u-boot/drivers/ddr/altera/sdram_gen5.c
Johan Jonker 320a1938b6 drivers: use devfdt_get_addr_index_ptr when cast to pointer
The fdt_addr_t and phys_addr_t size have been decoupled. A 32bit CPU
can expect 64-bit data from the device tree parser, so use
devfdt_get_addr_index_ptr instead of the devfdt_get_addr_index function
in the various files in the drivers directory that cast to a pointer.
As we are there also streamline the error response to -EINVAL on return.

Signed-off-by: Johan Jonker <jbx6244@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2023-05-06 17:28:18 +08:00

656 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright Altera Corporation (C) 2014-2015
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <div64.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <reset.h>
#include <watchdog.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/sdram.h>
#include <asm/arch/system_manager.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include "sequencer.h"
#ifdef CONFIG_SPL_BUILD
struct altera_gen5_sdram_priv {
struct ram_info info;
};
struct altera_gen5_sdram_plat {
struct socfpga_sdr *sdr;
};
struct sdram_prot_rule {
u32 sdram_start; /* SDRAM start address */
u32 sdram_end; /* SDRAM end address */
u32 rule; /* SDRAM protection rule number: 0-19 */
int valid; /* Rule valid or not? 1 - valid, 0 not*/
u32 security;
u32 portmask;
u32 result;
u32 lo_prot_id;
u32 hi_prot_id;
};
static unsigned long sdram_calculate_size(struct socfpga_sdr_ctrl *sdr_ctrl);
/**
* get_errata_rows() - Up the number of DRAM rows to cover entire address space
* @cfg: SDRAM controller configuration data
*
* SDRAM Failure happens when accessing non-existent memory. Artificially
* increase the number of rows so that the memory controller thinks it has
* 4GB of RAM. This function returns such amount of rows.
*/
static int get_errata_rows(const struct socfpga_sdram_config *cfg)
{
/* Define constant for 4G memory - used for SDRAM errata workaround */
#define MEMSIZE_4G (4ULL * 1024ULL * 1024ULL * 1024ULL)
const unsigned long long memsize = MEMSIZE_4G;
const unsigned int cs =
((cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_CSBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB) + 1;
const unsigned int rows =
(cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB;
const unsigned int banks =
(cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_BANKBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_BANKBITS_LSB;
const unsigned int cols =
(cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_COLBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_COLBITS_LSB;
const unsigned int width = 8;
unsigned long long newrows;
int bits, inewrowslog2;
debug("workaround rows - memsize %lld\n", memsize);
debug("workaround rows - cs %d\n", cs);
debug("workaround rows - width %d\n", width);
debug("workaround rows - rows %d\n", rows);
debug("workaround rows - banks %d\n", banks);
debug("workaround rows - cols %d\n", cols);
newrows = lldiv(memsize, cs * (width / 8));
debug("rows workaround - term1 %lld\n", newrows);
newrows = lldiv(newrows, (1 << banks) * (1 << cols));
debug("rows workaround - term2 %lld\n", newrows);
/*
* Compute the hamming weight - same as number of bits set.
* Need to see if result is ordinal power of 2 before
* attempting log2 of result.
*/
bits = generic_hweight32(newrows);
debug("rows workaround - bits %d\n", bits);
if (bits != 1) {
printf("SDRAM workaround failed, bits set %d\n", bits);
return rows;
}
if (newrows > UINT_MAX) {
printf("SDRAM workaround rangecheck failed, %lld\n", newrows);
return rows;
}
inewrowslog2 = __ilog2(newrows);
debug("rows workaround - ilog2 %d, %lld\n", inewrowslog2, newrows);
if (inewrowslog2 == -1) {
printf("SDRAM workaround failed, newrows %lld\n", newrows);
return rows;
}
return inewrowslog2;
}
/* SDRAM protection rules vary from 0-19, a total of 20 rules. */
static void sdram_set_rule(struct socfpga_sdr_ctrl *sdr_ctrl,
struct sdram_prot_rule *prule)
{
u32 lo_addr_bits;
u32 hi_addr_bits;
int ruleno = prule->rule;
/* Select the rule */
writel(ruleno, &sdr_ctrl->prot_rule_rdwr);
/* Obtain the address bits */
lo_addr_bits = prule->sdram_start >> 20ULL;
hi_addr_bits = (prule->sdram_end - 1) >> 20ULL;
debug("sdram set rule start %x, %d\n", lo_addr_bits,
prule->sdram_start);
debug("sdram set rule end %x, %d\n", hi_addr_bits,
prule->sdram_end);
/* Set rule addresses */
writel(lo_addr_bits | (hi_addr_bits << 12), &sdr_ctrl->prot_rule_addr);
/* Set rule protection ids */
writel(prule->lo_prot_id | (prule->hi_prot_id << 12),
&sdr_ctrl->prot_rule_id);
/* Set the rule data */
writel(prule->security | (prule->valid << 2) |
(prule->portmask << 3) | (prule->result << 13),
&sdr_ctrl->prot_rule_data);
/* write the rule */
writel(ruleno | (1 << 5), &sdr_ctrl->prot_rule_rdwr);
/* Set rule number to 0 by default */
writel(0, &sdr_ctrl->prot_rule_rdwr);
}
static void sdram_get_rule(struct socfpga_sdr_ctrl *sdr_ctrl,
struct sdram_prot_rule *prule)
{
u32 addr;
u32 id;
u32 data;
int ruleno = prule->rule;
/* Read the rule */
writel(ruleno, &sdr_ctrl->prot_rule_rdwr);
writel(ruleno | (1 << 6), &sdr_ctrl->prot_rule_rdwr);
/* Get the addresses */
addr = readl(&sdr_ctrl->prot_rule_addr);
prule->sdram_start = (addr & 0xFFF) << 20;
prule->sdram_end = ((addr >> 12) & 0xFFF) << 20;
/* Get the configured protection IDs */
id = readl(&sdr_ctrl->prot_rule_id);
prule->lo_prot_id = id & 0xFFF;
prule->hi_prot_id = (id >> 12) & 0xFFF;
/* Get protection data */
data = readl(&sdr_ctrl->prot_rule_data);
prule->security = data & 0x3;
prule->valid = (data >> 2) & 0x1;
prule->portmask = (data >> 3) & 0x3FF;
prule->result = (data >> 13) & 0x1;
}
static void
sdram_set_protection_config(struct socfpga_sdr_ctrl *sdr_ctrl,
const u32 sdram_start, const u32 sdram_end)
{
struct sdram_prot_rule rule;
int rules;
/* Start with accepting all SDRAM transaction */
writel(0x0, &sdr_ctrl->protport_default);
/* Clear all protection rules for warm boot case */
memset(&rule, 0, sizeof(rule));
for (rules = 0; rules < 20; rules++) {
rule.rule = rules;
sdram_set_rule(sdr_ctrl, &rule);
}
/* new rule: accept SDRAM */
rule.sdram_start = sdram_start;
rule.sdram_end = sdram_end;
rule.lo_prot_id = 0x0;
rule.hi_prot_id = 0xFFF;
rule.portmask = 0x3FF;
rule.security = 0x3;
rule.result = 0;
rule.valid = 1;
rule.rule = 0;
/* set new rule */
sdram_set_rule(sdr_ctrl, &rule);
/* default rule: reject everything */
writel(0x3ff, &sdr_ctrl->protport_default);
}
static void sdram_dump_protection_config(struct socfpga_sdr_ctrl *sdr_ctrl)
{
struct sdram_prot_rule rule;
int rules;
debug("SDRAM Prot rule, default %x\n",
readl(&sdr_ctrl->protport_default));
for (rules = 0; rules < 20; rules++) {
rule.rule = rules;
sdram_get_rule(sdr_ctrl, &rule);
debug("Rule %d, rules ...\n", rules);
debug(" sdram start %x\n", rule.sdram_start);
debug(" sdram end %x\n", rule.sdram_end);
debug(" low prot id %d, hi prot id %d\n",
rule.lo_prot_id,
rule.hi_prot_id);
debug(" portmask %x\n", rule.portmask);
debug(" security %d\n", rule.security);
debug(" result %d\n", rule.result);
debug(" valid %d\n", rule.valid);
}
}
/**
* sdram_write_verify() - write to register and verify the write.
* @addr: Register address
* @val: Value to be written and verified
*
* This function writes to a register, reads back the value and compares
* the result with the written value to check if the data match.
*/
static unsigned sdram_write_verify(const u32 *addr, const u32 val)
{
u32 rval;
debug(" Write - Address 0x%p Data 0x%08x\n", addr, val);
writel(val, addr);
debug(" Read and verify...");
rval = readl(addr);
if (rval != val) {
debug("FAIL - Address 0x%p Expected 0x%08x Data 0x%08x\n",
addr, val, rval);
return -EINVAL;
}
debug("correct!\n");
return 0;
}
/**
* sdr_get_ctrlcfg() - Get the value of DRAM CTRLCFG register
* @cfg: SDRAM controller configuration data
*
* Return the value of DRAM CTRLCFG register.
*/
static u32 sdr_get_ctrlcfg(const struct socfpga_sdram_config *cfg)
{
const u32 csbits =
((cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_CSBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB) + 1;
u32 addrorder =
(cfg->ctrl_cfg & SDR_CTRLGRP_CTRLCFG_ADDRORDER_MASK) >>
SDR_CTRLGRP_CTRLCFG_ADDRORDER_LSB;
u32 ctrl_cfg = cfg->ctrl_cfg;
/*
* SDRAM Failure When Accessing Non-Existent Memory
* Set the addrorder field of the SDRAM control register
* based on the CSBITs setting.
*/
if (csbits == 1) {
if (addrorder != 0)
debug("INFO: Changing address order to 0 (chip, row, bank, column)\n");
addrorder = 0;
} else if (csbits == 2) {
if (addrorder != 2)
debug("INFO: Changing address order to 2 (row, chip, bank, column)\n");
addrorder = 2;
}
ctrl_cfg &= ~SDR_CTRLGRP_CTRLCFG_ADDRORDER_MASK;
ctrl_cfg |= addrorder << SDR_CTRLGRP_CTRLCFG_ADDRORDER_LSB;
return ctrl_cfg;
}
/**
* sdr_get_addr_rw() - Get the value of DRAM ADDRW register
* @cfg: SDRAM controller configuration data
*
* Return the value of DRAM ADDRW register.
*/
static u32 sdr_get_addr_rw(const struct socfpga_sdram_config *cfg)
{
/*
* SDRAM Failure When Accessing Non-Existent Memory
* Set SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB to
* log2(number of chip select bits). Since there's only
* 1 or 2 chip selects, log2(1) => 0, and log2(2) => 1,
* which is the same as "chip selects" - 1.
*/
const int rows = get_errata_rows(cfg);
u32 dram_addrw = cfg->dram_addrw & ~SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK;
return dram_addrw | (rows << SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB);
}
/**
* sdr_load_regs() - Load SDRAM controller registers
* @cfg: SDRAM controller configuration data
*
* This function loads the register values into the SDRAM controller block.
*/
static void sdr_load_regs(struct socfpga_sdr_ctrl *sdr_ctrl,
const struct socfpga_sdram_config *cfg)
{
const u32 ctrl_cfg = sdr_get_ctrlcfg(cfg);
const u32 dram_addrw = sdr_get_addr_rw(cfg);
debug("\nConfiguring CTRLCFG\n");
writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
debug("Configuring DRAMTIMING1\n");
writel(cfg->dram_timing1, &sdr_ctrl->dram_timing1);
debug("Configuring DRAMTIMING2\n");
writel(cfg->dram_timing2, &sdr_ctrl->dram_timing2);
debug("Configuring DRAMTIMING3\n");
writel(cfg->dram_timing3, &sdr_ctrl->dram_timing3);
debug("Configuring DRAMTIMING4\n");
writel(cfg->dram_timing4, &sdr_ctrl->dram_timing4);
debug("Configuring LOWPWRTIMING\n");
writel(cfg->lowpwr_timing, &sdr_ctrl->lowpwr_timing);
debug("Configuring DRAMADDRW\n");
writel(dram_addrw, &sdr_ctrl->dram_addrw);
debug("Configuring DRAMIFWIDTH\n");
writel(cfg->dram_if_width, &sdr_ctrl->dram_if_width);
debug("Configuring DRAMDEVWIDTH\n");
writel(cfg->dram_dev_width, &sdr_ctrl->dram_dev_width);
debug("Configuring LOWPWREQ\n");
writel(cfg->lowpwr_eq, &sdr_ctrl->lowpwr_eq);
debug("Configuring DRAMINTR\n");
writel(cfg->dram_intr, &sdr_ctrl->dram_intr);
debug("Configuring STATICCFG\n");
writel(cfg->static_cfg, &sdr_ctrl->static_cfg);
debug("Configuring CTRLWIDTH\n");
writel(cfg->ctrl_width, &sdr_ctrl->ctrl_width);
debug("Configuring PORTCFG\n");
writel(cfg->port_cfg, &sdr_ctrl->port_cfg);
debug("Configuring FIFOCFG\n");
writel(cfg->fifo_cfg, &sdr_ctrl->fifo_cfg);
debug("Configuring MPPRIORITY\n");
writel(cfg->mp_priority, &sdr_ctrl->mp_priority);
debug("Configuring MPWEIGHT_MPWEIGHT_0\n");
writel(cfg->mp_weight0, &sdr_ctrl->mp_weight0);
writel(cfg->mp_weight1, &sdr_ctrl->mp_weight1);
writel(cfg->mp_weight2, &sdr_ctrl->mp_weight2);
writel(cfg->mp_weight3, &sdr_ctrl->mp_weight3);
debug("Configuring MPPACING_MPPACING_0\n");
writel(cfg->mp_pacing0, &sdr_ctrl->mp_pacing0);
writel(cfg->mp_pacing1, &sdr_ctrl->mp_pacing1);
writel(cfg->mp_pacing2, &sdr_ctrl->mp_pacing2);
writel(cfg->mp_pacing3, &sdr_ctrl->mp_pacing3);
debug("Configuring MPTHRESHOLDRST_MPTHRESHOLDRST_0\n");
writel(cfg->mp_threshold0, &sdr_ctrl->mp_threshold0);
writel(cfg->mp_threshold1, &sdr_ctrl->mp_threshold1);
writel(cfg->mp_threshold2, &sdr_ctrl->mp_threshold2);
debug("Configuring PHYCTRL_PHYCTRL_0\n");
writel(cfg->phy_ctrl0, &sdr_ctrl->phy_ctrl0);
debug("Configuring CPORTWIDTH\n");
writel(cfg->cport_width, &sdr_ctrl->cport_width);
debug("Configuring CPORTWMAP\n");
writel(cfg->cport_wmap, &sdr_ctrl->cport_wmap);
debug("Configuring CPORTRMAP\n");
writel(cfg->cport_rmap, &sdr_ctrl->cport_rmap);
debug("Configuring RFIFOCMAP\n");
writel(cfg->rfifo_cmap, &sdr_ctrl->rfifo_cmap);
debug("Configuring WFIFOCMAP\n");
writel(cfg->wfifo_cmap, &sdr_ctrl->wfifo_cmap);
debug("Configuring CPORTRDWR\n");
writel(cfg->cport_rdwr, &sdr_ctrl->cport_rdwr);
debug("Configuring DRAMODT\n");
writel(cfg->dram_odt, &sdr_ctrl->dram_odt);
if (dram_is_ddr(3)) {
debug("Configuring EXTRATIME1\n");
writel(cfg->extratime1, &sdr_ctrl->extratime1);
}
}
/**
* sdram_mmr_init_full() - Function to initialize SDRAM MMR
* @sdr_phy_reg: Value of the PHY control register 0
*
* Initialize the SDRAM MMR.
*/
int sdram_mmr_init_full(struct socfpga_sdr_ctrl *sdr_ctrl,
unsigned int sdr_phy_reg)
{
const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config();
const unsigned int rows =
(cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB;
int ret;
writel(rows,
socfpga_get_sysmgr_addr() + SYSMGR_ISWGRP_HANDOFF_OFFSET(4));
sdr_load_regs(sdr_ctrl, cfg);
/* saving this value to SYSMGR.ISWGRP.HANDOFF.FPGA2SDR */
writel(cfg->fpgaport_rst,
socfpga_get_sysmgr_addr() + SYSMGR_ISWGRP_HANDOFF_OFFSET(3));
/* only enable if the FPGA is programmed */
if (fpgamgr_test_fpga_ready()) {
ret = sdram_write_verify(&sdr_ctrl->fpgaport_rst,
cfg->fpgaport_rst);
if (ret)
return ret;
}
/* Restore the SDR PHY Register if valid */
if (sdr_phy_reg != 0xffffffff)
writel(sdr_phy_reg, &sdr_ctrl->phy_ctrl0);
/* Final step - apply configuration changes */
debug("Configuring STATICCFG\n");
clrsetbits_le32(&sdr_ctrl->static_cfg,
SDR_CTRLGRP_STATICCFG_APPLYCFG_MASK,
1 << SDR_CTRLGRP_STATICCFG_APPLYCFG_LSB);
sdram_set_protection_config(sdr_ctrl, 0,
sdram_calculate_size(sdr_ctrl) - 1);
sdram_dump_protection_config(sdr_ctrl);
return 0;
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
static unsigned long sdram_calculate_size(struct socfpga_sdr_ctrl *sdr_ctrl)
{
unsigned long temp;
unsigned long row, bank, col, cs, width;
const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config();
const unsigned int csbits =
((cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_CSBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_CSBITS_LSB) + 1;
const unsigned int rowbits =
(cfg->dram_addrw & SDR_CTRLGRP_DRAMADDRW_ROWBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_ROWBITS_LSB;
temp = readl(&sdr_ctrl->dram_addrw);
col = (temp & SDR_CTRLGRP_DRAMADDRW_COLBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_COLBITS_LSB;
/*
* SDRAM Failure When Accessing Non-Existent Memory
* Use ROWBITS from Quartus/QSys to calculate SDRAM size
* since the FB specifies we modify ROWBITs to work around SDRAM
* controller issue.
*/
row = readl(socfpga_get_sysmgr_addr() +
SYSMGR_ISWGRP_HANDOFF_OFFSET(4));
if (row == 0)
row = rowbits;
/*
* If the stored handoff value for rows is greater than
* the field width in the sdr.dramaddrw register then
* something is very wrong. Revert to using the the #define
* value handed off by the SOCEDS tool chain instead of
* using a broken value.
*/
if (row > 31)
row = rowbits;
bank = (temp & SDR_CTRLGRP_DRAMADDRW_BANKBITS_MASK) >>
SDR_CTRLGRP_DRAMADDRW_BANKBITS_LSB;
/*
* SDRAM Failure When Accessing Non-Existent Memory
* Use CSBITs from Quartus/QSys to calculate SDRAM size
* since the FB specifies we modify CSBITs to work around SDRAM
* controller issue.
*/
cs = csbits;
width = readl(&sdr_ctrl->dram_if_width);
/* ECC would not be calculated as its not addressible */
if (width == SDRAM_WIDTH_32BIT_WITH_ECC)
width = 32;
if (width == SDRAM_WIDTH_16BIT_WITH_ECC)
width = 16;
/* calculate the SDRAM size base on this info */
temp = 1 << (row + bank + col);
temp = temp * cs * (width / 8);
debug("%s returns %ld\n", __func__, temp);
return temp;
}
static int altera_gen5_sdram_of_to_plat(struct udevice *dev)
{
struct altera_gen5_sdram_plat *plat = dev_get_plat(dev);
plat->sdr = devfdt_get_addr_index_ptr(dev, 0);
if (!plat->sdr)
return -EINVAL;
return 0;
}
static int altera_gen5_sdram_probe(struct udevice *dev)
{
int ret;
unsigned long sdram_size;
struct altera_gen5_sdram_plat *plat = dev_get_plat(dev);
struct altera_gen5_sdram_priv *priv = dev_get_priv(dev);
struct socfpga_sdr_ctrl *sdr_ctrl = &plat->sdr->sdr_ctrl;
struct reset_ctl_bulk resets;
ret = reset_get_bulk(dev, &resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&resets);
if (sdram_mmr_init_full(sdr_ctrl, 0xffffffff) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
debug("SDRAM: Calibrating PHY\n");
/* SDRAM calibration */
if (sdram_calibration_full(plat->sdr) == 0) {
puts("SDRAM calibration failed.\n");
goto failed;
}
sdram_size = sdram_calculate_size(sdr_ctrl);
debug("SDRAM: %ld MiB\n", sdram_size >> 20);
/* Sanity check ensure correct SDRAM size specified */
if (get_ram_size(0, sdram_size) != sdram_size) {
puts("SDRAM size check failed!\n");
goto failed;
}
priv->info.base = 0;
priv->info.size = sdram_size;
return 0;
failed:
reset_release_bulk(&resets);
return -ENODEV;
}
static int altera_gen5_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_gen5_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static const struct ram_ops altera_gen5_sdram_ops = {
.get_info = altera_gen5_sdram_get_info,
};
static const struct udevice_id altera_gen5_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_gen5_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_gen5_sdram_ids,
.ops = &altera_gen5_sdram_ops,
.of_to_plat = altera_gen5_sdram_of_to_plat,
.plat_auto = sizeof(struct altera_gen5_sdram_plat),
.probe = altera_gen5_sdram_probe,
.priv_auto = sizeof(struct altera_gen5_sdram_priv),
};
#endif /* CONFIG_SPL_BUILD */