u-boot/drivers/net/cpsw.c
Vladimir Koutny 74007b8519 am335x: cpsw: optimize cpsw_recv to increase network performance
In 48ec5291, only TX path was optimized; this does the same also for RX
path. This results in huge increase of TFTP throughput on custom am3352
board (from 312KiB/s to 1.8MiB/s) and eliminates occasional transfer
timeouts.

Signed-off-by: Vladimir Koutny <vladimir.koutny@streamunlimited.com>
Cc: Mugunthan V N <mugunthanvnm@ti.com>
Cc: Joe Hershberger <joe.hershberger@gmail.com>
Cc: Tom Rini <trini@ti.com>
2013-12-04 11:41:13 -05:00

1025 lines
24 KiB
C

/*
* CPSW Ethernet Switch Driver
*
* Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <command.h>
#include <net.h>
#include <miiphy.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <cpsw.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <phy.h>
#include <asm/arch/cpu.h>
#define BITMASK(bits) (BIT(bits) - 1)
#define PHY_REG_MASK 0x1f
#define PHY_ID_MASK 0x1f
#define NUM_DESCS (PKTBUFSRX * 2)
#define PKT_MIN 60
#define PKT_MAX (1500 + 14 + 4 + 4)
#define CLEAR_BIT 1
#define GIGABITEN BIT(7)
#define FULLDUPLEXEN BIT(0)
#define MIIEN BIT(15)
/* DMA Registers */
#define CPDMA_TXCONTROL 0x004
#define CPDMA_RXCONTROL 0x014
#define CPDMA_SOFTRESET 0x01c
#define CPDMA_RXFREE 0x0e0
#define CPDMA_TXHDP_VER1 0x100
#define CPDMA_TXHDP_VER2 0x200
#define CPDMA_RXHDP_VER1 0x120
#define CPDMA_RXHDP_VER2 0x220
#define CPDMA_TXCP_VER1 0x140
#define CPDMA_TXCP_VER2 0x240
#define CPDMA_RXCP_VER1 0x160
#define CPDMA_RXCP_VER2 0x260
/* Descriptor mode bits */
#define CPDMA_DESC_SOP BIT(31)
#define CPDMA_DESC_EOP BIT(30)
#define CPDMA_DESC_OWNER BIT(29)
#define CPDMA_DESC_EOQ BIT(28)
/*
* This timeout definition is a worst-case ultra defensive measure against
* unexpected controller lock ups. Ideally, we should never ever hit this
* scenario in practice.
*/
#define MDIO_TIMEOUT 100 /* msecs */
#define CPDMA_TIMEOUT 100 /* msecs */
struct cpsw_mdio_regs {
u32 version;
u32 control;
#define CONTROL_IDLE BIT(31)
#define CONTROL_ENABLE BIT(30)
u32 alive;
u32 link;
u32 linkintraw;
u32 linkintmasked;
u32 __reserved_0[2];
u32 userintraw;
u32 userintmasked;
u32 userintmaskset;
u32 userintmaskclr;
u32 __reserved_1[20];
struct {
u32 access;
u32 physel;
#define USERACCESS_GO BIT(31)
#define USERACCESS_WRITE BIT(30)
#define USERACCESS_ACK BIT(29)
#define USERACCESS_READ (0)
#define USERACCESS_DATA (0xffff)
} user[0];
};
struct cpsw_regs {
u32 id_ver;
u32 control;
u32 soft_reset;
u32 stat_port_en;
u32 ptype;
};
struct cpsw_slave_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
#ifdef CONFIG_AM33XX
u32 gap_thresh;
#elif defined(CONFIG_TI814X)
u32 ts_ctl;
u32 ts_seq_ltype;
u32 ts_vlan;
#endif
u32 sa_lo;
u32 sa_hi;
};
struct cpsw_host_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
u32 cpdma_tx_pri_map;
u32 cpdma_rx_chan_map;
};
struct cpsw_sliver_regs {
u32 id_ver;
u32 mac_control;
u32 mac_status;
u32 soft_reset;
u32 rx_maxlen;
u32 __reserved_0;
u32 rx_pause;
u32 tx_pause;
u32 __reserved_1;
u32 rx_pri_map;
};
#define ALE_ENTRY_BITS 68
#define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
/* ALE Registers */
#define ALE_CONTROL 0x08
#define ALE_UNKNOWNVLAN 0x18
#define ALE_TABLE_CONTROL 0x20
#define ALE_TABLE 0x34
#define ALE_PORTCTL 0x40
#define ALE_TABLE_WRITE BIT(31)
#define ALE_TYPE_FREE 0
#define ALE_TYPE_ADDR 1
#define ALE_TYPE_VLAN 2
#define ALE_TYPE_VLAN_ADDR 3
#define ALE_UCAST_PERSISTANT 0
#define ALE_UCAST_UNTOUCHED 1
#define ALE_UCAST_OUI 2
#define ALE_UCAST_TOUCHED 3
#define ALE_MCAST_FWD 0
#define ALE_MCAST_BLOCK_LEARN_FWD 1
#define ALE_MCAST_FWD_LEARN 2
#define ALE_MCAST_FWD_2 3
enum cpsw_ale_port_state {
ALE_PORT_STATE_DISABLE = 0x00,
ALE_PORT_STATE_BLOCK = 0x01,
ALE_PORT_STATE_LEARN = 0x02,
ALE_PORT_STATE_FORWARD = 0x03,
};
/* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
#define ALE_SECURE 1
#define ALE_BLOCKED 2
struct cpsw_slave {
struct cpsw_slave_regs *regs;
struct cpsw_sliver_regs *sliver;
int slave_num;
u32 mac_control;
struct cpsw_slave_data *data;
};
struct cpdma_desc {
/* hardware fields */
u32 hw_next;
u32 hw_buffer;
u32 hw_len;
u32 hw_mode;
/* software fields */
u32 sw_buffer;
u32 sw_len;
};
struct cpdma_chan {
struct cpdma_desc *head, *tail;
void *hdp, *cp, *rxfree;
};
#define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld)
#define desc_read(desc, fld) __raw_readl(&(desc)->fld)
#define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld))
#define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld)
#define chan_read(chan, fld) __raw_readl((chan)->fld)
#define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld))
#define for_each_slave(slave, priv) \
for (slave = (priv)->slaves; slave != (priv)->slaves + \
(priv)->data.slaves; slave++)
struct cpsw_priv {
struct eth_device *dev;
struct cpsw_platform_data data;
int host_port;
struct cpsw_regs *regs;
void *dma_regs;
struct cpsw_host_regs *host_port_regs;
void *ale_regs;
struct cpdma_desc *descs;
struct cpdma_desc *desc_free;
struct cpdma_chan rx_chan, tx_chan;
struct cpsw_slave *slaves;
struct phy_device *phydev;
struct mii_dev *bus;
u32 mdio_link;
u32 phy_mask;
};
static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
{
int idx;
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
return (ale_entry[idx] >> start) & BITMASK(bits);
}
static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
u32 value)
{
int idx;
value &= BITMASK(bits);
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
ale_entry[idx] &= ~(BITMASK(bits) << start);
ale_entry[idx] |= (value << start);
}
#define DEFINE_ALE_FIELD(name, start, bits) \
static inline int cpsw_ale_get_##name(u32 *ale_entry) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
DEFINE_ALE_FIELD(entry_type, 60, 2)
DEFINE_ALE_FIELD(mcast_state, 62, 2)
DEFINE_ALE_FIELD(port_mask, 66, 3)
DEFINE_ALE_FIELD(ucast_type, 62, 2)
DEFINE_ALE_FIELD(port_num, 66, 2)
DEFINE_ALE_FIELD(blocked, 65, 1)
DEFINE_ALE_FIELD(secure, 64, 1)
DEFINE_ALE_FIELD(mcast, 40, 1)
/* The MAC address field in the ALE entry cannot be macroized as above */
static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
}
static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
}
static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
__raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
return idx;
}
static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
for (i = 0; i < ALE_ENTRY_WORDS; i++)
__raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
__raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
return idx;
}
static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data.ale_entries; idx++) {
u8 entry_addr[6];
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
cpsw_ale_get_addr(ale_entry, entry_addr);
if (memcmp(entry_addr, addr, 6) == 0)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_free(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data.ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data.ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
continue;
type = cpsw_ale_get_ucast_type(ale_entry);
if (type != ALE_UCAST_PERSISTANT &&
type != ALE_UCAST_OUI)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
int port, int flags)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
cpsw_ale_set_port_num(ale_entry, port);
idx = cpsw_ale_match_addr(priv, addr);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(priv, addr);
if (idx >= 0)
cpsw_ale_read(priv, idx, ale_entry);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
mask = cpsw_ale_get_port_mask(ale_entry);
port_mask |= mask;
cpsw_ale_set_port_mask(ale_entry, port_mask);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
{
u32 tmp, mask = BIT(bit);
tmp = __raw_readl(priv->ale_regs + ALE_CONTROL);
tmp &= ~mask;
tmp |= val ? mask : 0;
__raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
}
#define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
#define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
#define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
int val)
{
int offset = ALE_PORTCTL + 4 * port;
u32 tmp, mask = 0x3;
tmp = __raw_readl(priv->ale_regs + offset);
tmp &= ~mask;
tmp |= val & mask;
__raw_writel(tmp, priv->ale_regs + offset);
}
static struct cpsw_mdio_regs *mdio_regs;
/* wait until hardware is ready for another user access */
static inline u32 wait_for_user_access(void)
{
u32 reg = 0;
int timeout = MDIO_TIMEOUT;
while (timeout-- &&
((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
udelay(10);
if (timeout == -1) {
printf("wait_for_user_access Timeout\n");
return -ETIMEDOUT;
}
return reg;
}
/* wait until hardware state machine is idle */
static inline void wait_for_idle(void)
{
int timeout = MDIO_TIMEOUT;
while (timeout-- &&
((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
udelay(10);
if (timeout == -1)
printf("wait_for_idle Timeout\n");
}
static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
int dev_addr, int phy_reg)
{
int data;
u32 reg;
if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
return -EINVAL;
wait_for_user_access();
reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
(phy_id << 16));
__raw_writel(reg, &mdio_regs->user[0].access);
reg = wait_for_user_access();
data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
return data;
}
static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
int phy_reg, u16 data)
{
u32 reg;
if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
return -EINVAL;
wait_for_user_access();
reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
(phy_id << 16) | (data & USERACCESS_DATA));
__raw_writel(reg, &mdio_regs->user[0].access);
wait_for_user_access();
return 0;
}
static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
{
struct mii_dev *bus = mdio_alloc();
mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
/* set enable and clock divider */
__raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
/*
* wait for scan logic to settle:
* the scan time consists of (a) a large fixed component, and (b) a
* small component that varies with the mii bus frequency. These
* were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
* silicon. Since the effect of (b) was found to be largely
* negligible, we keep things simple here.
*/
udelay(1000);
bus->read = cpsw_mdio_read;
bus->write = cpsw_mdio_write;
sprintf(bus->name, name);
mdio_register(bus);
}
/* Set a self-clearing bit in a register, and wait for it to clear */
static inline void setbit_and_wait_for_clear32(void *addr)
{
__raw_writel(CLEAR_BIT, addr);
while (__raw_readl(addr) & CLEAR_BIT)
;
}
#define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
static void cpsw_set_slave_mac(struct cpsw_slave *slave,
struct cpsw_priv *priv)
{
__raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
__raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
}
static void cpsw_slave_update_link(struct cpsw_slave *slave,
struct cpsw_priv *priv, int *link)
{
struct phy_device *phy;
u32 mac_control = 0;
phy = priv->phydev;
if (!phy)
return;
phy_startup(phy);
*link = phy->link;
if (*link) { /* link up */
mac_control = priv->data.mac_control;
if (phy->speed == 1000)
mac_control |= GIGABITEN;
if (phy->duplex == DUPLEX_FULL)
mac_control |= FULLDUPLEXEN;
if (phy->speed == 100)
mac_control |= MIIEN;
}
if (mac_control == slave->mac_control)
return;
if (mac_control) {
printf("link up on port %d, speed %d, %s duplex\n",
slave->slave_num, phy->speed,
(phy->duplex == DUPLEX_FULL) ? "full" : "half");
} else {
printf("link down on port %d\n", slave->slave_num);
}
__raw_writel(mac_control, &slave->sliver->mac_control);
slave->mac_control = mac_control;
}
static int cpsw_update_link(struct cpsw_priv *priv)
{
int link = 0;
struct cpsw_slave *slave;
for_each_slave(slave, priv)
cpsw_slave_update_link(slave, priv, &link);
priv->mdio_link = readl(&mdio_regs->link);
return link;
}
static int cpsw_check_link(struct cpsw_priv *priv)
{
u32 link = 0;
link = __raw_readl(&mdio_regs->link) & priv->phy_mask;
if ((link) && (link == priv->mdio_link))
return 1;
return cpsw_update_link(priv);
}
static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
{
if (priv->host_port == 0)
return slave_num + 1;
else
return slave_num;
}
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
u32 slave_port;
setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
/* setup priority mapping */
__raw_writel(0x76543210, &slave->sliver->rx_pri_map);
__raw_writel(0x33221100, &slave->regs->tx_pri_map);
/* setup max packet size, and mac address */
__raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
cpsw_set_slave_mac(slave, priv);
slave->mac_control = 0; /* no link yet */
/* enable forwarding */
slave_port = cpsw_get_slave_port(priv, slave->slave_num);
cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
priv->phy_mask |= 1 << slave->data->phy_id;
}
static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
{
struct cpdma_desc *desc = priv->desc_free;
if (desc)
priv->desc_free = desc_read_ptr(desc, hw_next);
return desc;
}
static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
{
if (desc) {
desc_write(desc, hw_next, priv->desc_free);
priv->desc_free = desc;
}
}
static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
void *buffer, int len)
{
struct cpdma_desc *desc, *prev;
u32 mode;
desc = cpdma_desc_alloc(priv);
if (!desc)
return -ENOMEM;
if (len < PKT_MIN)
len = PKT_MIN;
mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
desc_write(desc, hw_next, 0);
desc_write(desc, hw_buffer, buffer);
desc_write(desc, hw_len, len);
desc_write(desc, hw_mode, mode | len);
desc_write(desc, sw_buffer, buffer);
desc_write(desc, sw_len, len);
if (!chan->head) {
/* simple case - first packet enqueued */
chan->head = desc;
chan->tail = desc;
chan_write(chan, hdp, desc);
goto done;
}
/* not the first packet - enqueue at the tail */
prev = chan->tail;
desc_write(prev, hw_next, desc);
chan->tail = desc;
/* next check if EOQ has been triggered already */
if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
chan_write(chan, hdp, desc);
done:
if (chan->rxfree)
chan_write(chan, rxfree, 1);
return 0;
}
static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
void **buffer, int *len)
{
struct cpdma_desc *desc = chan->head;
u32 status;
if (!desc)
return -ENOENT;
status = desc_read(desc, hw_mode);
if (len)
*len = status & 0x7ff;
if (buffer)
*buffer = desc_read_ptr(desc, sw_buffer);
if (status & CPDMA_DESC_OWNER) {
if (chan_read(chan, hdp) == 0) {
if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
chan_write(chan, hdp, desc);
}
return -EBUSY;
}
chan->head = desc_read_ptr(desc, hw_next);
chan_write(chan, cp, desc);
cpdma_desc_free(priv, desc);
return 0;
}
static int cpsw_init(struct eth_device *dev, bd_t *bis)
{
struct cpsw_priv *priv = dev->priv;
struct cpsw_slave *slave;
int i, ret;
/* soft reset the controller and initialize priv */
setbit_and_wait_for_clear32(&priv->regs->soft_reset);
/* initialize and reset the address lookup engine */
cpsw_ale_enable(priv, 1);
cpsw_ale_clear(priv, 1);
cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
/* setup host port priority mapping */
__raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
/* disable priority elevation and enable statistics on all ports */
__raw_writel(0, &priv->regs->ptype);
/* enable statistics collection only on the host port */
__raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
__raw_writel(0x7, &priv->regs->stat_port_en);
cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
ALE_SECURE);
cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
for_each_slave(slave, priv)
cpsw_slave_init(slave, priv);
cpsw_update_link(priv);
/* init descriptor pool */
for (i = 0; i < NUM_DESCS; i++) {
desc_write(&priv->descs[i], hw_next,
(i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
}
priv->desc_free = &priv->descs[0];
/* initialize channels */
if (priv->data.version == CPSW_CTRL_VERSION_2) {
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2;
priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2;
priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2;
} else {
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1;
priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1;
priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1;
}
/* clear dma state */
setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
if (priv->data.version == CPSW_CTRL_VERSION_2) {
for (i = 0; i < priv->data.channels; i++) {
__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
* i);
}
} else {
for (i = 0; i < priv->data.channels; i++) {
__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
* i);
}
}
__raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
__raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
/* submit rx descs */
for (i = 0; i < PKTBUFSRX; i++) {
ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
PKTSIZE);
if (ret < 0) {
printf("error %d submitting rx desc\n", ret);
break;
}
}
return 0;
}
static void cpsw_halt(struct eth_device *dev)
{
struct cpsw_priv *priv = dev->priv;
writel(0, priv->dma_regs + CPDMA_TXCONTROL);
writel(0, priv->dma_regs + CPDMA_RXCONTROL);
/* soft reset the controller and initialize priv */
setbit_and_wait_for_clear32(&priv->regs->soft_reset);
/* clear dma state */
setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
priv->data.control(0);
}
static int cpsw_send(struct eth_device *dev, void *packet, int length)
{
struct cpsw_priv *priv = dev->priv;
void *buffer;
int len;
int timeout = CPDMA_TIMEOUT;
if (!cpsw_check_link(priv))
return -EIO;
flush_dcache_range((unsigned long)packet,
(unsigned long)packet + length);
/* first reap completed packets */
while (timeout-- &&
(cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
;
if (timeout == -1) {
printf("cpdma_process timeout\n");
return -ETIMEDOUT;
}
return cpdma_submit(priv, &priv->tx_chan, packet, length);
}
static int cpsw_recv(struct eth_device *dev)
{
struct cpsw_priv *priv = dev->priv;
void *buffer;
int len;
cpsw_check_link(priv);
while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
invalidate_dcache_range((unsigned long)buffer,
(unsigned long)buffer + PKTSIZE_ALIGN);
NetReceive(buffer, len);
cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
}
return 0;
}
static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
struct cpsw_priv *priv)
{
void *regs = priv->regs;
struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
slave->slave_num = slave_num;
slave->data = data;
slave->regs = regs + data->slave_reg_ofs;
slave->sliver = regs + data->sliver_reg_ofs;
}
static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
{
struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
struct phy_device *phydev;
u32 supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full);
phydev = phy_connect(priv->bus,
CONFIG_PHY_ADDR,
dev,
slave->data->phy_if);
if (!phydev)
return -1;
phydev->supported &= supported;
phydev->advertising = phydev->supported;
priv->phydev = phydev;
phy_config(phydev);
return 1;
}
int cpsw_register(struct cpsw_platform_data *data)
{
struct cpsw_priv *priv;
struct cpsw_slave *slave;
void *regs = (void *)data->cpsw_base;
struct eth_device *dev;
dev = calloc(sizeof(*dev), 1);
if (!dev)
return -ENOMEM;
priv = calloc(sizeof(*priv), 1);
if (!priv) {
free(dev);
return -ENOMEM;
}
priv->data = *data;
priv->dev = dev;
priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
if (!priv->slaves) {
free(dev);
free(priv);
return -ENOMEM;
}
priv->host_port = data->host_port_num;
priv->regs = regs;
priv->host_port_regs = regs + data->host_port_reg_ofs;
priv->dma_regs = regs + data->cpdma_reg_ofs;
priv->ale_regs = regs + data->ale_reg_ofs;
priv->descs = (void *)regs + data->bd_ram_ofs;
int idx = 0;
for_each_slave(slave, priv) {
cpsw_slave_setup(slave, idx, priv);
idx = idx + 1;
}
strcpy(dev->name, "cpsw");
dev->iobase = 0;
dev->init = cpsw_init;
dev->halt = cpsw_halt;
dev->send = cpsw_send;
dev->recv = cpsw_recv;
dev->priv = priv;
eth_register(dev);
cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
priv->bus = miiphy_get_dev_by_name(dev->name);
for_each_slave(slave, priv)
cpsw_phy_init(dev, slave);
return 1;
}