endif
/* Reset the module */
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
/* Disable the module */
fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
/* Reset the DLL register to default value */
fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
/* enable module */
fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
base + FSPI_MCR0);
/*
* Disable same device enable bit and configure all slave devices
* independently.
*/
reg = fspi_readl(f, f->iobase + FSPI_MCR2);
reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
fspi_writel(f, reg, base + FSPI_MCR2);
/* AHB configuration for access buffer 0~7. */
for (i = 0; i < 7; i++)
fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the read
* performance.
*/
fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
/* prefetch and no start address alignment limitation */
fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
base + FSPI_AHBCR);
/* AHB Read - Set lut sequence ID for all CS. */
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
return 0;
}
static int nxp_fspi_probe(struct udevice *bus)
{
struct nxp_fspi *f = dev_get_priv(bus);
f->devtype_data =
(struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
nxp_fspi_default_setup(f);
return 0;
}
static int nxp_fspi_claim_bus(struct udevice *dev)
{
struct nxp_fspi *f;
struct udevice *bus;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
bus = dev->parent;
f = dev_get_priv(bus);
nxp_fspi_select_mem(f, slave_plat->cs);
return 0;
}
static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
{
#if CONFIG_IS_ENABLED(CLK)
struct nxp_fspi *f = dev_get_priv(bus);
int ret;
nxp_fspi_clk_disable_unprep(f);
ret = clk_set_rate(&f->clk, speed);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return ret;
#endif
return 0;
}
static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
{
/* Nothing to do */
return 0;
}
static int nxp_fspi_of_to_plat(struct udevice *bus)
{
struct nxp_fspi *f = dev_get_priv(bus);
#if CONFIG_IS_ENABLED(CLK)
int ret;
#endif
fdt_addr_t iobase;
fdt_addr_t iobase_size;
fdt_addr_t ahb_addr;
fdt_addr_t ahb_size;
f->dev = bus;
iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
if (iobase == FDT_ADDR_T_NONE) {
dev_err(bus, "fspi_base regs missing\n");
return -ENODEV;
}
f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
if (ahb_addr == FDT_ADDR_T_NONE) {
dev_err(bus, "fspi_mmap regs missing\n");
return -ENODEV;
}
f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
f->memmap_phy_size = ahb_size;
#if CONFIG_IS_ENABLED(CLK)
ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
if (ret) {
dev_err(bus, "failed to get fspi_en clock\n");
return ret;
}
ret = clk_get_by_name(bus, "fspi", &f->clk);
if (ret) {
dev_err(bus, "failed to get fspi clock\n");
return ret;
}
#endif
dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
return 0;
}
static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
.adjust_op_size = nxp_fspi_adjust_op_size,
.supports_op = nxp_fspi_supports_op,
.exec_op = nxp_fspi_exec_op,
};
static const struct dm_spi_ops nxp_fspi_ops = {
.claim_bus = nxp_fspi_claim_bus,
.set_speed = nxp_fspi_set_speed,
.set_mode = nxp_fspi_set_mode,
.mem_ops = &nxp_fspi_mem_ops,
};
static const struct udevice_id nxp_fspi_ids[] = {
{ .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
{ .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
{ }
};
U_BOOT_DRIVER(nxp_fspi) = {
.name = "nxp_fspi",
.id = UCLASS_SPI,
.of_match = nxp_fspi_ids,
.ops = &nxp_fspi_ops,
.of_to_plat = nxp_fspi_of_to_plat,
.priv_auto = sizeof(struct nxp_fspi),
.probe = nxp_fspi_probe,
};