u-boot/drivers/pci/pci_tegra.c
Stephen Warren 514e19138a pci: tegra: implement PCA enable workaround
Tegra210's PCIe controller has a bug that requires the PCA (performance
counter) feature to be enabled. If this isn't done, accesses to device
configuration space will hang the chip for tens of seconds. Implement
the workaround.

Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-11-12 09:21:05 -07:00

1193 lines
28 KiB
C

/*
* Copyright (c) 2010, CompuLab, Ltd.
* Author: Mike Rapoport <mike@compulab.co.il>
*
* Based on NVIDIA PCIe driver
* Copyright (c) 2008-2009, NVIDIA Corporation.
*
* Copyright (c) 2013-2014, NVIDIA Corporation.
*
* SPDX-License-Identifier: GPL-2.0
*/
#define DEBUG
#define pr_fmt(fmt) "tegra-pcie: " fmt
#include <common.h>
#include <errno.h>
#include <fdtdec.h>
#include <malloc.h>
#include <pci.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/powergate.h>
#include <asm/arch-tegra/xusb-padctl.h>
#include <linux/list.h>
#include <dt-bindings/pinctrl/pinctrl-tegra-xusb.h>
DECLARE_GLOBAL_DATA_PTR;
#define AFI_AXI_BAR0_SZ 0x00
#define AFI_AXI_BAR1_SZ 0x04
#define AFI_AXI_BAR2_SZ 0x08
#define AFI_AXI_BAR3_SZ 0x0c
#define AFI_AXI_BAR4_SZ 0x10
#define AFI_AXI_BAR5_SZ 0x14
#define AFI_AXI_BAR0_START 0x18
#define AFI_AXI_BAR1_START 0x1c
#define AFI_AXI_BAR2_START 0x20
#define AFI_AXI_BAR3_START 0x24
#define AFI_AXI_BAR4_START 0x28
#define AFI_AXI_BAR5_START 0x2c
#define AFI_FPCI_BAR0 0x30
#define AFI_FPCI_BAR1 0x34
#define AFI_FPCI_BAR2 0x38
#define AFI_FPCI_BAR3 0x3c
#define AFI_FPCI_BAR4 0x40
#define AFI_FPCI_BAR5 0x44
#define AFI_CACHE_BAR0_SZ 0x48
#define AFI_CACHE_BAR0_ST 0x4c
#define AFI_CACHE_BAR1_SZ 0x50
#define AFI_CACHE_BAR1_ST 0x54
#define AFI_MSI_BAR_SZ 0x60
#define AFI_MSI_FPCI_BAR_ST 0x64
#define AFI_MSI_AXI_BAR_ST 0x68
#define AFI_CONFIGURATION 0xac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0xb0
#define AFI_INTR_MASK 0xb4
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_SM_INTR_ENABLE 0xc4
#define AFI_SM_INTR_INTA_ASSERT (1 << 0)
#define AFI_SM_INTR_INTB_ASSERT (1 << 1)
#define AFI_SM_INTR_INTC_ASSERT (1 << 2)
#define AFI_SM_INTR_INTD_ASSERT (1 << 3)
#define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
#define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
#define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
#define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
#define AFI_AFI_INTR_ENABLE 0xc8
#define AFI_INTR_EN_INI_SLVERR (1 << 0)
#define AFI_INTR_EN_INI_DECERR (1 << 1)
#define AFI_INTR_EN_TGT_SLVERR (1 << 2)
#define AFI_INTR_EN_TGT_DECERR (1 << 3)
#define AFI_INTR_EN_TGT_WRERR (1 << 4)
#define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
#define AFI_INTR_EN_AXI_DECERR (1 << 6)
#define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
#define AFI_INTR_EN_PRSNT_SENSE (1 << 8)
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
#define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX2_CTRL 0x128
#define AFI_PEX_CTRL_RST (1 << 0)
#define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
#define AFI_PLLE_CONTROL 0x160
#define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
#define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
#define AFI_PEXBIAS_CTRL_0 0x168
#define PADS_CTL_SEL 0x0000009C
#define PADS_CTL 0x000000A0
#define PADS_CTL_IDDQ_1L (1 << 0)
#define PADS_CTL_TX_DATA_EN_1L (1 << 6)
#define PADS_CTL_RX_DATA_EN_1L (1 << 10)
#define PADS_PLL_CTL_TEGRA20 0x000000B8
#define PADS_PLL_CTL_TEGRA30 0x000000B4
#define PADS_PLL_CTL_RST_B4SM (0x1 << 1)
#define PADS_PLL_CTL_LOCKDET (0x1 << 8)
#define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0x0 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (0x1 << 16)
#define PADS_PLL_CTL_REFCLK_EXTERNAL (0x2 << 16)
#define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV10 (0x0 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV5 (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_BUF_EN (0x1 << 22)
#define PADS_REFCLK_CFG0 0x000000C8
#define PADS_REFCLK_CFG1 0x000000CC
/*
* Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
* entries, one entry per PCIe port. These field definitions and desired
* values aren't in the TRM, but do come from NVIDIA.
*/
#define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */
#define PADS_REFCLK_CFG_E_TERM_SHIFT 7
#define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */
#define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */
/* Default value provided by HW engineering is 0xfa5c */
#define PADS_REFCLK_CFG_VALUE \
( \
(0x17 << PADS_REFCLK_CFG_TERM_SHIFT) | \
(0 << PADS_REFCLK_CFG_E_TERM_SHIFT) | \
(0xa << PADS_REFCLK_CFG_PREDI_SHIFT) | \
(0xf << PADS_REFCLK_CFG_DRVI_SHIFT) \
)
#define RP_VEND_XP 0x00000F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_VEND_CTL2 0x00000FA8
#define RP_VEND_CTL2_PCA_ENABLE (1 << 7)
#define RP_PRIV_MISC 0x00000FE0
#define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
#define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
#define RP_LINK_CONTROL_STATUS 0x00000090
#define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
struct tegra_pcie;
struct tegra_pcie_port {
struct tegra_pcie *pcie;
struct fdt_resource regs;
unsigned int num_lanes;
unsigned int index;
struct list_head list;
};
struct tegra_pcie_soc {
unsigned int num_ports;
unsigned long pads_pll_ctl;
unsigned long tx_ref_sel;
bool has_pex_clkreq_en;
bool has_pex_bias_ctrl;
bool has_cml_clk;
bool has_gen2;
bool force_pca_enable;
};
struct tegra_pcie {
struct pci_controller hose;
struct fdt_resource pads;
struct fdt_resource afi;
struct fdt_resource cs;
struct fdt_resource prefetch;
struct fdt_resource mem;
struct fdt_resource io;
struct list_head ports;
unsigned long xbar;
const struct tegra_pcie_soc *soc;
struct tegra_xusb_phy *phy;
};
static inline struct tegra_pcie *to_tegra_pcie(struct pci_controller *hose)
{
return container_of(hose, struct tegra_pcie, hose);
}
static void afi_writel(struct tegra_pcie *pcie, unsigned long value,
unsigned long offset)
{
writel(value, pcie->afi.start + offset);
}
static unsigned long afi_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->afi.start + offset);
}
static void pads_writel(struct tegra_pcie *pcie, unsigned long value,
unsigned long offset)
{
writel(value, pcie->pads.start + offset);
}
static unsigned long pads_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->pads.start + offset);
}
static unsigned long rp_readl(struct tegra_pcie_port *port,
unsigned long offset)
{
return readl(port->regs.start + offset);
}
static void rp_writel(struct tegra_pcie_port *port, unsigned long value,
unsigned long offset)
{
writel(value, port->regs.start + offset);
}
static unsigned long tegra_pcie_conf_offset(pci_dev_t bdf, int where)
{
return ((where & 0xf00) << 16) | (PCI_BUS(bdf) << 16) |
(PCI_DEV(bdf) << 11) | (PCI_FUNC(bdf) << 8) |
(where & 0xfc);
}
static int tegra_pcie_conf_address(struct tegra_pcie *pcie, pci_dev_t bdf,
int where, unsigned long *address)
{
unsigned int bus = PCI_BUS(bdf);
if (bus == 0) {
unsigned int dev = PCI_DEV(bdf);
struct tegra_pcie_port *port;
list_for_each_entry(port, &pcie->ports, list) {
if (port->index + 1 == dev) {
*address = port->regs.start + (where & ~3);
return 0;
}
}
} else {
*address = pcie->cs.start + tegra_pcie_conf_offset(bdf, where);
return 0;
}
return -1;
}
static int tegra_pcie_read_conf(struct pci_controller *hose, pci_dev_t bdf,
int where, u32 *value)
{
struct tegra_pcie *pcie = to_tegra_pcie(hose);
unsigned long address;
int err;
err = tegra_pcie_conf_address(pcie, bdf, where, &address);
if (err < 0) {
*value = 0xffffffff;
return 1;
}
*value = readl(address);
/* fixup root port class */
if (PCI_BUS(bdf) == 0) {
if (where == PCI_CLASS_REVISION) {
*value &= ~0x00ff0000;
*value |= PCI_CLASS_BRIDGE_PCI << 16;
}
}
return 0;
}
static int tegra_pcie_write_conf(struct pci_controller *hose, pci_dev_t bdf,
int where, u32 value)
{
struct tegra_pcie *pcie = to_tegra_pcie(hose);
unsigned long address;
int err;
err = tegra_pcie_conf_address(pcie, bdf, where, &address);
if (err < 0)
return 1;
writel(value, address);
return 0;
}
static int tegra_pcie_port_parse_dt(const void *fdt, int node,
struct tegra_pcie_port *port)
{
const u32 *addr;
int len;
addr = fdt_getprop(fdt, node, "assigned-addresses", &len);
if (!addr) {
error("property \"assigned-addresses\" not found");
return -FDT_ERR_NOTFOUND;
}
port->regs.start = fdt32_to_cpu(addr[2]);
port->regs.end = port->regs.start + fdt32_to_cpu(addr[4]);
return 0;
}
static int tegra_pcie_get_xbar_config(const void *fdt, int node, u32 lanes,
unsigned long *xbar)
{
enum fdt_compat_id id = fdtdec_lookup(fdt, node);
switch (id) {
case COMPAT_NVIDIA_TEGRA20_PCIE:
switch (lanes) {
case 0x00000004:
debug("single-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
return 0;
case 0x00000202:
debug("dual-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
return 0;
}
break;
case COMPAT_NVIDIA_TEGRA30_PCIE:
switch (lanes) {
case 0x00000204:
debug("4x1, 2x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
return 0;
case 0x00020202:
debug("2x3 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
return 0;
case 0x00010104:
debug("4x1, 1x2 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
return 0;
}
break;
case COMPAT_NVIDIA_TEGRA124_PCIE:
switch (lanes) {
case 0x0000104:
debug("4x1, 1x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1;
return 0;
case 0x0000102:
debug("2x1, 1x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1;
return 0;
}
break;
default:
break;
}
return -FDT_ERR_NOTFOUND;
}
static int tegra_pcie_parse_dt_ranges(const void *fdt, int node,
struct tegra_pcie *pcie)
{
int parent, na_parent, na_pcie, ns_pcie;
const u32 *ptr, *end;
int len;
parent = fdt_parent_offset(fdt, node);
if (parent < 0) {
error("Can't find PCI parent node\n");
return -FDT_ERR_NOTFOUND;
}
na_parent = fdt_address_cells(fdt, parent);
if (na_parent < 1) {
error("bad #address-cells for PCIE parent\n");
return -FDT_ERR_NOTFOUND;
}
na_pcie = fdt_address_cells(fdt, node);
if (na_pcie < 1) {
error("bad #address-cells for PCIE\n");
return -FDT_ERR_NOTFOUND;
}
ns_pcie = fdt_size_cells(fdt, node);
if (ns_pcie < 1) {
error("bad #size-cells for PCIE\n");
return -FDT_ERR_NOTFOUND;
}
ptr = fdt_getprop(fdt, node, "ranges", &len);
if (!ptr) {
error("missing \"ranges\" property");
return -FDT_ERR_NOTFOUND;
}
end = ptr + len / 4;
while (ptr < end) {
struct fdt_resource *res = NULL;
u32 space = fdt32_to_cpu(*ptr);
switch ((space >> 24) & 0x3) {
case 0x01:
res = &pcie->io;
break;
case 0x02: /* 32 bit */
case 0x03: /* 64 bit */
if (space & (1 << 30))
res = &pcie->prefetch;
else
res = &pcie->mem;
break;
}
if (res) {
int start_low = na_pcie + (na_parent - 1);
int size_low = na_pcie + na_parent + (ns_pcie - 1);
res->start = fdt32_to_cpu(ptr[start_low]);
res->end = res->start + fdt32_to_cpu(ptr[size_low]);
}
ptr += na_pcie + na_parent + ns_pcie;
}
debug("PCI regions:\n");
debug(" I/O: %pa-%pa\n", &pcie->io.start, &pcie->io.end);
debug(" non-prefetchable memory: %pa-%pa\n", &pcie->mem.start,
&pcie->mem.end);
debug(" prefetchable memory: %pa-%pa\n", &pcie->prefetch.start,
&pcie->prefetch.end);
return 0;
}
static int tegra_pcie_parse_port_info(const void *fdt, int node,
unsigned int *index,
unsigned int *lanes)
{
struct fdt_pci_addr addr;
int err;
err = fdtdec_get_int(fdt, node, "nvidia,num-lanes", 0);
if (err < 0) {
error("failed to parse \"nvidia,num-lanes\" property");
return err;
}
*lanes = err;
err = fdtdec_get_pci_addr(fdt, node, 0, "reg", &addr);
if (err < 0) {
error("failed to parse \"reg\" property");
return err;
}
*index = PCI_DEV(addr.phys_hi) - 1;
return 0;
}
static int tegra_pcie_parse_dt(const void *fdt, int node,
struct tegra_pcie *pcie)
{
int err, subnode;
u32 lanes = 0;
err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "pads",
&pcie->pads);
if (err < 0) {
error("resource \"pads\" not found");
return err;
}
err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "afi",
&pcie->afi);
if (err < 0) {
error("resource \"afi\" not found");
return err;
}
err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "cs",
&pcie->cs);
if (err < 0) {
error("resource \"cs\" not found");
return err;
}
pcie->phy = tegra_xusb_phy_get(TEGRA_XUSB_PADCTL_PCIE);
if (pcie->phy) {
err = tegra_xusb_phy_prepare(pcie->phy);
if (err < 0) {
error("failed to prepare PHY: %d", err);
return err;
}
}
err = tegra_pcie_parse_dt_ranges(fdt, node, pcie);
if (err < 0) {
error("failed to parse \"ranges\" property");
return err;
}
fdt_for_each_subnode(fdt, subnode, node) {
unsigned int index = 0, num_lanes = 0;
struct tegra_pcie_port *port;
err = tegra_pcie_parse_port_info(fdt, subnode, &index,
&num_lanes);
if (err < 0) {
error("failed to obtain root port info");
continue;
}
lanes |= num_lanes << (index << 3);
if (!fdtdec_get_is_enabled(fdt, subnode))
continue;
port = malloc(sizeof(*port));
if (!port)
continue;
memset(port, 0, sizeof(*port));
port->num_lanes = num_lanes;
port->index = index;
err = tegra_pcie_port_parse_dt(fdt, subnode, port);
if (err < 0) {
free(port);
continue;
}
list_add_tail(&port->list, &pcie->ports);
port->pcie = pcie;
}
err = tegra_pcie_get_xbar_config(fdt, node, lanes, &pcie->xbar);
if (err < 0) {
error("invalid lane configuration");
return err;
}
return 0;
}
int __weak tegra_pcie_board_init(void)
{
return 0;
}
static int tegra_pcie_power_on(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc *soc = pcie->soc;
unsigned long value;
int err;
/* reset PCIEXCLK logic, AFI controller and PCIe controller */
reset_set_enable(PERIPH_ID_PCIEXCLK, 1);
reset_set_enable(PERIPH_ID_AFI, 1);
reset_set_enable(PERIPH_ID_PCIE, 1);
err = tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
if (err < 0) {
error("failed to power off PCIe partition: %d", err);
return err;
}
tegra_pcie_board_init();
err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
PERIPH_ID_PCIE);
if (err < 0) {
error("failed to power up PCIe partition: %d", err);
return err;
}
/* take AFI controller out of reset */
reset_set_enable(PERIPH_ID_AFI, 0);
/* enable AFI clock */
clock_enable(PERIPH_ID_AFI);
if (soc->has_cml_clk) {
/* enable CML clock */
value = readl(NV_PA_CLK_RST_BASE + 0x48c);
value |= (1 << 0);
value &= ~(1 << 1);
writel(value, NV_PA_CLK_RST_BASE + 0x48c);
}
err = tegra_plle_enable();
if (err < 0) {
error("failed to enable PLLE: %d\n", err);
return err;
}
return 0;
}
static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout)
{
const struct tegra_pcie_soc *soc = pcie->soc;
unsigned long start = get_timer(0);
u32 value;
while (get_timer(start) < timeout) {
value = pads_readl(pcie, soc->pads_pll_ctl);
if (value & PADS_PLL_CTL_LOCKDET)
return 0;
}
return -ETIMEDOUT;
}
static int tegra_pcie_phy_enable(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc *soc = pcie->soc;
u32 value;
int err;
/* initialize internal PHY, enable up to 16 PCIe lanes */
pads_writel(pcie, 0, PADS_CTL_SEL);
/* override IDDQ to 1 on all 4 lanes */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/*
* Set up PHY PLL inputs select PLLE output as refclock, set TX
* ref sel to div10 (not div5).
*/
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* reset PLL */
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
udelay(20);
/* take PLL out of reset */
value = pads_readl(pcie, soc->pads_pll_ctl);
value |= PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* configure the reference clock driver */
value = PADS_REFCLK_CFG_VALUE | (PADS_REFCLK_CFG_VALUE << 16);
pads_writel(pcie, value, PADS_REFCLK_CFG0);
if (soc->num_ports > 2)
pads_writel(pcie, PADS_REFCLK_CFG_VALUE, PADS_REFCLK_CFG1);
/* wait for the PLL to lock */
err = tegra_pcie_pll_wait(pcie, 500);
if (err < 0) {
error("PLL failed to lock: %d", err);
return err;
}
/* turn off IDDQ override */
value = pads_readl(pcie, PADS_CTL);
value &= ~PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/* enable TX/RX data */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
pads_writel(pcie, value, PADS_CTL);
return 0;
}
static int tegra_pcie_enable_controller(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc *soc = pcie->soc;
struct tegra_pcie_port *port;
u32 value;
int err;
if (pcie->phy) {
value = afi_readl(pcie, AFI_PLLE_CONTROL);
value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
afi_writel(pcie, value, AFI_PLLE_CONTROL);
}
if (soc->has_pex_bias_ctrl)
afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
value = afi_readl(pcie, AFI_PCIE_CONFIG);
value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar;
list_for_each_entry(port, &pcie->ports, list)
value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
afi_writel(pcie, value, AFI_PCIE_CONFIG);
value = afi_readl(pcie, AFI_FUSE);
if (soc->has_gen2)
value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
else
value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
afi_writel(pcie, value, AFI_FUSE);
if (pcie->phy)
err = tegra_xusb_phy_enable(pcie->phy);
else
err = tegra_pcie_phy_enable(pcie);
if (err < 0) {
error("failed to power on PHY: %d\n", err);
return err;
}
/* take the PCIEXCLK logic out of reset */
reset_set_enable(PERIPH_ID_PCIEXCLK, 0);
/* finally enable PCIe */
value = afi_readl(pcie, AFI_CONFIGURATION);
value |= AFI_CONFIGURATION_EN_FPCI;
afi_writel(pcie, value, AFI_CONFIGURATION);
/* disable all interrupts */
afi_writel(pcie, 0, AFI_AFI_INTR_ENABLE);
afi_writel(pcie, 0, AFI_SM_INTR_ENABLE);
afi_writel(pcie, 0, AFI_INTR_MASK);
afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
return 0;
}
static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
{
unsigned long fpci, axi, size;
/* BAR 0: type 1 extended configuration space */
fpci = 0xfe100000;
size = fdt_resource_size(&pcie->cs);
axi = pcie->cs.start;
afi_writel(pcie, axi, AFI_AXI_BAR0_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR0);
/* BAR 1: downstream I/O */
fpci = 0xfdfc0000;
size = fdt_resource_size(&pcie->io);
axi = pcie->io.start;
afi_writel(pcie, axi, AFI_AXI_BAR1_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR1);
/* BAR 2: prefetchable memory */
fpci = (((pcie->prefetch.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = fdt_resource_size(&pcie->prefetch);
axi = pcie->prefetch.start;
afi_writel(pcie, axi, AFI_AXI_BAR2_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR2);
/* BAR 3: non-prefetchable memory */
fpci = (((pcie->mem.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = fdt_resource_size(&pcie->mem);
axi = pcie->mem.start;
afi_writel(pcie, axi, AFI_AXI_BAR3_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR3);
/* NULL out the remaining BARs as they are not used */
afi_writel(pcie, 0, AFI_AXI_BAR4_START);
afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR4);
afi_writel(pcie, 0, AFI_AXI_BAR5_START);
afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR5);
/* map all upstream transactions as uncached */
afi_writel(pcie, NV_PA_SDRAM_BASE, AFI_CACHE_BAR0_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
/* MSI translations are setup only when needed */
afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
}
static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
{
unsigned long ret = 0;
switch (port->index) {
case 0:
ret = AFI_PEX0_CTRL;
break;
case 1:
ret = AFI_PEX1_CTRL;
break;
case 2:
ret = AFI_PEX2_CTRL;
break;
}
return ret;
}
static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* pulse reset signel */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
udelay(2000);
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
{
const struct tegra_pcie_soc *soc = port->pcie->soc;
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* enable reference clock */
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_REFCLK_EN;
if (port->pcie->soc->has_pex_clkreq_en)
value |= AFI_PEX_CTRL_CLKREQ_EN;
value |= AFI_PEX_CTRL_OVERRIDE_EN;
afi_writel(port->pcie, value, ctrl);
tegra_pcie_port_reset(port);
if (soc->force_pca_enable) {
value = rp_readl(port, RP_VEND_CTL2);
value |= RP_VEND_CTL2_PCA_ENABLE;
rp_writel(port, value, RP_VEND_CTL2);
}
}
static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
{
unsigned int retries = 3;
unsigned long value;
value = rp_readl(port, RP_PRIV_MISC);
value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
rp_writel(port, value, RP_PRIV_MISC);
do {
unsigned int timeout = 200;
do {
value = rp_readl(port, RP_VEND_XP);
if (value & RP_VEND_XP_DL_UP)
break;
udelay(2000);
} while (--timeout);
if (!timeout) {
debug("link %u down, retrying\n", port->index);
goto retry;
}
timeout = 200;
do {
value = rp_readl(port, RP_LINK_CONTROL_STATUS);
if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
return true;
udelay(2000);
} while (--timeout);
retry:
tegra_pcie_port_reset(port);
} while (--retries);
return false;
}
static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* assert port reset */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
/* disable reference clock */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_REFCLK_EN;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_free(struct tegra_pcie_port *port)
{
list_del(&port->list);
free(port);
}
static int tegra_pcie_enable(struct tegra_pcie *pcie)
{
struct tegra_pcie_port *port, *tmp;
list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
debug("probing port %u, using %u lanes\n", port->index,
port->num_lanes);
tegra_pcie_port_enable(port);
if (tegra_pcie_port_check_link(port))
continue;
debug("link %u down, ignoring\n", port->index);
tegra_pcie_port_disable(port);
tegra_pcie_port_free(port);
}
return 0;
}
static const struct tegra_pcie_soc tegra20_pcie_soc = {
.num_ports = 2,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA20,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10,
.has_pex_clkreq_en = false,
.has_pex_bias_ctrl = false,
.has_cml_clk = false,
.has_gen2 = false,
.force_pca_enable = false,
};
static const struct tegra_pcie_soc tegra30_pcie_soc = {
.num_ports = 3,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_cml_clk = true,
.has_gen2 = false,
.force_pca_enable = false,
};
static const struct tegra_pcie_soc tegra124_pcie_soc = {
.num_ports = 2,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_cml_clk = true,
.has_gen2 = true,
.force_pca_enable = false,
};
static int process_nodes(const void *fdt, int nodes[], unsigned int count)
{
unsigned int i;
uint64_t dram_end;
uint32_t pci_dram_size;
/* Clip PCI-accessible DRAM to 32-bits */
dram_end = ((uint64_t)NV_PA_SDRAM_BASE) + gd->ram_size;
if (dram_end > 0x100000000)
dram_end = 0x100000000;
pci_dram_size = dram_end - NV_PA_SDRAM_BASE;
for (i = 0; i < count; i++) {
const struct tegra_pcie_soc *soc;
struct tegra_pcie *pcie;
enum fdt_compat_id id;
int err;
if (!fdtdec_get_is_enabled(fdt, nodes[i]))
continue;
id = fdtdec_lookup(fdt, nodes[i]);
switch (id) {
case COMPAT_NVIDIA_TEGRA20_PCIE:
soc = &tegra20_pcie_soc;
break;
case COMPAT_NVIDIA_TEGRA30_PCIE:
soc = &tegra30_pcie_soc;
break;
case COMPAT_NVIDIA_TEGRA124_PCIE:
soc = &tegra124_pcie_soc;
break;
default:
error("unsupported compatible: %s",
fdtdec_get_compatible(id));
continue;
}
pcie = malloc(sizeof(*pcie));
if (!pcie) {
error("failed to allocate controller");
continue;
}
memset(pcie, 0, sizeof(*pcie));
pcie->soc = soc;
INIT_LIST_HEAD(&pcie->ports);
err = tegra_pcie_parse_dt(fdt, nodes[i], pcie);
if (err < 0) {
free(pcie);
continue;
}
err = tegra_pcie_power_on(pcie);
if (err < 0) {
error("failed to power on");
continue;
}
err = tegra_pcie_enable_controller(pcie);
if (err < 0) {
error("failed to enable controller");
continue;
}
tegra_pcie_setup_translations(pcie);
err = tegra_pcie_enable(pcie);
if (err < 0) {
error("failed to enable PCIe");
continue;
}
pcie->hose.first_busno = 0;
pcie->hose.current_busno = 0;
pcie->hose.last_busno = 0;
pci_set_region(&pcie->hose.regions[0], NV_PA_SDRAM_BASE,
NV_PA_SDRAM_BASE, pci_dram_size,
PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
pci_set_region(&pcie->hose.regions[1], pcie->io.start,
pcie->io.start, fdt_resource_size(&pcie->io),
PCI_REGION_IO);
pci_set_region(&pcie->hose.regions[2], pcie->mem.start,
pcie->mem.start, fdt_resource_size(&pcie->mem),
PCI_REGION_MEM);
pci_set_region(&pcie->hose.regions[3], pcie->prefetch.start,
pcie->prefetch.start,
fdt_resource_size(&pcie->prefetch),
PCI_REGION_MEM | PCI_REGION_PREFETCH);
pcie->hose.region_count = 4;
pci_set_ops(&pcie->hose,
pci_hose_read_config_byte_via_dword,
pci_hose_read_config_word_via_dword,
tegra_pcie_read_conf,
pci_hose_write_config_byte_via_dword,
pci_hose_write_config_word_via_dword,
tegra_pcie_write_conf);
pci_register_hose(&pcie->hose);
#ifdef CONFIG_PCI_SCAN_SHOW
printf("PCI: Enumerating devices...\n");
printf("---------------------------------------\n");
printf(" Device ID Description\n");
printf(" ------ -- -----------\n");
#endif
pcie->hose.last_busno = pci_hose_scan(&pcie->hose);
}
return 0;
}
void pci_init_board(void)
{
const void *fdt = gd->fdt_blob;
int count, nodes[1];
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA124_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA30_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA20_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
}
int pci_skip_dev(struct pci_controller *hose, pci_dev_t dev)
{
if (PCI_BUS(dev) != 0 && PCI_DEV(dev) > 0)
return 1;
return 0;
}