u-boot/board/micronas/vct/ebi_onenand.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

186 lines
4.6 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
*/
#include <common.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include "vct.h"
#define BURST_SIZE_WORDS 4
static u16 ebi_nand_read_word(void __iomem *addr)
{
reg_write(EBI_CPU_IO_ACCS(EBI_BASE), (EXT_DEVICE_CHANNEL_2 | (u32)addr));
ebi_wait();
return reg_read(EBI_IO_ACCS_DATA(EBI_BASE)) >> 16;
}
static void ebi_nand_write_word(u16 data, void __iomem * addr)
{
ebi_wait();
reg_write(EBI_IO_ACCS_DATA(EBI_BASE), (data << 16));
reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
EXT_DEVICE_CHANNEL_2 | EBI_CPU_WRITE | (u32)addr);
ebi_wait();
}
/*
* EBI initialization for OneNAND FLASH access
*/
int ebi_init_onenand(void)
{
reg_write(EBI_DEV1_CONFIG1(EBI_BASE), 0x83000);
reg_write(EBI_DEV2_CONFIG1(EBI_BASE), 0x00403002);
reg_write(EBI_DEV2_CONFIG2(EBI_BASE), 0x50);
reg_write(EBI_DEV3_CONFIG1(EBI_BASE), 0x00403002);
reg_write(EBI_DEV3_CONFIG2(EBI_BASE), 0x0); /* byte/word ordering */
reg_write(EBI_DEV2_TIM1_RD1(EBI_BASE), 0x00504000);
reg_write(EBI_DEV2_TIM1_RD2(EBI_BASE), 0x00001000);
reg_write(EBI_DEV2_TIM1_WR1(EBI_BASE), 0x12002223);
reg_write(EBI_DEV2_TIM1_WR2(EBI_BASE), 0x3FC02220);
reg_write(EBI_DEV3_TIM1_RD1(EBI_BASE), 0x00504000);
reg_write(EBI_DEV3_TIM1_RD2(EBI_BASE), 0x00001000);
reg_write(EBI_DEV3_TIM1_WR1(EBI_BASE), 0x05001000);
reg_write(EBI_DEV3_TIM1_WR2(EBI_BASE), 0x00010200);
reg_write(EBI_DEV2_TIM_EXT(EBI_BASE), 0xFFF00000);
reg_write(EBI_DEV2_EXT_ACC(EBI_BASE), 0x0FFFFFFF);
reg_write(EBI_DEV3_TIM_EXT(EBI_BASE), 0xFFF00000);
reg_write(EBI_DEV3_EXT_ACC(EBI_BASE), 0x0FFFFFFF);
/* prepare DMA configuration for EBI */
reg_write(EBI_DEV3_FIFO_CONFIG(EBI_BASE), 0x0101ff00);
/* READ only no byte order change, TAG 1 used */
reg_write(EBI_DEV3_DMA_CONFIG2(EBI_BASE), 0x00000004);
reg_write(EBI_TAG1_SYS_ID(EBI_BASE), 0x0); /* SCC DMA channel 0 */
reg_write(EBI_TAG2_SYS_ID(EBI_BASE), 0x1);
reg_write(EBI_TAG3_SYS_ID(EBI_BASE), 0x2);
reg_write(EBI_TAG4_SYS_ID(EBI_BASE), 0x3);
return 0;
}
static void *memcpy_16_from_onenand(void *dst, const void *src, unsigned int len)
{
void *ret = dst;
u16 *d = dst;
u16 *s = (u16 *)src;
len >>= 1;
while (len-- > 0)
*d++ = ebi_nand_read_word(s++);
return ret;
}
static void *memcpy_32_from_onenand(void *dst, const void *src, unsigned int len)
{
void *ret = dst;
u32 *d = (u32 *)dst;
u32 s = (u32)src;
u32 bytes_per_block = BURST_SIZE_WORDS * sizeof(int);
u32 n_blocks = len / bytes_per_block;
u32 block = 0;
u32 burst_word;
for (block = 0; block < n_blocks; block++) {
/* Trigger read channel 3 */
reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
(EXT_DEVICE_CHANNEL_3 | (s + (block * bytes_per_block))));
/* Poll status to see whether read has finished */
ebi_wait();
/* Squirrel the data away in a safe place */
for (burst_word = 0; burst_word < BURST_SIZE_WORDS; burst_word++)
*d++ = reg_read(EBI_IO_ACCS_DATA(EBI_BASE));
}
return ret;
}
static void *memcpy_16_to_onenand(void *dst, const void *src, unsigned int len)
{
void *ret = dst;
u16 *d = dst;
u16 *s = (u16 *)src;
len >>= 1;
while (len-- > 0)
ebi_nand_write_word(*s++, d++);
return ret;
}
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
if (area == ONENAND_DATARAM)
return mtd->writesize;
if (area == ONENAND_SPARERAM)
return mtd->oobsize;
}
return 0;
}
static int ebi_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
unsigned char *buffer, int offset,
size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
if (count < 4)
memcpy_16_from_onenand(buffer, bufferram + offset, count);
else
memcpy_32_from_onenand(buffer, bufferram + offset, count);
return 0;
}
static int ebi_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
const unsigned char *buffer, int offset,
size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
memcpy_16_to_onenand(bufferram + offset, buffer, count);
return 0;
}
int onenand_board_init(struct mtd_info *mtd)
{
struct onenand_chip *chip = mtd->priv;
/*
* Insert board specific OneNAND access functions
*/
chip->read_word = ebi_nand_read_word;
chip->write_word = ebi_nand_write_word;
chip->read_bufferram = ebi_read_bufferram;
chip->write_bufferram = ebi_write_bufferram;
return 0;
}