u-boot/drivers/ram/mpc83xx_sdram.c
Simon Glass 9b4a205f45 common: Move RAM-sizing functions to init.h
These functions relate to memory init so move them into the init
header.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-01-17 14:02:35 -05:00

1098 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018
* Mario Six, Guntermann & Drunck GmbH, mario.six@gdsys.cc
*/
#include <common.h>
#include <dm.h>
#include <init.h>
#include <ram.h>
#include <dt-bindings/memory/mpc83xx-sdram.h>
DECLARE_GLOBAL_DATA_PTR;
/* Masks for the CS config register */
static const u32 CSCONFIG_ENABLE = 0x80000000;
static const u32 BANK_BITS_2;
static const u32 BANK_BITS_3 = 0x00004000;
static const u32 ROW_BITS_12;
static const u32 ROW_BITS_13 = 0x00000100;
static const u32 ROW_BITS_14 = 0x00000200;
static const u32 COL_BITS_8;
static const u32 COL_BITS_9 = 0x00000001;
static const u32 COL_BITS_10 = 0x00000002;
static const u32 COL_BITS_11 = 0x00000003;
/* Shifts for the DDR SDRAM Timing Configuration 3 register */
static const uint TIMING_CFG3_EXT_REFREC_SHIFT = (31 - 15);
/* Shifts for the DDR SDRAM Timing Configuration 0 register */
static const uint TIMING_CFG0_RWT_SHIFT = (31 - 1);
static const uint TIMING_CFG0_WRT_SHIFT = (31 - 3);
static const uint TIMING_CFG0_RRT_SHIFT = (31 - 5);
static const uint TIMING_CFG0_WWT_SHIFT = (31 - 7);
static const uint TIMING_CFG0_ACT_PD_EXIT_SHIFT = (31 - 11);
static const uint TIMING_CFG0_PRE_PD_EXIT_SHIFT = (31 - 15);
static const uint TIMING_CFG0_ODT_PD_EXIT_SHIFT = (31 - 23);
static const uint TIMING_CFG0_MRS_CYC_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Timing Configuration 1 register */
static const uint TIMING_CFG1_PRETOACT_SHIFT = (31 - 3);
static const uint TIMING_CFG1_ACTTOPRE_SHIFT = (31 - 7);
static const uint TIMING_CFG1_ACTTORW_SHIFT = (31 - 11);
static const uint TIMING_CFG1_CASLAT_SHIFT = (31 - 15);
static const uint TIMING_CFG1_REFREC_SHIFT = (31 - 19);
static const uint TIMING_CFG1_WRREC_SHIFT = (31 - 23);
static const uint TIMING_CFG1_ACTTOACT_SHIFT = (31 - 27);
static const uint TIMING_CFG1_WRTORD_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Timing Configuration 2 register */
static const uint TIMING_CFG2_CPO_SHIFT = (31 - 8);
static const uint TIMING_CFG2_WR_DATA_DELAY_SHIFT = (31 - 21);
static const uint TIMING_CFG2_ADD_LAT_SHIFT = (31 - 3);
static const uint TIMING_CFG2_WR_LAT_DELAY_SHIFT = (31 - 12);
static const uint TIMING_CFG2_RD_TO_PRE_SHIFT = (31 - 18);
static const uint TIMING_CFG2_CKE_PLS_SHIFT = (31 - 25);
static const uint TIMING_CFG2_FOUR_ACT_SHIFT;
/* Shifts for the DDR SDRAM Control Configuration register */
static const uint SDRAM_CFG_SREN_SHIFT = (31 - 1);
static const uint SDRAM_CFG_ECC_EN_SHIFT = (31 - 2);
static const uint SDRAM_CFG_RD_EN_SHIFT = (31 - 3);
static const uint SDRAM_CFG_SDRAM_TYPE_SHIFT = (31 - 7);
static const uint SDRAM_CFG_DYN_PWR_SHIFT = (31 - 10);
static const uint SDRAM_CFG_DBW_SHIFT = (31 - 12);
static const uint SDRAM_CFG_NCAP_SHIFT = (31 - 14);
static const uint SDRAM_CFG_2T_EN_SHIFT = (31 - 16);
static const uint SDRAM_CFG_BA_INTLV_CTL_SHIFT = (31 - 23);
static const uint SDRAM_CFG_PCHB8_SHIFT = (31 - 27);
static const uint SDRAM_CFG_HSE_SHIFT = (31 - 28);
static const uint SDRAM_CFG_BI_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Control Configuration 2 register */
static const uint SDRAM_CFG2_FRC_SR_SHIFT = (31 - 0);
static const uint SDRAM_CFG2_DLL_RST_DIS = (31 - 2);
static const uint SDRAM_CFG2_DQS_CFG = (31 - 5);
static const uint SDRAM_CFG2_ODT_CFG = (31 - 10);
static const uint SDRAM_CFG2_NUM_PR = (31 - 19);
/* Shifts for the DDR SDRAM Mode register */
static const uint SDRAM_MODE_ESD_SHIFT = (31 - 15);
static const uint SDRAM_MODE_SD_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Mode 2 register */
static const uint SDRAM_MODE2_ESD2_SHIFT = (31 - 15);
static const uint SDRAM_MODE2_ESD3_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Interval Configuration register */
static const uint SDRAM_INTERVAL_REFINT_SHIFT = (31 - 15);
static const uint SDRAM_INTERVAL_BSTOPRE_SHIFT = (31 - 31);
/* Mask for the DDR SDRAM Mode Control register */
static const u32 SDRAM_CFG_MEM_EN = 0x80000000;
int dram_init(void)
{
struct udevice *ram_ctrl;
int ret;
/* Current assumption: There is only one RAM controller */
ret = uclass_first_device_err(UCLASS_RAM, &ram_ctrl);
if (ret) {
debug("%s: uclass_first_device_err failed: %d\n",
__func__, ret);
return ret;
}
/* FIXME(mario.six@gdsys.cc): Set gd->ram_size? */
return 0;
}
phys_size_t get_effective_memsize(void)
{
if (!IS_ENABLED(CONFIG_VERY_BIG_RAM))
return gd->ram_size;
/* Limit stack to what we can reasonable map */
return ((gd->ram_size > CONFIG_MAX_MEM_MAPPED) ?
CONFIG_MAX_MEM_MAPPED : gd->ram_size);
}
/**
* struct mpc83xx_sdram_priv - Private data for MPC83xx RAM controllers
* @total_size: The total size of all RAM modules associated with this RAM
* controller in bytes
*/
struct mpc83xx_sdram_priv {
ulong total_size;
};
/**
* mpc83xx_sdram_static_init() - Statically initialize a RAM module.
* @node: Device tree node associated with ths module in question
* @cs: The chip select to use for this RAM module
* @mapaddr: The address where the RAM module should be mapped
* @size: The size of the RAM module to be mapped in bytes
*
* Return: 0 if OK, -ve on error
*/
static int mpc83xx_sdram_static_init(ofnode node, u32 cs, u32 mapaddr, u32 size)
{
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
u32 msize = size;
u32 msize_log2 = __ilog2(msize);
u32 auto_precharge, odt_rd_cfg, odt_wr_cfg, bank_bits, row_bits,
col_bits;
u32 bank_bits_mask, row_bits_mask, col_bits_mask;
/* Configure the DDR local access window */
out_be32(&im->sysconf.ddrlaw[cs].bar, mapaddr & 0xfffff000);
out_be32(&im->sysconf.ddrlaw[cs].ar, LBLAWAR_EN | (msize_log2 - 1));
out_be32(&im->ddr.csbnds[cs].csbnds, (msize - 1) >> 24);
auto_precharge = ofnode_read_u32_default(node, "auto_precharge", 0);
switch (auto_precharge) {
case AUTO_PRECHARGE_ENABLE:
case AUTO_PRECHARGE_DISABLE:
break;
default:
debug("%s: auto_precharge value %d invalid.\n",
ofnode_get_name(node), auto_precharge);
return -EINVAL;
}
odt_rd_cfg = ofnode_read_u32_default(node, "odt_rd_cfg", 0);
switch (odt_rd_cfg) {
case ODT_RD_ONLY_OTHER_DIMM:
if (!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_rd_cfg value %d invalid.\n",
ofnode_get_name(node), odt_rd_cfg);
return -EINVAL;
}
/* fall through */
case ODT_RD_NEVER:
case ODT_RD_ONLY_CURRENT:
case ODT_RD_ONLY_OTHER_CS:
if (!IS_ENABLED(CONFIG_ARCH_MPC830X) &&
!IS_ENABLED(CONFIG_ARCH_MPC831X) &&
!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_rd_cfg value %d invalid.\n",
ofnode_get_name(node), odt_rd_cfg);
return -EINVAL;
}
/* fall through */
/* Only MPC832x knows this value */
case ODT_RD_ALL:
break;
default:
debug("%s: odt_rd_cfg value %d invalid.\n",
ofnode_get_name(node), odt_rd_cfg);
return -EINVAL;
}
odt_wr_cfg = ofnode_read_u32_default(node, "odt_wr_cfg", 0);
switch (odt_wr_cfg) {
case ODT_WR_ONLY_OTHER_DIMM:
if (!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_wr_cfg value %d invalid.\n",
ofnode_get_name(node), odt_wr_cfg);
return -EINVAL;
}
/* fall through */
case ODT_WR_NEVER:
case ODT_WR_ONLY_CURRENT:
case ODT_WR_ONLY_OTHER_CS:
if (!IS_ENABLED(CONFIG_ARCH_MPC830X) &&
!IS_ENABLED(CONFIG_ARCH_MPC831X) &&
!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_wr_cfg value %d invalid.\n",
ofnode_get_name(node), odt_wr_cfg);
return -EINVAL;
}
/* fall through */
/* MPC832x only knows this value */
case ODT_WR_ALL:
break;
default:
debug("%s: odt_wr_cfg value %d invalid.\n",
ofnode_get_name(node), odt_wr_cfg);
return -EINVAL;
}
bank_bits = ofnode_read_u32_default(node, "bank_bits", 0);
switch (bank_bits) {
case 2:
bank_bits_mask = BANK_BITS_2;
break;
case 3:
bank_bits_mask = BANK_BITS_3;
break;
default:
debug("%s: bank_bits value %d invalid.\n",
ofnode_get_name(node), bank_bits);
return -EINVAL;
}
row_bits = ofnode_read_u32_default(node, "row_bits", 0);
switch (row_bits) {
case 12:
row_bits_mask = ROW_BITS_12;
break;
case 13:
row_bits_mask = ROW_BITS_13;
break;
case 14:
row_bits_mask = ROW_BITS_14;
break;
default:
debug("%s: row_bits value %d invalid.\n",
ofnode_get_name(node), row_bits);
return -EINVAL;
}
col_bits = ofnode_read_u32_default(node, "col_bits", 0);
switch (col_bits) {
case 8:
col_bits_mask = COL_BITS_8;
break;
case 9:
col_bits_mask = COL_BITS_9;
break;
case 10:
col_bits_mask = COL_BITS_10;
break;
case 11:
col_bits_mask = COL_BITS_11;
break;
default:
debug("%s: col_bits value %d invalid.\n",
ofnode_get_name(node), col_bits);
return -EINVAL;
}
/* Write CS config value */
out_be32(&im->ddr.cs_config[cs], CSCONFIG_ENABLE | auto_precharge |
odt_rd_cfg | odt_wr_cfg |
bank_bits_mask | row_bits_mask |
col_bits_mask);
return 0;
}
/**
* mpc83xx_sdram_spd_init() - Initialize a RAM module using a SPD flash.
* @node: Device tree node associated with ths module in question
* @cs: The chip select to use for this RAM module
* @mapaddr: The address where the RAM module should be mapped
* @size: The size of the RAM module to be mapped in bytes
*
* Return: 0 if OK, -ve on error
*/
static int mpc83xx_sdram_spd_init(ofnode node, u32 cs, u32 mapaddr, u32 size)
{
/* TODO(mario.six@gdsys.cc): Implement */
return 0;
}
static int mpc83xx_sdram_ofdata_to_platdata(struct udevice *dev)
{
return 0;
}
static int mpc83xx_sdram_probe(struct udevice *dev)
{
struct mpc83xx_sdram_priv *priv = dev_get_priv(dev);
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
int ret = 0;
ofnode subnode;
/* DDR control driver register values */
u32 dso, pz_override, nz_override, odt_term, ddr_type, mvref_sel, m_odr;
u32 ddrcdr;
/* DDR SDRAM Clock Control register values */
u32 clock_adjust;
/* DDR SDRAM Timing Configuration 3 register values */
u32 ext_refresh_rec, ext_refresh_rec_mask;
/* DDR SDRAM Timing Configuration 0 register values */
u32 read_to_write, write_to_read, read_to_read, write_to_write,
active_powerdown_exit, precharge_powerdown_exit,
odt_powerdown_exit, mode_reg_set_cycle;
u32 timing_cfg_0;
/* DDR SDRAM Timing Configuration 1 register values */
u32 precharge_to_activate, activate_to_precharge,
activate_to_readwrite, mcas_latency, refresh_recovery,
last_data_to_precharge, activate_to_activate,
last_write_data_to_read;
u32 timing_cfg_1;
/* DDR SDRAM Timing Configuration 2 register values */
u32 additive_latency, mcas_to_preamble_override, write_latency,
read_to_precharge, write_cmd_to_write_data,
minimum_cke_pulse_width, four_activates_window;
u32 timing_cfg_2;
/* DDR SDRAM Control Configuration register values */
u32 self_refresh, ecc, registered_dram, sdram_type,
dynamic_power_management, databus_width, nc_auto_precharge,
timing_2t, bank_interleaving_ctrl, precharge_bit_8, half_strength,
bypass_initialization;
u32 sdram_cfg;
/* DDR SDRAM Control Configuration 2 register values */
u32 force_self_refresh, dll_reset, dqs_config, odt_config,
posted_refreshes;
u32 sdram_cfg2;
/* DDR SDRAM Mode Configuration register values */
u32 sdmode, esdmode;
u32 sdram_mode;
/* DDR SDRAM Mode Configuration 2 register values */
u32 esdmode2, esdmode3;
u32 sdram_mode2;
/* DDR SDRAM Interval Configuration register values */
u32 refresh_interval, precharge_interval;
u32 sdram_interval;
priv->total_size = 0;
/* Disable both banks initially (might be re-enabled in loop below) */
out_be32(&im->ddr.cs_config[0], 0);
out_be32(&im->ddr.cs_config[1], 0);
dso = dev_read_u32_default(dev, "driver_software_override", 0);
if (dso > 1) {
debug("%s: driver_software_override value %d invalid.\n",
dev->name, dso);
return -EINVAL;
}
pz_override = dev_read_u32_default(dev, "p_impedance_override", 0);
switch (pz_override) {
case DSO_P_IMPEDANCE_HIGHEST_Z:
case DSO_P_IMPEDANCE_MUCH_HIGHER_Z:
case DSO_P_IMPEDANCE_HIGHER_Z:
case DSO_P_IMPEDANCE_NOMINAL:
case DSO_P_IMPEDANCE_LOWER_Z:
break;
default:
debug("%s: p_impedance_override value %d invalid.\n",
dev->name, pz_override);
return -EINVAL;
}
nz_override = dev_read_u32_default(dev, "n_impedance_override", 0);
switch (nz_override) {
case DSO_N_IMPEDANCE_HIGHEST_Z:
case DSO_N_IMPEDANCE_MUCH_HIGHER_Z:
case DSO_N_IMPEDANCE_HIGHER_Z:
case DSO_N_IMPEDANCE_NOMINAL:
case DSO_N_IMPEDANCE_LOWER_Z:
break;
default:
debug("%s: n_impedance_override value %d invalid.\n",
dev->name, nz_override);
return -EINVAL;
}
odt_term = dev_read_u32_default(dev, "odt_termination_value", 0);
if (odt_term > 1) {
debug("%s: odt_termination_value value %d invalid.\n",
dev->name, odt_term);
return -EINVAL;
}
ddr_type = dev_read_u32_default(dev, "ddr_type", 0);
if (ddr_type > 1) {
debug("%s: ddr_type value %d invalid.\n",
dev->name, ddr_type);
return -EINVAL;
}
mvref_sel = dev_read_u32_default(dev, "mvref_sel", 0);
if (mvref_sel > 1) {
debug("%s: mvref_sel value %d invalid.\n",
dev->name, mvref_sel);
return -EINVAL;
}
m_odr = dev_read_u32_default(dev, "m_odr", 0);
if (mvref_sel > 1) {
debug("%s: m_odr value %d invalid.\n",
dev->name, m_odr);
return -EINVAL;
}
ddrcdr = dso << (31 - 1) |
pz_override << (31 - 5) |
nz_override << (31 - 9) |
odt_term << (31 - 12) |
ddr_type << (31 - 13) |
mvref_sel << (31 - 29) |
m_odr << (31 - 30) | 1;
/* Configure the DDR control driver register */
out_be32(&im->sysconf.ddrcdr, ddrcdr);
dev_for_each_subnode(subnode, dev) {
u32 val[3];
u32 cs, addr, size;
/* CS, map address, size -> three values */
ofnode_read_u32_array(subnode, "reg", val, 3);
cs = val[0];
addr = val[1];
size = val[2];
if (cs > 1) {
debug("%s: chip select value %d invalid.\n",
dev->name, cs);
return -EINVAL;
}
/* TODO(mario.six@gdsys.cc): Sanity check for size. */
if (ofnode_read_bool(subnode, "read-spd"))
ret = mpc83xx_sdram_spd_init(subnode, cs, addr, size);
else
ret = mpc83xx_sdram_static_init(subnode, cs, addr,
size);
if (ret) {
debug("%s: RAM init failed.\n", dev->name);
return ret;
}
};
/*
* TODO(mario.six@gdsys.cc): This should only occur for static
* configuration
*/
clock_adjust = dev_read_u32_default(dev, "clock_adjust", 0);
switch (clock_adjust) {
case CLOCK_ADJUST_025:
case CLOCK_ADJUST_05:
case CLOCK_ADJUST_075:
case CLOCK_ADJUST_1:
break;
default:
debug("%s: clock_adjust value %d invalid.\n",
dev->name, clock_adjust);
return -EINVAL;
}
/* Configure the DDR SDRAM Clock Control register */
out_be32(&im->ddr.sdram_clk_cntl, clock_adjust);
ext_refresh_rec = dev_read_u32_default(dev, "ext_refresh_rec", 0);
switch (ext_refresh_rec) {
case 0:
ext_refresh_rec_mask = 0 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 16:
ext_refresh_rec_mask = 1 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 32:
ext_refresh_rec_mask = 2 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 48:
ext_refresh_rec_mask = 3 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 64:
ext_refresh_rec_mask = 4 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 80:
ext_refresh_rec_mask = 5 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 96:
ext_refresh_rec_mask = 6 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 112:
ext_refresh_rec_mask = 7 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
default:
debug("%s: ext_refresh_rec value %d invalid.\n",
dev->name, ext_refresh_rec);
return -EINVAL;
}
/* Configure the DDR SDRAM Timing Configuration 3 register */
out_be32(&im->ddr.timing_cfg_3, ext_refresh_rec_mask);
read_to_write = dev_read_u32_default(dev, "read_to_write", 0);
if (read_to_write > 3) {
debug("%s: read_to_write value %d invalid.\n",
dev->name, read_to_write);
return -EINVAL;
}
write_to_read = dev_read_u32_default(dev, "write_to_read", 0);
if (write_to_read > 3) {
debug("%s: write_to_read value %d invalid.\n",
dev->name, write_to_read);
return -EINVAL;
}
read_to_read = dev_read_u32_default(dev, "read_to_read", 0);
if (read_to_read > 3) {
debug("%s: read_to_read value %d invalid.\n",
dev->name, read_to_read);
return -EINVAL;
}
write_to_write = dev_read_u32_default(dev, "write_to_write", 0);
if (write_to_write > 3) {
debug("%s: write_to_write value %d invalid.\n",
dev->name, write_to_write);
return -EINVAL;
}
active_powerdown_exit =
dev_read_u32_default(dev, "active_powerdown_exit", 0);
if (active_powerdown_exit > 7) {
debug("%s: active_powerdown_exit value %d invalid.\n",
dev->name, active_powerdown_exit);
return -EINVAL;
}
precharge_powerdown_exit =
dev_read_u32_default(dev, "precharge_powerdown_exit", 0);
if (precharge_powerdown_exit > 7) {
debug("%s: precharge_powerdown_exit value %d invalid.\n",
dev->name, precharge_powerdown_exit);
return -EINVAL;
}
odt_powerdown_exit = dev_read_u32_default(dev, "odt_powerdown_exit", 0);
if (odt_powerdown_exit > 15) {
debug("%s: odt_powerdown_exit value %d invalid.\n",
dev->name, odt_powerdown_exit);
return -EINVAL;
}
mode_reg_set_cycle = dev_read_u32_default(dev, "mode_reg_set_cycle", 0);
if (mode_reg_set_cycle > 15) {
debug("%s: mode_reg_set_cycle value %d invalid.\n",
dev->name, mode_reg_set_cycle);
return -EINVAL;
}
timing_cfg_0 = read_to_write << TIMING_CFG0_RWT_SHIFT |
write_to_read << TIMING_CFG0_WRT_SHIFT |
read_to_read << TIMING_CFG0_RRT_SHIFT |
write_to_write << TIMING_CFG0_WWT_SHIFT |
active_powerdown_exit << TIMING_CFG0_ACT_PD_EXIT_SHIFT |
precharge_powerdown_exit << TIMING_CFG0_PRE_PD_EXIT_SHIFT |
odt_powerdown_exit << TIMING_CFG0_ODT_PD_EXIT_SHIFT |
mode_reg_set_cycle << TIMING_CFG0_MRS_CYC_SHIFT;
out_be32(&im->ddr.timing_cfg_0, timing_cfg_0);
precharge_to_activate =
dev_read_u32_default(dev, "precharge_to_activate", 0);
if (precharge_to_activate > 7 || precharge_to_activate == 0) {
debug("%s: precharge_to_activate value %d invalid.\n",
dev->name, precharge_to_activate);
return -EINVAL;
}
activate_to_precharge =
dev_read_u32_default(dev, "activate_to_precharge", 0);
if (activate_to_precharge > 19) {
debug("%s: activate_to_precharge value %d invalid.\n",
dev->name, activate_to_precharge);
return -EINVAL;
}
activate_to_readwrite =
dev_read_u32_default(dev, "activate_to_readwrite", 0);
if (activate_to_readwrite > 7 || activate_to_readwrite == 0) {
debug("%s: activate_to_readwrite value %d invalid.\n",
dev->name, activate_to_readwrite);
return -EINVAL;
}
mcas_latency = dev_read_u32_default(dev, "mcas_latency", 0);
switch (mcas_latency) {
case CASLAT_20:
case CASLAT_25:
if (!IS_ENABLED(CONFIG_ARCH_MPC8308)) {
debug("%s: MCAS latency < 3.0 unsupported on MPC8308\n",
dev->name);
return -EINVAL;
}
/* fall through */
case CASLAT_30:
case CASLAT_35:
case CASLAT_40:
case CASLAT_45:
case CASLAT_50:
case CASLAT_55:
case CASLAT_60:
case CASLAT_65:
case CASLAT_70:
case CASLAT_75:
case CASLAT_80:
break;
default:
debug("%s: mcas_latency value %d invalid.\n",
dev->name, mcas_latency);
return -EINVAL;
}
refresh_recovery = dev_read_u32_default(dev, "refresh_recovery", 0);
if (refresh_recovery > 23 || refresh_recovery < 8) {
debug("%s: refresh_recovery value %d invalid.\n",
dev->name, refresh_recovery);
return -EINVAL;
}
last_data_to_precharge =
dev_read_u32_default(dev, "last_data_to_precharge", 0);
if (last_data_to_precharge > 7 || last_data_to_precharge == 0) {
debug("%s: last_data_to_precharge value %d invalid.\n",
dev->name, last_data_to_precharge);
return -EINVAL;
}
activate_to_activate =
dev_read_u32_default(dev, "activate_to_activate", 0);
if (activate_to_activate > 7 || activate_to_activate == 0) {
debug("%s: activate_to_activate value %d invalid.\n",
dev->name, activate_to_activate);
return -EINVAL;
}
last_write_data_to_read =
dev_read_u32_default(dev, "last_write_data_to_read", 0);
if (last_write_data_to_read > 7 || last_write_data_to_read == 0) {
debug("%s: last_write_data_to_read value %d invalid.\n",
dev->name, last_write_data_to_read);
return -EINVAL;
}
timing_cfg_1 = precharge_to_activate << TIMING_CFG1_PRETOACT_SHIFT |
(activate_to_precharge > 15 ?
activate_to_precharge - 16 :
activate_to_precharge) << TIMING_CFG1_ACTTOPRE_SHIFT |
activate_to_readwrite << TIMING_CFG1_ACTTORW_SHIFT |
mcas_latency << TIMING_CFG1_CASLAT_SHIFT |
(refresh_recovery - 8) << TIMING_CFG1_REFREC_SHIFT |
last_data_to_precharge << TIMING_CFG1_WRREC_SHIFT |
activate_to_activate << TIMING_CFG1_ACTTOACT_SHIFT |
last_write_data_to_read << TIMING_CFG1_WRTORD_SHIFT;
/* Configure the DDR SDRAM Timing Configuration 1 register */
out_be32(&im->ddr.timing_cfg_1, timing_cfg_1);
additive_latency = dev_read_u32_default(dev, "additive_latency", 0);
if (additive_latency > 5) {
debug("%s: additive_latency value %d invalid.\n",
dev->name, additive_latency);
return -EINVAL;
}
mcas_to_preamble_override =
dev_read_u32_default(dev, "mcas_to_preamble_override", 0);
switch (mcas_to_preamble_override) {
case READ_LAT_PLUS_1:
case READ_LAT:
case READ_LAT_PLUS_1_4:
case READ_LAT_PLUS_1_2:
case READ_LAT_PLUS_3_4:
case READ_LAT_PLUS_5_4:
case READ_LAT_PLUS_3_2:
case READ_LAT_PLUS_7_4:
case READ_LAT_PLUS_2:
case READ_LAT_PLUS_9_4:
case READ_LAT_PLUS_5_2:
case READ_LAT_PLUS_11_4:
case READ_LAT_PLUS_3:
case READ_LAT_PLUS_13_4:
case READ_LAT_PLUS_7_2:
case READ_LAT_PLUS_15_4:
case READ_LAT_PLUS_4:
case READ_LAT_PLUS_17_4:
case READ_LAT_PLUS_9_2:
case READ_LAT_PLUS_19_4:
break;
default:
debug("%s: mcas_to_preamble_override value %d invalid.\n",
dev->name, mcas_to_preamble_override);
return -EINVAL;
}
write_latency = dev_read_u32_default(dev, "write_latency", 0);
if (write_latency > 7 || write_latency == 0) {
debug("%s: write_latency value %d invalid.\n",
dev->name, write_latency);
return -EINVAL;
}
read_to_precharge = dev_read_u32_default(dev, "read_to_precharge", 0);
if (read_to_precharge > 4 || read_to_precharge == 0) {
debug("%s: read_to_precharge value %d invalid.\n",
dev->name, read_to_precharge);
return -EINVAL;
}
write_cmd_to_write_data =
dev_read_u32_default(dev, "write_cmd_to_write_data", 0);
switch (write_cmd_to_write_data) {
case CLOCK_DELAY_0:
case CLOCK_DELAY_1_4:
case CLOCK_DELAY_1_2:
case CLOCK_DELAY_3_4:
case CLOCK_DELAY_1:
case CLOCK_DELAY_5_4:
case CLOCK_DELAY_3_2:
break;
default:
debug("%s: write_cmd_to_write_data value %d invalid.\n",
dev->name, write_cmd_to_write_data);
return -EINVAL;
}
minimum_cke_pulse_width =
dev_read_u32_default(dev, "minimum_cke_pulse_width", 0);
if (minimum_cke_pulse_width > 4 || minimum_cke_pulse_width == 0) {
debug("%s: minimum_cke_pulse_width value %d invalid.\n",
dev->name, minimum_cke_pulse_width);
return -EINVAL;
}
four_activates_window =
dev_read_u32_default(dev, "four_activates_window", 0);
if (four_activates_window > 20 || four_activates_window == 0) {
debug("%s: four_activates_window value %d invalid.\n",
dev->name, four_activates_window);
return -EINVAL;
}
timing_cfg_2 = additive_latency << TIMING_CFG2_ADD_LAT_SHIFT |
mcas_to_preamble_override << TIMING_CFG2_CPO_SHIFT |
write_latency << TIMING_CFG2_WR_LAT_DELAY_SHIFT |
read_to_precharge << TIMING_CFG2_RD_TO_PRE_SHIFT |
write_cmd_to_write_data << TIMING_CFG2_WR_DATA_DELAY_SHIFT |
minimum_cke_pulse_width << TIMING_CFG2_CKE_PLS_SHIFT |
four_activates_window << TIMING_CFG2_FOUR_ACT_SHIFT;
out_be32(&im->ddr.timing_cfg_2, timing_cfg_2);
self_refresh = dev_read_u32_default(dev, "self_refresh", 0);
switch (self_refresh) {
case SREN_DISABLE:
case SREN_ENABLE:
break;
default:
debug("%s: self_refresh value %d invalid.\n",
dev->name, self_refresh);
return -EINVAL;
}
ecc = dev_read_u32_default(dev, "ecc", 0);
switch (ecc) {
case ECC_DISABLE:
case ECC_ENABLE:
break;
default:
debug("%s: ecc value %d invalid.\n", dev->name, ecc);
return -EINVAL;
}
registered_dram = dev_read_u32_default(dev, "registered_dram", 0);
switch (registered_dram) {
case RD_DISABLE:
case RD_ENABLE:
break;
default:
debug("%s: registered_dram value %d invalid.\n",
dev->name, registered_dram);
return -EINVAL;
}
sdram_type = dev_read_u32_default(dev, "sdram_type", 0);
switch (sdram_type) {
case TYPE_DDR1:
case TYPE_DDR2:
break;
default:
debug("%s: sdram_type value %d invalid.\n",
dev->name, sdram_type);
return -EINVAL;
}
dynamic_power_management =
dev_read_u32_default(dev, "dynamic_power_management", 0);
switch (dynamic_power_management) {
case DYN_PWR_DISABLE:
case DYN_PWR_ENABLE:
break;
default:
debug("%s: dynamic_power_management value %d invalid.\n",
dev->name, dynamic_power_management);
return -EINVAL;
}
databus_width = dev_read_u32_default(dev, "databus_width", 0);
switch (databus_width) {
case DATA_BUS_WIDTH_16:
case DATA_BUS_WIDTH_32:
break;
default:
debug("%s: databus_width value %d invalid.\n",
dev->name, databus_width);
return -EINVAL;
}
nc_auto_precharge = dev_read_u32_default(dev, "nc_auto_precharge", 0);
switch (nc_auto_precharge) {
case NCAP_DISABLE:
case NCAP_ENABLE:
break;
default:
debug("%s: nc_auto_precharge value %d invalid.\n",
dev->name, nc_auto_precharge);
return -EINVAL;
}
timing_2t = dev_read_u32_default(dev, "timing_2t", 0);
switch (timing_2t) {
case TIMING_1T:
case TIMING_2T:
break;
default:
debug("%s: timing_2t value %d invalid.\n",
dev->name, timing_2t);
return -EINVAL;
}
bank_interleaving_ctrl =
dev_read_u32_default(dev, "bank_interleaving_ctrl", 0);
switch (bank_interleaving_ctrl) {
case INTERLEAVE_NONE:
case INTERLEAVE_1_AND_2:
break;
default:
debug("%s: bank_interleaving_ctrl value %d invalid.\n",
dev->name, bank_interleaving_ctrl);
return -EINVAL;
}
precharge_bit_8 = dev_read_u32_default(dev, "precharge_bit_8", 0);
switch (precharge_bit_8) {
case PRECHARGE_MA_10:
case PRECHARGE_MA_8:
break;
default:
debug("%s: precharge_bit_8 value %d invalid.\n",
dev->name, precharge_bit_8);
return -EINVAL;
}
half_strength = dev_read_u32_default(dev, "half_strength", 0);
switch (half_strength) {
case STRENGTH_FULL:
case STRENGTH_HALF:
break;
default:
debug("%s: half_strength value %d invalid.\n",
dev->name, half_strength);
return -EINVAL;
}
bypass_initialization =
dev_read_u32_default(dev, "bypass_initialization", 0);
switch (bypass_initialization) {
case INITIALIZATION_DONT_BYPASS:
case INITIALIZATION_BYPASS:
break;
default:
debug("%s: bypass_initialization value %d invalid.\n",
dev->name, bypass_initialization);
return -EINVAL;
}
sdram_cfg = self_refresh << SDRAM_CFG_SREN_SHIFT |
ecc << SDRAM_CFG_ECC_EN_SHIFT |
registered_dram << SDRAM_CFG_RD_EN_SHIFT |
sdram_type << SDRAM_CFG_SDRAM_TYPE_SHIFT |
dynamic_power_management << SDRAM_CFG_DYN_PWR_SHIFT |
databus_width << SDRAM_CFG_DBW_SHIFT |
nc_auto_precharge << SDRAM_CFG_NCAP_SHIFT |
timing_2t << SDRAM_CFG_2T_EN_SHIFT |
bank_interleaving_ctrl << SDRAM_CFG_BA_INTLV_CTL_SHIFT |
precharge_bit_8 << SDRAM_CFG_PCHB8_SHIFT |
half_strength << SDRAM_CFG_HSE_SHIFT |
bypass_initialization << SDRAM_CFG_BI_SHIFT;
out_be32(&im->ddr.sdram_cfg, sdram_cfg);
force_self_refresh = dev_read_u32_default(dev, "force_self_refresh", 0);
switch (force_self_refresh) {
case MODE_NORMAL:
case MODE_REFRESH:
break;
default:
debug("%s: force_self_refresh value %d invalid.\n",
dev->name, force_self_refresh);
return -EINVAL;
}
dll_reset = dev_read_u32_default(dev, "dll_reset", 0);
switch (dll_reset) {
case DLL_RESET_ENABLE:
case DLL_RESET_DISABLE:
break;
default:
debug("%s: dll_reset value %d invalid.\n",
dev->name, dll_reset);
return -EINVAL;
}
dqs_config = dev_read_u32_default(dev, "dqs_config", 0);
switch (dqs_config) {
case DQS_TRUE:
break;
default:
debug("%s: dqs_config value %d invalid.\n",
dev->name, dqs_config);
return -EINVAL;
}
odt_config = dev_read_u32_default(dev, "odt_config", 0);
switch (odt_config) {
case ODT_ASSERT_NEVER:
case ODT_ASSERT_WRITES:
case ODT_ASSERT_READS:
case ODT_ASSERT_ALWAYS:
break;
default:
debug("%s: odt_config value %d invalid.\n",
dev->name, odt_config);
return -EINVAL;
}
posted_refreshes = dev_read_u32_default(dev, "posted_refreshes", 0);
if (posted_refreshes > 8 || posted_refreshes == 0) {
debug("%s: posted_refreshes value %d invalid.\n",
dev->name, posted_refreshes);
return -EINVAL;
}
sdram_cfg2 = force_self_refresh << SDRAM_CFG2_FRC_SR_SHIFT |
dll_reset << SDRAM_CFG2_DLL_RST_DIS |
dqs_config << SDRAM_CFG2_DQS_CFG |
odt_config << SDRAM_CFG2_ODT_CFG |
posted_refreshes << SDRAM_CFG2_NUM_PR;
out_be32(&im->ddr.sdram_cfg2, sdram_cfg2);
sdmode = dev_read_u32_default(dev, "sdmode", 0);
if (sdmode > 0xFFFF) {
debug("%s: sdmode value %d invalid.\n",
dev->name, sdmode);
return -EINVAL;
}
esdmode = dev_read_u32_default(dev, "esdmode", 0);
if (esdmode > 0xFFFF) {
debug("%s: esdmode value %d invalid.\n", dev->name, esdmode);
return -EINVAL;
}
sdram_mode = sdmode << SDRAM_MODE_SD_SHIFT |
esdmode << SDRAM_MODE_ESD_SHIFT;
out_be32(&im->ddr.sdram_mode, sdram_mode);
esdmode2 = dev_read_u32_default(dev, "esdmode2", 0);
if (esdmode2 > 0xFFFF) {
debug("%s: esdmode2 value %d invalid.\n", dev->name, esdmode2);
return -EINVAL;
}
esdmode3 = dev_read_u32_default(dev, "esdmode3", 0);
if (esdmode3 > 0xFFFF) {
debug("%s: esdmode3 value %d invalid.\n", dev->name, esdmode3);
return -EINVAL;
}
sdram_mode2 = esdmode2 << SDRAM_MODE2_ESD2_SHIFT |
esdmode3 << SDRAM_MODE2_ESD3_SHIFT;
out_be32(&im->ddr.sdram_mode2, sdram_mode2);
refresh_interval = dev_read_u32_default(dev, "refresh_interval", 0);
if (refresh_interval > 0xFFFF) {
debug("%s: refresh_interval value %d invalid.\n",
dev->name, refresh_interval);
return -EINVAL;
}
precharge_interval = dev_read_u32_default(dev, "precharge_interval", 0);
if (precharge_interval > 0x3FFF) {
debug("%s: precharge_interval value %d invalid.\n",
dev->name, precharge_interval);
return -EINVAL;
}
sdram_interval = refresh_interval << SDRAM_INTERVAL_REFINT_SHIFT |
precharge_interval << SDRAM_INTERVAL_BSTOPRE_SHIFT;
out_be32(&im->ddr.sdram_interval, sdram_interval);
sync();
/* Enable DDR controller */
setbits_be32(&im->ddr.sdram_cfg, SDRAM_CFG_MEM_EN);
sync();
dev_for_each_subnode(subnode, dev) {
u32 val[3];
u32 addr, size;
/* CS, map address, size -> three values */
ofnode_read_u32_array(subnode, "reg", val, 3);
addr = val[1];
size = val[2];
priv->total_size += get_ram_size((long int *)addr, size);
};
gd->ram_size = priv->total_size;
return 0;
}
static int mpc83xx_sdram_get_info(struct udevice *dev, struct ram_info *info)
{
/* TODO(mario.six@gdsys.cc): Implement */
return 0;
}
static struct ram_ops mpc83xx_sdram_ops = {
.get_info = mpc83xx_sdram_get_info,
};
static const struct udevice_id mpc83xx_sdram_ids[] = {
{ .compatible = "fsl,mpc83xx-mem-controller" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(mpc83xx_sdram) = {
.name = "mpc83xx_sdram",
.id = UCLASS_RAM,
.of_match = mpc83xx_sdram_ids,
.ops = &mpc83xx_sdram_ops,
.ofdata_to_platdata = mpc83xx_sdram_ofdata_to_platdata,
.probe = mpc83xx_sdram_probe,
.priv_auto_alloc_size = sizeof(struct mpc83xx_sdram_priv),
};