u-boot/test/dm/test-fdt.c
Simon Glass 6571559449 dm: core: Move ofnode-writing test to ofnode
This fits better in the ofnode tests, so move it.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-08-12 08:14:24 -04:00

1148 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2013 Google, Inc
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <dm/test.h>
#include <dm/root.h>
#include <dm/device-internal.h>
#include <dm/devres.h>
#include <dm/uclass-internal.h>
#include <dm/util.h>
#include <dm/of_access.h>
#include <linux/ioport.h>
#include <test/test.h>
#include <test/ut.h>
DECLARE_GLOBAL_DATA_PTR;
struct dm_testprobe_pdata {
int probe_err;
};
static int testprobe_drv_probe(struct udevice *dev)
{
struct dm_testprobe_pdata *pdata = dev_get_plat(dev);
return pdata->probe_err;
}
static const struct udevice_id testprobe_ids[] = {
{ .compatible = "denx,u-boot-probe-test" },
{ }
};
U_BOOT_DRIVER(testprobe_drv) = {
.name = "testprobe_drv",
.of_match = testprobe_ids,
.id = UCLASS_TEST_PROBE,
.probe = testprobe_drv_probe,
.plat_auto = sizeof(struct dm_testprobe_pdata),
};
UCLASS_DRIVER(testprobe) = {
.name = "testprobe",
.id = UCLASS_TEST_PROBE,
.flags = DM_UC_FLAG_SEQ_ALIAS,
};
struct dm_testdevres_pdata {
void *ptr;
};
struct dm_testdevres_priv {
void *ptr;
void *ptr_ofdata;
};
static int testdevres_drv_bind(struct udevice *dev)
{
struct dm_testdevres_pdata *pdata = dev_get_plat(dev);
pdata->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE, 0);
return 0;
}
static int testdevres_drv_of_to_plat(struct udevice *dev)
{
struct dm_testdevres_priv *priv = dev_get_priv(dev);
priv->ptr_ofdata = devm_kmalloc(dev, TEST_DEVRES_SIZE3, 0);
return 0;
}
static int testdevres_drv_probe(struct udevice *dev)
{
struct dm_testdevres_priv *priv = dev_get_priv(dev);
priv->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE2, 0);
return 0;
}
static const struct udevice_id testdevres_ids[] = {
{ .compatible = "denx,u-boot-devres-test" },
{ }
};
U_BOOT_DRIVER(testdevres_drv) = {
.name = "testdevres_drv",
.of_match = testdevres_ids,
.id = UCLASS_TEST_DEVRES,
.bind = testdevres_drv_bind,
.of_to_plat = testdevres_drv_of_to_plat,
.probe = testdevres_drv_probe,
.plat_auto = sizeof(struct dm_testdevres_pdata),
.priv_auto = sizeof(struct dm_testdevres_priv),
};
UCLASS_DRIVER(testdevres) = {
.name = "testdevres",
.id = UCLASS_TEST_DEVRES,
.flags = DM_UC_FLAG_SEQ_ALIAS,
};
int dm_check_devices(struct unit_test_state *uts, int num_devices)
{
struct udevice *dev;
int ret;
int i;
/*
* Now check that the ping adds are what we expect. This is using the
* ping-add property in each node.
*/
for (i = 0; i < num_devices; i++) {
uint32_t base;
ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
ut_assert(!ret);
/*
* Get the 'ping-expect' property, which tells us what the
* ping add should be. We don't use the plat because we
* want to test the code that sets that up
* (testfdt_drv_probe()).
*/
base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
"ping-expect");
debug("dev=%d, base=%d: %s\n", i, base,
fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
ut_assert(!dm_check_operations(uts, dev, base,
dev_get_priv(dev)));
}
return 0;
}
/* Test that FDT-based binding works correctly */
static int dm_test_fdt(struct unit_test_state *uts)
{
const int num_devices = 9;
struct udevice *dev;
struct uclass *uc;
int ret;
int i;
ret = dm_extended_scan(false);
ut_assert(!ret);
ret = uclass_get(UCLASS_TEST_FDT, &uc);
ut_assert(!ret);
/* These are num_devices compatible root-level device tree nodes */
ut_asserteq(num_devices, list_count_items(&uc->dev_head));
/* Each should have platform data but no private data */
for (i = 0; i < num_devices; i++) {
ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
ut_assert(!ret);
ut_assert(!dev_get_priv(dev));
ut_assert(dev_get_plat(dev));
}
ut_assertok(dm_check_devices(uts, num_devices));
return 0;
}
DM_TEST(dm_test_fdt, 0);
static int dm_test_alias_highest_id(struct unit_test_state *uts)
{
int ret;
ret = dev_read_alias_highest_id("ethernet");
ut_asserteq(8, ret);
ret = dev_read_alias_highest_id("gpio");
ut_asserteq(3, ret);
ret = dev_read_alias_highest_id("pci");
ut_asserteq(2, ret);
ret = dev_read_alias_highest_id("i2c");
ut_asserteq(0, ret);
ret = dev_read_alias_highest_id("deadbeef");
ut_asserteq(-1, ret);
return 0;
}
DM_TEST(dm_test_alias_highest_id, 0);
static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
{
struct uclass *uc;
int ret;
ret = dm_scan_fdt(true);
ut_assert(!ret);
ret = uclass_get(UCLASS_TEST_FDT, &uc);
ut_assert(!ret);
/*
* These are 2 pre-reloc devices:
* one with "u-boot,dm-pre-reloc" property (a-test node), and the other
* one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node).
*/
ut_asserteq(2, list_count_items(&uc->dev_head));
return 0;
}
DM_TEST(dm_test_fdt_pre_reloc, 0);
/* Test that sequence numbers are allocated properly */
static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
{
struct udevice *dev;
/* A few basic santiy tests */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
ut_asserteq_str("b-test", dev->name);
ut_asserteq(3, dev_seq(dev));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, &dev));
ut_asserteq_str("a-test", dev->name);
ut_asserteq(8, dev_seq(dev));
/*
* This device has no alias so gets the next value after all available
* aliases. The last alias is testfdt12
*/
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 13, &dev));
ut_asserteq_str("d-test", dev->name);
ut_asserteq(13, dev_seq(dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9,
&dev));
ut_asserteq_ptr(NULL, dev);
/* Test aliases */
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
ut_asserteq_str("e-test", dev->name);
ut_asserteq(6, dev_seq(dev));
/*
* Note that c-test nodes are not probed since it is not a top-level
* node
*/
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
ut_asserteq_str("b-test", dev->name);
ut_asserteq(3, dev_seq(dev));
/*
* d-test wants sequence number 3 also, but it can't have it because
* b-test gets it first.
*/
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
ut_asserteq_str("d-test", dev->name);
ut_asserteq(13, dev_seq(dev));
/* g-test gets the next value after f-test */
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 15, &dev));
ut_asserteq_str("g-test", dev->name);
ut_asserteq(15, dev_seq(dev));
/* And we should still have holes in our sequence numbers */
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 0,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 1,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 2,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 4,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 10,
&dev));
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 11,
&dev));
return 0;
}
DM_TEST(dm_test_fdt_uclass_seq, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* More tests for sequence numbers */
static int dm_test_fdt_uclass_seq_manual(struct unit_test_state *uts)
{
struct udevice *dev;
/*
* Since DM_UC_FLAG_NO_AUTO_SEQ is set for this uclass, only testfdtm1
* should get a sequence number assigned
*/
ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 0, &dev));
ut_asserteq_str("testfdtm0", dev->name);
ut_asserteq(-1, dev_seq(dev));
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT_MANUAL, 1, &dev));
ut_asserteq_str("testfdtm1", dev->name);
ut_asserteq(1, dev_seq(dev));
ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 2, &dev));
ut_asserteq_str("testfdtm2", dev->name);
ut_asserteq(-1, dev_seq(dev));
return 0;
}
DM_TEST(dm_test_fdt_uclass_seq_manual, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_fdt_uclass_seq_more(struct unit_test_state *uts)
{
struct udevice *dev;
ofnode node;
/* Check creating a device with an alias */
node = ofnode_path("/some-bus/c-test@1");
ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
"c-test@1", NULL, node, &dev));
ut_asserteq(12, dev_seq(dev));
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 12, &dev));
ut_asserteq_str("c-test@1", dev->name);
/*
* Now bind a device without an alias. It should not get the next
* sequence number after all aliases, and existing bound devices. The
* last alias is 12, so we have:
*
* 13 d-test
* 14 f-test
* 15 g-test
* 16 h-test
* 17 another-test
* 18 chosen-test
*
* So next available is 19
*/
ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
"fred", NULL, ofnode_null(), &dev));
ut_asserteq(19, dev_seq(dev));
ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
"fred2", NULL, ofnode_null(), &dev));
ut_asserteq(20, dev_seq(dev));
return 0;
}
DM_TEST(dm_test_fdt_uclass_seq_more, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test that we can find a device by device tree offset */
static int dm_test_fdt_offset(struct unit_test_state *uts)
{
const void *blob = gd->fdt_blob;
struct udevice *dev;
int node;
node = fdt_path_offset(blob, "/e-test");
ut_assert(node > 0);
ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
&dev));
ut_asserteq_str("e-test", dev->name);
/* This node should not be bound */
node = fdt_path_offset(blob, "/junk");
ut_assert(node > 0);
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
node, &dev));
/* This is not a top level node so should not be probed */
node = fdt_path_offset(blob, "/some-bus/c-test@5");
ut_assert(node > 0);
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
node, &dev));
return 0;
}
DM_TEST(dm_test_fdt_offset,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
/**
* Test various error conditions with uclass_first_device() and
* uclass_next_device()
*/
static int dm_test_first_next_device(struct unit_test_state *uts)
{
struct dm_testprobe_pdata *pdata;
struct udevice *dev, *parent = NULL;
int count;
int ret;
/* There should be 4 devices */
for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
dev;
ret = uclass_next_device(&dev)) {
count++;
parent = dev_get_parent(dev);
}
ut_assertok(ret);
ut_asserteq(4, count);
/* Remove them and try again, with an error on the second one */
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
pdata = dev_get_plat(dev);
pdata->probe_err = -ENOMEM;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
ut_asserteq(-ENOMEM, uclass_next_device(&dev));
ut_asserteq_ptr(dev, NULL);
/* Now an error on the first one */
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
pdata = dev_get_plat(dev);
pdata->probe_err = -ENOENT;
device_remove(parent, DM_REMOVE_NORMAL);
ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
return 0;
}
DM_TEST(dm_test_first_next_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test iteration through devices in a uclass */
static int dm_test_uclass_foreach(struct unit_test_state *uts)
{
struct udevice *dev;
struct uclass *uc;
int count;
count = 0;
uclass_id_foreach_dev(UCLASS_TEST_FDT, dev, uc)
count++;
ut_asserteq(9, count);
count = 0;
uclass_foreach_dev(dev, uc)
count++;
ut_asserteq(9, count);
return 0;
}
DM_TEST(dm_test_uclass_foreach, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/**
* check_devices() - Check return values and pointers
*
* This runs through a full sequence of uclass_first_device_check()...
* uclass_next_device_check() checking that the return values and devices
* are correct.
*
* @uts: Test state
* @devlist: List of expected devices
* @mask: Indicates which devices should return an error. Device n should
* return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
* bit n is clear.
*/
static int check_devices(struct unit_test_state *uts,
struct udevice *devlist[], int mask)
{
int expected_ret;
struct udevice *dev;
int i;
expected_ret = (mask & 1) ? -ENOENT : 0;
mask >>= 1;
ut_asserteq(expected_ret,
uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
for (i = 0; i < 4; i++) {
ut_asserteq_ptr(devlist[i], dev);
expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
mask >>= 1;
ut_asserteq(expected_ret, uclass_next_device_check(&dev));
}
ut_asserteq_ptr(NULL, dev);
return 0;
}
/* Test uclass_first_device_check() and uclass_next_device_check() */
static int dm_test_first_next_ok_device(struct unit_test_state *uts)
{
struct dm_testprobe_pdata *pdata;
struct udevice *dev, *parent = NULL, *devlist[4];
int count;
int ret;
/* There should be 4 devices */
count = 0;
for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
dev;
ret = uclass_next_device_check(&dev)) {
ut_assertok(ret);
devlist[count++] = dev;
parent = dev_get_parent(dev);
}
ut_asserteq(4, count);
ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
ut_assertok(check_devices(uts, devlist, 0));
/* Remove them and try again, with an error on the second one */
pdata = dev_get_plat(devlist[1]);
pdata->probe_err = -ENOENT - 1;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(check_devices(uts, devlist, 1 << 1));
/* Now an error on the first one */
pdata = dev_get_plat(devlist[0]);
pdata->probe_err = -ENOENT - 0;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(check_devices(uts, devlist, 3 << 0));
/* Now errors on all */
pdata = dev_get_plat(devlist[2]);
pdata->probe_err = -ENOENT - 2;
pdata = dev_get_plat(devlist[3]);
pdata->probe_err = -ENOENT - 3;
device_remove(parent, DM_REMOVE_NORMAL);
ut_assertok(check_devices(uts, devlist, 0xf << 0));
return 0;
}
DM_TEST(dm_test_first_next_ok_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static const struct udevice_id fdt_dummy_ids[] = {
{ .compatible = "denx,u-boot-fdt-dummy", },
{ }
};
UCLASS_DRIVER(fdt_dummy) = {
.name = "fdt-dummy",
.id = UCLASS_TEST_DUMMY,
.flags = DM_UC_FLAG_SEQ_ALIAS,
};
U_BOOT_DRIVER(fdt_dummy_drv) = {
.name = "fdt_dummy_drv",
.of_match = fdt_dummy_ids,
.id = UCLASS_TEST_DUMMY,
};
static int dm_test_fdt_translation(struct unit_test_state *uts)
{
struct udevice *dev;
fdt32_t dma_addr[2];
/* Some simple translations */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
ut_asserteq_str("dev@0,0", dev->name);
ut_asserteq(0x8000, dev_read_addr(dev));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev));
ut_asserteq_str("dev@1,100", dev->name);
ut_asserteq(0x9000, dev_read_addr(dev));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, &dev));
ut_asserteq_str("dev@2,200", dev->name);
ut_asserteq(0xA000, dev_read_addr(dev));
/* No translation for busses with #size-cells == 0 */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, &dev));
ut_asserteq_str("dev@42", dev->name);
ut_asserteq(0x42, dev_read_addr(dev));
/* dma address translation */
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
dma_addr[0] = cpu_to_be32(0);
dma_addr[1] = cpu_to_be32(0);
ut_asserteq(0x10000000, dev_translate_dma_address(dev, dma_addr));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev));
dma_addr[0] = cpu_to_be32(1);
dma_addr[1] = cpu_to_be32(0x100);
ut_asserteq(0x20000000, dev_translate_dma_address(dev, dma_addr));
return 0;
}
DM_TEST(dm_test_fdt_translation, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_fdt_get_addr_ptr_flat(struct unit_test_state *uts)
{
struct udevice *gpio, *dev;
void *ptr;
/* Test for missing reg property */
ut_assertok(uclass_first_device_err(UCLASS_GPIO, &gpio));
ut_assertnull(devfdt_get_addr_ptr(gpio));
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
ptr = devfdt_get_addr_ptr(dev);
ut_asserteq_ptr((void *)0x8000, ptr);
return 0;
}
DM_TEST(dm_test_fdt_get_addr_ptr_flat,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
addr = devfdt_get_addr(dev);
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_flat,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_index_flat(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
fdt_size_t size;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
addr = devfdt_get_addr_size_index(dev, 0, &size);
ut_asserteq(0x8000, addr);
ut_asserteq(0x1000, size);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, devfdt_remap_addr_index(dev, 0));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_index_flat,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_name_flat(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
fdt_size_t size;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
addr = devfdt_get_addr_size_name(dev, "sandbox-dummy-0", &size);
ut_asserteq(0x8000, addr);
ut_asserteq(0x1000, size);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, devfdt_remap_addr_name(dev, "sandbox-dummy-0"));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_name_flat,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
addr = dev_read_addr(dev);
ut_asserteq(0x8000, addr);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, dev_remap_addr(dev));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_live,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_fdt_remap_addr_index_live(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
fdt_size_t size;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
addr = dev_read_addr_size_index(dev, 0, &size);
ut_asserteq(0x8000, addr);
ut_asserteq(0x1000, size);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, dev_remap_addr_index(dev, 0));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_index_live,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_fdt_remap_addr_name_live(struct unit_test_state *uts)
{
struct udevice *dev;
fdt_addr_t addr;
fdt_size_t size;
void *paddr;
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
addr = dev_read_addr_size_name(dev, "sandbox-dummy-0", &size);
ut_asserteq(0x8000, addr);
ut_asserteq(0x1000, size);
paddr = map_physmem(addr, 0, MAP_NOCACHE);
ut_assertnonnull(paddr);
ut_asserteq_ptr(paddr, dev_remap_addr_name(dev, "sandbox-dummy-0"));
return 0;
}
DM_TEST(dm_test_fdt_remap_addr_name_live,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts)
{
ofnode node;
if (!of_live_active()) {
printf("Live tree not active; ignore test\n");
return 0;
}
node = ofnode_path("/usb@2");
/* Test enabling devices */
ut_assert(!of_device_is_available(ofnode_to_np(node)));
dev_enable_by_path("/usb@2");
ut_assert(of_device_is_available(ofnode_to_np(node)));
/* Test disabling devices */
ut_assert(of_device_is_available(ofnode_to_np(node)));
dev_disable_by_path("/usb@2");
ut_assert(!of_device_is_available(ofnode_to_np(node)));
return 0;
}
DM_TEST(dm_test_fdt_disable_enable_by_path, UT_TESTF_SCAN_PDATA |
UT_TESTF_SCAN_FDT);
/* Test a few uclass phandle functions */
static int dm_test_fdt_phandle(struct unit_test_state *uts)
{
struct udevice *back, *dev, *dev2;
ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back));
ut_assertnonnull(back);
ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR,
back, "missing", &dev));
ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back,
"power-supply", &dev));
ut_assertnonnull(dev);
ut_asserteq(0, device_active(dev));
ut_asserteq_str("ldo1", dev->name);
ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back,
"power-supply", &dev2));
ut_asserteq_ptr(dev, dev2);
return 0;
}
DM_TEST(dm_test_fdt_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test device_find_first_child_by_uclass() */
static int dm_test_first_child(struct unit_test_state *uts)
{
struct udevice *i2c, *dev, *dev2;
ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c));
ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_RTC, &dev));
ut_asserteq_str("rtc@43", dev->name);
ut_assertok(device_find_child_by_name(i2c, "rtc@43", &dev2));
ut_asserteq_ptr(dev, dev2);
ut_assertok(device_find_child_by_name(i2c, "rtc@61", &dev2));
ut_asserteq_str("rtc@61", dev2->name);
ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_I2C_EEPROM,
&dev));
ut_asserteq_str("eeprom@2c", dev->name);
ut_assertok(device_find_child_by_name(i2c, "eeprom@2c", &dev2));
ut_asserteq_ptr(dev, dev2);
ut_asserteq(-ENODEV, device_find_first_child_by_uclass(i2c,
UCLASS_VIDEO, &dev));
ut_asserteq(-ENODEV, device_find_child_by_name(i2c, "missing", &dev));
return 0;
}
DM_TEST(dm_test_first_child, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test integer functions in dm_read_...() */
static int dm_test_read_int(struct unit_test_state *uts)
{
struct udevice *dev;
u32 val32;
s32 sval;
uint val;
u64 val64;
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
ut_asserteq_str("a-test", dev->name);
ut_assertok(dev_read_u32(dev, "int-value", &val32));
ut_asserteq(1234, val32);
ut_asserteq(-EINVAL, dev_read_u32(dev, "missing", &val32));
ut_asserteq(6, dev_read_u32_default(dev, "missing", 6));
ut_asserteq(1234, dev_read_u32_default(dev, "int-value", 6));
ut_asserteq(1234, val32);
ut_asserteq(-EINVAL, dev_read_s32(dev, "missing", &sval));
ut_asserteq(6, dev_read_s32_default(dev, "missing", 6));
ut_asserteq(-1234, dev_read_s32_default(dev, "uint-value", 6));
ut_assertok(dev_read_s32(dev, "uint-value", &sval));
ut_asserteq(-1234, sval);
val = 0;
ut_asserteq(-EINVAL, dev_read_u32u(dev, "missing", &val));
ut_assertok(dev_read_u32u(dev, "uint-value", &val));
ut_asserteq(-1234, val);
ut_assertok(dev_read_u64(dev, "int64-value", &val64));
ut_asserteq_64(0x1111222233334444, val64);
ut_asserteq_64(-EINVAL, dev_read_u64(dev, "missing", &val64));
ut_asserteq_64(6, dev_read_u64_default(dev, "missing", 6));
ut_asserteq_64(0x1111222233334444,
dev_read_u64_default(dev, "int64-value", 6));
return 0;
}
DM_TEST(dm_test_read_int, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_read_int_index(struct unit_test_state *uts)
{
struct udevice *dev;
u32 val32;
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
ut_asserteq_str("a-test", dev->name);
ut_asserteq(-EINVAL, dev_read_u32_index(dev, "missing", 0, &val32));
ut_asserteq(19, dev_read_u32_index_default(dev, "missing", 0, 19));
ut_assertok(dev_read_u32_index(dev, "int-array", 0, &val32));
ut_asserteq(5678, val32);
ut_assertok(dev_read_u32_index(dev, "int-array", 1, &val32));
ut_asserteq(9123, val32);
ut_assertok(dev_read_u32_index(dev, "int-array", 2, &val32));
ut_asserteq(4567, val32);
ut_asserteq(-EOVERFLOW, dev_read_u32_index(dev, "int-array", 3,
&val32));
ut_asserteq(5678, dev_read_u32_index_default(dev, "int-array", 0, 2));
ut_asserteq(9123, dev_read_u32_index_default(dev, "int-array", 1, 2));
ut_asserteq(4567, dev_read_u32_index_default(dev, "int-array", 2, 2));
ut_asserteq(2, dev_read_u32_index_default(dev, "int-array", 3, 2));
return 0;
}
DM_TEST(dm_test_read_int_index, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_read_phandle(struct unit_test_state *uts)
{
struct udevice *dev;
struct ofnode_phandle_args args;
int ret;
const char prop[] = "test-gpios";
const char cell[] = "#gpio-cells";
const char prop2[] = "phandle-value";
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
ut_asserteq_str("a-test", dev->name);
/* Test dev_count_phandle_with_args with cell name */
ret = dev_count_phandle_with_args(dev, "missing", cell, 0);
ut_asserteq(-ENOENT, ret);
ret = dev_count_phandle_with_args(dev, prop, "#invalid", 0);
ut_asserteq(-EINVAL, ret);
ut_asserteq(5, dev_count_phandle_with_args(dev, prop, cell, 0));
/* Test dev_read_phandle_with_args with cell name */
ret = dev_read_phandle_with_args(dev, "missing", cell, 0, 0, &args);
ut_asserteq(-ENOENT, ret);
ret = dev_read_phandle_with_args(dev, prop, "#invalid", 0, 0, &args);
ut_asserteq(-EINVAL, ret);
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 0, &args));
ut_asserteq(1, args.args_count);
ut_asserteq(1, args.args[0]);
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 1, &args));
ut_asserteq(1, args.args_count);
ut_asserteq(4, args.args[0]);
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 2, &args));
ut_asserteq(5, args.args_count);
ut_asserteq(5, args.args[0]);
ut_asserteq(1, args.args[4]);
ret = dev_read_phandle_with_args(dev, prop, cell, 0, 3, &args);
ut_asserteq(-ENOENT, ret);
ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 4, &args));
ut_asserteq(1, args.args_count);
ut_asserteq(12, args.args[0]);
ret = dev_read_phandle_with_args(dev, prop, cell, 0, 5, &args);
ut_asserteq(-ENOENT, ret);
/* Test dev_count_phandle_with_args with cell count */
ret = dev_count_phandle_with_args(dev, "missing", NULL, 2);
ut_asserteq(-ENOENT, ret);
ut_asserteq(3, dev_count_phandle_with_args(dev, prop2, NULL, 1));
/* Test dev_read_phandle_with_args with cell count */
ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 0, &args));
ut_asserteq(1, ofnode_valid(args.node));
ut_asserteq(1, args.args_count);
ut_asserteq(10, args.args[0]);
ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 1, &args);
ut_asserteq(-EINVAL, ret);
ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 2, &args));
ut_asserteq(1, ofnode_valid(args.node));
ut_asserteq(1, args.args_count);
ut_asserteq(30, args.args[0]);
ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 3, &args);
ut_asserteq(-ENOENT, ret);
return 0;
}
DM_TEST(dm_test_read_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test iteration through devices by drvdata */
static int dm_test_uclass_drvdata(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT,
DM_TEST_TYPE_FIRST, &dev));
ut_asserteq_str("a-test", dev->name);
ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT,
DM_TEST_TYPE_SECOND, &dev));
ut_asserteq_str("d-test", dev->name);
ut_asserteq(-ENODEV, uclass_first_device_drvdata(UCLASS_TEST_FDT,
DM_TEST_TYPE_COUNT,
&dev));
return 0;
}
DM_TEST(dm_test_uclass_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test device_first_child_ofdata_err(), etc. */
static int dm_test_child_ofdata(struct unit_test_state *uts)
{
struct udevice *bus, *dev;
int count;
ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus));
count = 0;
device_foreach_child_of_to_plat(dev, bus) {
ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
count++;
}
ut_asserteq(3, count);
return 0;
}
DM_TEST(dm_test_child_ofdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test device_first_child_err(), etc. */
static int dm_test_first_child_probe(struct unit_test_state *uts)
{
struct udevice *bus, *dev;
int count;
ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus));
count = 0;
device_foreach_child_probe(dev, bus) {
ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
count++;
}
ut_asserteq(3, count);
return 0;
}
DM_TEST(dm_test_first_child_probe, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test that ofdata is read for parents before children */
static int dm_test_ofdata_order(struct unit_test_state *uts)
{
struct udevice *bus, *dev;
ut_assertok(uclass_find_first_device(UCLASS_I2C, &bus));
ut_assertnonnull(bus);
ut_assert(!(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID));
ut_assertok(device_find_first_child(bus, &dev));
ut_assertnonnull(dev);
ut_assert(!(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID));
/* read the child's ofdata which should cause the parent's to be read */
ut_assertok(device_of_to_plat(dev));
ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
ut_assert(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID);
ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
ut_assert(!(dev_get_flags(bus) & DM_FLAG_ACTIVATED));
return 0;
}
DM_TEST(dm_test_ofdata_order, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test dev_decode_display_timing() */
static int dm_test_decode_display_timing(struct unit_test_state *uts)
{
struct udevice *dev;
struct display_timing timing;
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
ut_asserteq_str("a-test", dev->name);
ut_assertok(dev_decode_display_timing(dev, 0, &timing));
ut_assert(timing.hactive.typ == 240);
ut_assert(timing.hback_porch.typ == 7);
ut_assert(timing.hfront_porch.typ == 6);
ut_assert(timing.hsync_len.typ == 1);
ut_assert(timing.vactive.typ == 320);
ut_assert(timing.vback_porch.typ == 5);
ut_assert(timing.vfront_porch.typ == 8);
ut_assert(timing.vsync_len.typ == 2);
ut_assert(timing.pixelclock.typ == 6500000);
ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH);
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_LOW);
ut_assert(timing.flags & DISPLAY_FLAGS_DE_HIGH);
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE);
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
ut_assert(timing.flags & DISPLAY_FLAGS_INTERLACED);
ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLESCAN);
ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLECLK);
ut_assertok(dev_decode_display_timing(dev, 1, &timing));
ut_assert(timing.hactive.typ == 480);
ut_assert(timing.hback_porch.typ == 59);
ut_assert(timing.hfront_porch.typ == 10);
ut_assert(timing.hsync_len.typ == 12);
ut_assert(timing.vactive.typ == 800);
ut_assert(timing.vback_porch.typ == 15);
ut_assert(timing.vfront_porch.typ == 17);
ut_assert(timing.vsync_len.typ == 16);
ut_assert(timing.pixelclock.typ == 9000000);
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH));
ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_LOW);
ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH);
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH));
ut_assert(timing.flags & DISPLAY_FLAGS_DE_LOW);
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE));
ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK));
ut_assertok(dev_decode_display_timing(dev, 2, &timing));
ut_assert(timing.hactive.typ == 800);
ut_assert(timing.hback_porch.typ == 89);
ut_assert(timing.hfront_porch.typ == 164);
ut_assert(timing.hsync_len.typ == 11);
ut_assert(timing.vactive.typ == 480);
ut_assert(timing.vback_porch.typ == 23);
ut_assert(timing.vfront_porch.typ == 10);
ut_assert(timing.vsync_len.typ == 13);
ut_assert(timing.pixelclock.typ == 33500000);
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH));
ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE));
ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN));
ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK));
ut_assert(dev_decode_display_timing(dev, 3, &timing));
return 0;
}
DM_TEST(dm_test_decode_display_timing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test read_resourcee() */
static int dm_test_read_resource(struct unit_test_state *uts)
{
struct udevice *dev;
struct resource res;
/* test resource without translation */
ut_assertok(uclass_find_device_by_name(UCLASS_SIMPLE_BUS, "syscon@2", &dev));
ut_assertok(dev_read_resource(dev, 0, &res));
ut_asserteq(0x40, res.start);
ut_asserteq(0x44, res.end);
ut_assertok(dev_read_resource(dev, 1, &res));
ut_asserteq(0x48, res.start);
ut_asserteq(0x4d, res.end);
/* test resource with translation */
ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@1,100", &dev));
ut_assertok(dev_read_resource(dev, 0, &res));
ut_asserteq(0x9000, res.start);
ut_asserteq(0x9fff, res.end);
/* test named resource */
ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@0,0", &dev));
ut_assertok(dev_read_resource_byname(dev, "sandbox-dummy-0", &res));
ut_asserteq(0x8000, res.start);
ut_asserteq(0x8fff, res.end);
return 0;
}
DM_TEST(dm_test_read_resource, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);