u-boot/drivers/pch/pch9.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

87 lines
2.0 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014 Google, Inc
*/
#include <common.h>
#include <dm.h>
#include <pch.h>
#define GPIO_BASE 0x48
#define IO_BASE 0x4c
#define SBASE_ADDR 0x54
static int pch9_get_spi_base(struct udevice *dev, ulong *sbasep)
{
uint32_t sbase_addr;
dm_pci_read_config32(dev, SBASE_ADDR, &sbase_addr);
*sbasep = sbase_addr & 0xfffffe00;
return 0;
}
static int pch9_get_gpio_base(struct udevice *dev, u32 *gbasep)
{
u32 base;
/*
* GPIO_BASE moved to its current offset with ICH6, but prior to
* that it was unused (or undocumented). Check that it looks
* okay: not all ones or zeros.
*
* Note we don't need check bit0 here, because the Tunnel Creek
* GPIO base address register bit0 is reserved (read returns 0),
* while on the Ivybridge the bit0 is used to indicate it is an
* I/O space.
*/
dm_pci_read_config32(dev, GPIO_BASE, &base);
if (base == 0x00000000 || base == 0xffffffff) {
debug("%s: unexpected BASE value\n", __func__);
return -ENODEV;
}
/*
* Okay, I guess we're looking at the right device. The actual
* GPIO registers are in the PCI device's I/O space, starting
* at the offset that we just read. Bit 0 indicates that it's
* an I/O address, not a memory address, so mask that off.
*/
*gbasep = base & 1 ? base & ~3 : base & ~15;
return 0;
}
static int pch9_get_io_base(struct udevice *dev, u32 *iobasep)
{
u32 base;
dm_pci_read_config32(dev, IO_BASE, &base);
if (base == 0x00000000 || base == 0xffffffff) {
debug("%s: unexpected BASE value\n", __func__);
return -ENODEV;
}
*iobasep = base & 1 ? base & ~3 : base & ~15;
return 0;
}
static const struct pch_ops pch9_ops = {
.get_spi_base = pch9_get_spi_base,
.get_gpio_base = pch9_get_gpio_base,
.get_io_base = pch9_get_io_base,
};
static const struct udevice_id pch9_ids[] = {
{ .compatible = "intel,pch9" },
{ }
};
U_BOOT_DRIVER(pch9_drv) = {
.name = "intel-pch9",
.id = UCLASS_PCH,
.of_match = pch9_ids,
.ops = &pch9_ops,
};